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Abstract

Objective: To develop and recalibrate an Australian 5-year cardiovascular disease (CVD) mortality risk score to produce
contemporary predictions of risk.

Methods: Data were pooled from six Australian cohort studies (n = 54,829), with baseline data collected between 1989
and 2003. Participants included were aged 40–74 years and free of CVD at baseline. Variables were harmonised across
studies and missing data were imputed using multiple imputation. Cox proportional hazards models were used to
estimate the risk of CVD mortality associated with factors mutually independently predictive (p < 0.05) and a 5-year risk
prediction algorithm was constructed. This algorithm was recalibrated to reflect contemporary national levels of CVD
mortality and risk factors using national statistics.

Results: Over a mean 16.6 years follow-up, 1375 participants in the six studies died from CVD. The prediction model
included age, sex, smoking, diabetes, systolic blood pressure, total and high-density lipoprotein cholesterol (HDLC), a
social deprivation score, estimated glomerular filtration rate and its square and interactions of sex with diabetes, HDLC
and deprivation score, and of age with systolic blood pressure and smoking. This model discriminated well when applied
to a Scottish study population (c-statistic (95% confidence interval): 0.751 (0.709, 0.793)). Recalibration generally increased
estimated risks, but well below those predicted by the European SCORE models.

Conclusions: The resulting risk score, which includes markers of both chronic kidney disease and socioeconomic
deprivation, is the first CVD mortality risk prediction tool for Australia to be derived using Australian data. The primary
model, and the method of recalibration, is applicable elsewhere.
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Background
Australia has based its national cardiovascular disease
(CVD) guidelines [1] on the Framingham risk score,
which was developed using data from a small, middle-
class, predominately White, population from a single
town in the USA [2]. Data were accrued from 1948 and
mostly cover a time when CVD incidence rates were

relatively high and the rates of obesity and diabetes were
relatively low. Moreover, the accuracy of the Framing-
ham risk score is limited by the omission of important
independent risk factors, including socioeconomic
deprivation [3, 4] and markers of chronic kidney disease
[5]. Thus, the suitability of the Framingham risk score
for use in a contemporary Australian population is
questionable.
The development of a CVD risk score in Australia has

been hampered by the lack of a large Australian cohort
study with information on all relevant risk factors and a
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sufficient number of CVD outcomes. We thus used com-
bined data from the largest pool of Australian data avail-
able to us to develop an Australian 5-year CVD mortality
risk score, which accounts for socio-demographic factors
and markers chronic kidney disease, recalibrating the
sample-based results using national statistics so as to pro-
duce contemporary predictions of risk.

Methods
We considered all known Australian cohorts for inclusion
in this study. An expert steering committee was estab-
lished, which agreed, a priori, that the aim was to develop
a 5-year CVD risk score using Australian data that in-
cluded, unless there was evidence otherwise, measures of
socioeconomic status, family history of CVD and markers
for renal disease, in addition to the classical Framingham
risk factors. The 5-year time frame was chosen for the fol-
lowing reasons: i) to reflect current absolute risk guide-
lines in Australia, which is based on 5-year risk of a CVD
event [1], ii) focus group testing has shown Australian
consumer preference for a shorter 5-year time frame over
a 10-year time-frame for risk prediction [6] and iii) to en-
able modelling of treatment effects in RCTs, which are of
a relatively shorter duration. Cohorts were included if they
had data on CVD outcomes and on traditional CVD risk
factors (age, sex, diabetes, systolic blood pressure (SBP),
total cholesterol (TC), high-density lipoprotein cholesterol
(HDLC) and smoking) and socioeconomic deprivation,
measured by the Australian Socioeconomic Index For
Areas (SEIFA) postcode-based score for some, or all, par-
ticipants [7]. Cohorts were excluded if they were derived
from a high-risk CVD population or if all participants
were aged less than 40 years or older than 74 years. Co-
horts were additionally excluded if information on prior
CVD was unavailable. Six prospective cohorts, whose in-
vestigators were willing and able to contribute individual
participant data, were subsequently identified (Table 1).
Data were pooled and the relevant variables were harmo-
nised across studies. These cohorts contributed to the
Australian and New Zealand Diabetes and Cancer Collab-
oration [8]. This study was approved by the Alfred Health
Human Research Ethics Committee (HREC; 310/14) and
the Australian Institute for Health and Welfare (AIHW)
HREC (2015/1/142).

Cardiovascular disease mortality outcome
The primary endpoint for the CVD risk equation was
death from cardiovascular causes, defined as a composite
of coronary heart disease (ICD-10 I20-I25) and cerebro-
vascular disease (ICD-10 I60-I69). A general lack of
availability of non-fatal CVD events precluded analysis
of a total (fatal plus non-fatal) CVD outcome. CVD
mortality was derived from linkage [8] to the National
Death Index by the Australian Institute of Health and

Welfare. All cohorts were matched collectively with all
records successfully linked. Participants were followed
until death, or until the censoring date (the last day of
follow-up for each participant) - whichever came first.

Cardiovascular disease risk factors
We collected data on baseline age (years), sex, TC
(mmol/L), HDLC (mmol/L), SBP (mm Hg), smoking sta-
tus, diabetes status, body mass index (BMI; kg/m2),
SEIFA, educational attainment, estimated glomerular fil-
tration rate (eGFR; ml/min/m2), urinary albumin to cre-
atinine ratio (ACR), and family history of CVD.
However, ACR was omitted from predictive risk model-
ling because it was only measured in one study, and
family history was omitted because it was inconsistently
collected across studies (e.g. self-reported cause of death
for mother or father; mother, father, sister, or brother
having experienced a CVD event (with no upper age
limit); mother, father, sister, or brother having experi-
enced a CHD event prior to age 60 years). TC, HDLC
and SBP were measured using standard procedures.
Smoking status was dichotomised as current or not
current smoking. Diabetes status was defined as a fasting
plasma glucose (FPG) ≥126 mg/dl, where available.
When data on FPG were missing (Table 1) we used self-
reported diabetes status. Participants who were missing
FPG and self-reported as not having diabetes were re-
corded as no diabetes. eGFR was estimated using an
enzymatic creatinine assay according to the CKD-EPI
equation [8]. The SEIFA score was categorized by national
fifths, indexed as 1–5. BMI was derived with objectively
measured height and weight. Educational attainment was
dichotomised as completed high school or not.

Statistical methods
Participants were included in the analysis if they were
between 40 and 74 years of age and free of CVD at base-
line. All continuous variables were tested for log-linear
associations with the risk of CVD mortality by graphical
means. The only violation found was for eGFR, which
had a curvilinear association. To reduce the chance of
bias from missing data, multiple imputation by chained
equations with 30 imputations was used [9]. Covariates
included in our imputation models were baseline age,
sex, SBP, TC, HDLC, SEIFA fifth, BMI, eGFR, eGFR2,
family history of CVD, diabetes status, smoking status,
highest level of education and follow-up data on CVD
mortality, mortality from any cause and days to censor-
ing or death. As we decided, a priori, that age and sex
were likely to be effect modifiers for other risk factors,
the imputation model was stratified by sex and by age
(in thirds). Analyses were conducted on the complete
pooled data set.
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Cox proportional hazards regression models were used
to quantify the associations between baseline factors and
the risk of CVD mortality. When estimating CVD
mortality all other causes of death were ignored. The
proportional hazards assumption was tested for all co-
variates included in the model using the Schoenfeld’s
global test and by graphical inspection of a plot of the
scaled Schoenfeld residuals on a function of time. As an
initial exploratory analysis, a model was fitted with only
traditional risk factors: age, sex, SBP, TC, HDLC, dia-
betes and smoking. For the primary prediction model all
the exposure variables available were considered as po-
tential prognostic factors, together with all interactions
between sex and other variables and between age and all
other variables. For the primary prediction model all
significant (p < 0.05) predictors (risk factors with sex or
age interaction terms) in multiple adjusted models were
included. We additionally constructed, in an identical
way, a low information model, which omitted all clinical
variables collected via blood tests, for potential use in
non-clinical settings.
From general theory [9, 10], the 5-year risk prediction

from a Cox model is approximated as:

p̂ ¼ 1− S 5; xð Þ exp wð Þ

where S 5; xð Þ is the probability of survival (without a
CVD death) for a 5-year period for the average person
(someone with mean values of each risk factor) at baseline
(the start of the 5-year period) in the sample data. Also,

w ¼
X

b1 x1−x1ð Þ þ b2 x2−x2ð Þ þ b3 x3−x3ð Þ þ ……

where the {x} are the values taken by any given indi-
vidual for the risk factors included in the model, the xf g
are their mean values (in the sample data) and the {b}
are the regression coefficients (log hazard ratios) from
the Cox model.
To obtain a primary risk score, using only sample data,

S 5; xð Þ was taken as the mean value after fitting the Cox
model for the primary risk model in each of the 30 im-
putations. Similarly, w was taken as the mean over the
30 imputations, but with the {b} values taken from the
multiple imputation process (thus fixed at each
iteration).

Recalibration
This primary risk score, obtained from the pooled
Australian data, may be poorly calibrated for current
national purposes for at least two reasons. First, the sample
used in each study may be healthier than ‘the average’ at the
time of sampling because of the voluntary nature of study
participation or the exclusion of subjects who are hard to re-
cruit. Second, because there has been a considerable annual
decrease in ‘background’ CVD mortality rates in Australia

since the studies used to create the primary score were inau-
gurated (Additional file 1: Figure S1). The primary score was
thus recalibrated [10] using the most current (2013) national
data on mortality [11] and risk factors [12], using similar
methodology to the GLOBORISK project [13] and an earlier,
unadopted, Australian risk score [14] that was recalibrated
from European Systematic COronary Risk Evaluation
(SCORE) estimates of risk [15].
In our recalibrated score we replaced, for each 5-year

age/sex group, S 5; xð Þ with the estimated national 5-year
death rate for Australians in 2016 based on the most re-
cent national death statistics, which gives annual CVD
mortality rates by 5-year age/sex group, up to 2013 [11].
Also, we replaced xf g by the mean values from the most
recent (2011/3) comprehensive national health survey
[12], obtained by request from the Australian Bureau of
Statistics. See Additional file 2: Table S1 for a compari-
son between Australian national data and the pooled co-
horts. Using these sources of data incurs a minor error
due to their inclusion of those with prevalent CVD
(6.9% in the six datasets used in this paper).
Single-year mortality projections for 2016 were derived

from fitting Poisson regression models to 5 year age/sex-
specific annual data, for ages 40–79 years, from 2000 to
2013. This model provided a good fit to the data
(Additional file 3: Figure S2). Using standard lifetable
(‘compound interest’) methods these projections were used
to obtain estimated 5-year risks for each 5-year age/sex
group, for someone aged at the mid-range of the particular
age group. Transition to the next highest age group after
2.5 years was accounted for by taking the single-year esti-
mate of risk as the geometric mean of the estimates in year
three of follow-up in the original and next age groups,
stratified by sex. Similarly, the value of an individual’s age
was rounded to the mid-range of her or his specific 5-year
age group when evaluating the w component of the recali-
brated risk score in each five-year age-group.

Evaluating the scores
We tested the discrimination of the primary risk score
by evaluating its performance in the multiple imputation
model using Harrell’s c-statistic [9]. Additionally, we
found the corresponding c-statistic in each of the 30
imputation sets and obtained a pooled estimate from a
fixed effect meta-analysis [9]. We also compared the dis-
crimination of the primary, low information and trad-
itional risk factor models. Finally, we evaluated
discrimination in an external dataset: the Scottish Heart
Health Extended Cohort Study [4], approximating SEIFA
fifths with the postcode-based deprivation fifths in this
study. Although the calibration of the primary risk score
does not require evaluation, given that recalibration has
been performed, nevertheless it was useful to check that
the primary risk score is well calibrated within the
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sample data. To do such a test, a calibration plot [9] was
constructed for a pre-specified arbitrary imputation set
(i.e. the sample data from the combined six Australian
cohorts with missing data ‘filled-in’) – the first set gener-
ated. In addition, the Hosmer-Lemeshow test for sur-
vival data [9] was applied to the equal tenths of
predicted risk. For comparison with existing scores for
CVD mortality, calibration plots were also produced, ap-
plied to the same imputation set, for the SCORE models
for low- and high-risk European populations [15]. The
published 10-year risks from SCORE were transformed
to 5-year risks using ‘compound interest’ calculations.
Although external validation would be ideal [10], there

is no meaningful way to validate the final, recalibrated
model as, by definition, this is a projection into an un-
known future Australia. Alternatively, we compared the
primary and recalibrated models with each other and
with the two SCORE predictions. We computed the esti-
mates for all four algorithms for a woman and a man
who did or did not smoke, had or did not have diabetes
and had average values of all the other risk factors
according to the Australian risk factor survey [12].
Analyses were undertaken using SAS and STATA

software; a p value of 0.05 or less was considered signifi-
cant. All analyses and reporting of the prediction model
development and validation were conducted in accord-
ance with the Transparent Reporting of a multivariable
prediction model for Individual Prognosis Or Diagnosis
(TRIPOD) guidelines.

Results
Baseline data were collected between the years 1989 and
2003: 54,829 participants (59% women; mean age
56 years) contributed data to the analyses (Table 1).
Over a mean follow-up of 16.6 years, 1,375 participants
were known to have died from CVD.
The p-value for non-proportionality was >0.05 for all

covariates, except for smoking where proportional
hazards violation was evident (p = 0.001), which is
explainable by chance, especially as visual inspection of
the scaled Schoenfeld residuals showed these to be very
minor non-proportional effects. In our exploratory
model, with only main effects of traditional risk factors:
all these factors were independently predictive (p < 0.05)
of CVD mortality, with increasing age, TC and SBP, dia-
betes and smoking associated with an increased risk of
CVD mortality, and female sex and increasing HDLC
associated with a reduced risk (Table 2), as expected.
Taking all the risk factors considered: age, sex, SBP

(and its interaction with age), TC, HDLC (and inter-
action with sex), diabetes (and interaction with sex),
smoking (and interaction with age), SEIFA (and inter-
action with sex) and eGFR and its square and were
found to be independently predictive of CVD mortality.

The resultant primary risk model, calibrated to the sam-
ple data after multiple imputation, is specified in Fig. 1.
In our low information model: age, sex, SBP, diabetes,

smoking and SEIFA, plus interactions between sex and
SEIFA, age and both SBP and smoking and between age
and sex independently predicted CVD mortality.

Evaluation of the primary risk score
Internal discrimination of the primary risk score was ex-
cellent from the imputed primary model: the c-statistic
(95% confidence interval) was 0.910 (0.893, 0.926).
When the primary risk score was tested in each individ-
ual imputed data set (Additional file 2: Table S2) the
pooled c-statistic was 0.871 (0.867, 0.875). As expected,
in an arbitrarily chosen single imputed dataset the cali-
bration was good, although risks were heavily clustered
at low levels (Fig. 2). The c-statistics for the low infor-
mation and traditional risk factor scores were 0.836
(0.812, 0.860) and 0.832 (0.807, 0.857), respectively; the
p values for a difference from the primary model were
both <0.0001. Applied to the Scottish study population,
the c-statistic for the primary model was attenuated to
0.751 (0.709, 0.793), so that the score still discriminates
well in this external setting.
The European SCORE project’s risk scores for low-

and high-risk populations were poorly calibrated to the
nominal Australian population in the arbitrary imputed
data set illustrated in Fig. 2: even the low-risk score
over-predicts risk badly (Additional file 4: Figure S3).

Recalibration
The recalibrated risk predictions were always higher
than those from the primary model, suggesting that the
sample populations were generally healthier than typical,
contemporary, Australians (Additional file 2: Table S1
and S3). The only exception to this was for the 70–74
year age group where risks were lower from the recali-
brated model compared to the primary model, perhaps
due to the assumption of a linear relationship between
age and CVD mortality risk or due to random error.
Risk scores from the recalibrated model, however, pro-
duced generally lower predicted risks compared to those
from SCORE, both for low- and high-risk populations,
suggesting that the attenuation of ‘background’ risk over
time has been accounted for by recalibration, at least in
a general sense. The only exception was for low-risk
subjects (predominantly women) for whom the recali-
brated score gave the highest risk predictions. Recali-
brated values for the ‘average man’ were three times as
large as the primary values, but half the low-risk SCORE
values and about a third of the high-risk SCORE values
(Table 3). Similar results were observed for the ‘average
woman’. Smoking, ageing and being of the male sex in-
creased risk in all scores. Diabetes increased risk in the
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two Australian scores, but was not accounted for in
SCORE, and had a greater impact for women.
A proof-of-concept spreadsheet calculator for the

recalibrated score was developed in Excel. Additional file
5: Figure S4 is a screen shot from this. A user-friendly
‘publication’ version is under consideration.

Discussion
Our novel, nationally-recalibrated, risk algorithm in-
cludes traditional CVD risk factors, as used in
Framingham [2] and the European SCORE [14], in
addition to measures of socioeconomic deprivation and

chronic kidney disease (eGFR), both of which have been
shown to independently predict CVD risk [4, 5, 16].
Accounting for deprivation in a risk algorithm will en-
sure preventive treatments are more fairly and efficiently
allocated and will help to reduce socioeconomic inequal-
ities in CVD.
Although our risk algorithm was derived from a large

pool of Australian adults with extensive data on
traditional and non-traditional CVD risk factors, we
found considerable limitations due to the a priori deci-
sion to restrict our analyses to the existing Australian
data available to us. Unfortunately the studies we used

Table 2 Cox regression coefficients (95% confidence intervals) associated with CVD mortality for each risk factor included in the
five-year CVD mortality risk prediction algorithms

Variable (reference group/units) Primary model Low information model Traditional risk factor model

Age 0.373 (0.307, 0.438) 0.310 (0.242, 0.379) 0.168 (0.158, 0.178)

Sex (men) −1.066 (−1.659, −0.473) −2.438 (−3.773, −1.103) −0.535 (−0.655, −0.412)

Systolic blood pressure (10 mmHg) 0.941 (0.653, 1.230) 0.790 (0.490, 1.090) 0.114 (0.088, 0.140)

Total serum cholesterol (mmol/L) 0.122 (0.071, 0.172) 0.140 (0.091, 0.188)

HDL-cholesterol (mmol/L) −0.482 (−0.794, −0.170) −0.238 (−0.433, −0.043)

Diabetes (no diabetes) 0.071 (−0.174, 0.316) 0.437 (0.256, 0.617) 0.443 (0.260, 0.625)

Smoker (not current) 2.903 (1.549, 4.257) 3.944 (2.530, 5.358) 0.768 (0.628, 0.907)

SEIFA fifth (most disadvantaged) −0.119 (−0.174, −0.064) −0.095 (−0.148, −0.043)

eGFR (ml/min/m2) −0.127 (−0.165, −0.088)

eGFR2 (ml/min/m2)2 0.0009 (0.0007, 0.0012)

Interactions

sex X diabetes 0.424 (0.041, 0.807)

sex X SEIFA −0.115 (−0.198, −0.032) −0.135 (−0.215, −0.055)

sex X HDL-cholesterol 0.504 (0.114, 0.895)

age X systolic blood pressure −0.013 (−0.017, −0.008) −0.010 (−0.015, −0.006)

age X smoker −0.035 (−0.056, −0.014) −0.050 (−0.072, −0.028)

age X sex 0.034 (0.014, 0.054)

Fig. 1 The primary five-year risk score (probability of death from CVD within 5 years)
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lacked consistent data on family history of CVD and suf-
ficient data on ACR, both of which have been shown to
be independent risk factors of CVD [4, 5, 16]. We would
also have liked to take account of Aboriginal and Torres
Strait Islander status, but the appropriate data were

lacking – future work in this area is needed. Further-
more, missing values were common in the variables we
did utilise, rising to as high as 80% for eGFR, which was
completely missing in three studies, and 60% for HDLC.
We dealt with this issue through cross-study multiple
imputation, even though the missing value mechanism
varied between studies. This may have introduced some
unidentifiable bias. We took the pragmatic approach of
assuming that the relationships between variables were
consistent across studies. Without this assumption we
considered that a principled approach to multiple imput-
ation would not have been possible, without ignoring
the bulk of our data. The clustering of missingness
within studies has contributed towards the similarity of
the estimates across imputations, seen in Additional file
2: Table S2. Imputation may also have increased random
error, compared to a complete case analysis [9]. This
would tend to have increased p values and so reduced
the chance of selection when pruning variables for final
models. We also found a price to be paid for data pool-
ing in that the choice of parametric models is limited by
the lack of consistent inclusion criteria between studies.
Specifically, we preferred to use splines to model the
non-linearity of eGFR, but in our age-stratified imputa-
tions this proved impossible due to insufficient ‘real’ data
across the age spectrum, which caused intractable com-
putational problems. Use of squared eGFR was an ap-
proximate compromise.
The endpoint of fatal CVD events is likely to have only

detected approximately one third of all CVD events [13].
The original plan was to include all CVD events in the
risk algorithm, but we were unable to do so due to insuf-
ficient data on non-fatal CVD events being available to
us. This limits the utility of our derived risk score in
Australian clinical practice, although the European
Society of Cardiology does promote the use of a fatal
CVD risk score [15].

Conclusions
We have the developed a CVD risk score based on
purely Australian cohort data. This has the advantage of
being locally relevant, but has three disadvantages. One,
the risk experience of the subjects in the datasets oc-
curred in the past, and ‘background’ risk has lessened
over the years. Two, recruitment to the six cohorts ana-
lysed was evidently not entirely at random; for example
those unable to be contacted were omitted – the ‘healthy
cohort’ effect. Virtually all previous CVD risk scores
have had these same two problems; here the problems
were addressed by using recalibration to contemporary
national statistics. The third problem is that the data are
not ideal for the purpose: data on relevant risk factors
are often missing, sometimes in whole cohorts, and data
on non-fatal CVD events were essentially completely

Fig. 2 Calibration plot for the primary risk score model (based on
sample data) applied to an arbitrary imputed dataset. Predicted risks
were categorised into their tenths and observed risks computed
within each of these tenths

Table 3 Predicted five-year risks per thousand for ‘average’ men
and women, who do/do not smoke or have diabetes, according
to the primary and recalibrated Australian risk scores and the
SCORE results for low- and high-risk European populations

5-year risk/1000

Smoking Diabetesa Primary Recalibrated SCORE low SCORE high

Men

No No 1.68 4.95 10.32 19.21

No Yes 1.81 5.31 10.32 19.21

Yes No 4.17 12.23 20.44 38.22

Yes Yes 4.48 13.12 20.44 38.22

Women

No No 0.77 1.80 4.31 6.53

No Yes 1.26 2.94 4.31 6.53

Yes No 1.90 4.45 8.41 12.85

Yes Yes 3.11 7.28 8.41 12.85

Risks are for subjects at mean values of continuous risk factors in the 2011–13
Australian Health Survey [12], obtained from the Australian Bureau of Statistics:
age 55–59 years, systolic blood pressure = 131.8 mmHg, total cholesterol =
5.25 mmol/l, HDL-cholesterol = 1.24 mmol/l, eGFR = 85.0 (ml/min/m2), eGFR
squared = 7197 (ml/min/m2)2 and SEIFA fifth = 3.01985
SCORE values are computed from published 10-year risks [15] using
‘compound interest’ logic. SCORE only takes account of age, sex, systolic blood
pressure, total cholesterol and smoking
a SCORE does not include diabetes as a risk factor. The user instructions [15]
say that those with diabetes are ‘at very high risk’ which presumably means
their predicted 5-year risk is at least 30 per thousand

Backholer et al. BMC Cardiovascular Disorders  (2017) 17:17 Page 7 of 9



missing. Except in approximate ways, as enacted here, this
problem is not solvable with Australian data, in so far as
we could ascertain. Nevertheless, the new risk score repre-
sents an innovative approach to predicting 5-year CVD
mortality risk for the Australian population that makes
good use of the locally available data, and the
methodology we have developed could be used outside
Australia by recalibrating our primary risk score to local
conditions using appropriate national statistical data. Im-
plementation of our Australian CVD mortality risk predic-
tion tool would be expected to lead to better prediction of
true risk than is currently available.

Additional files

Additional file 1: Figure S1. Cardiovascular disease mortality rates,
2000-2013, in Australian men (solid lines) and women (dashed lines) in
two illustrative age groups: 60-64 years (light lines) and 70-74 years (dark
lines). A logarithmic vertical scale is used. Note: Source of raw data: Aus-
tralian Bureau of Statistics [17]. (TIF 142 kb)

Additional file 2: Table S1. CVD mortality rate and risk factor means (or
percentages) for the National Health Survey (NHS) and the pooled cohort
used for risk score development, by sex and age group (years). Table S2.
Mean values of each prognostic factor and other key statistics in each
imputed dataset. Note: The constant term takes the place of 19.65953 in
the equation for the primary risk score (in Fig. 1). Table S3. Predicted
five-year risks per thousand by age group for ‘average’ men and women,
who do/do not smoke or have diabetes, according to the primary and
recalibrated Australian risk scores and the SCORE results for low- and
high-risk European populations. Risks are for subjects at mean values of
continuous risk factors in the 2011–13 Australian Health Survey [9], ob-
tained from the Australian Bureau of Statistics: systolic blood pressure =
131.8 mmHg, total cholesterol = 5.25 mmol/l, HDL-cholesterol = 1.24
mmol/l, eGFR = 85.0, eGFR squared = 7197 and SEIFA fifth = 3.02. SCORE
values computed from published 10-year risks [12] using 'compound
interest' logic. SCORE takes account of age, sex, systolic blood pressure,
total cholesterol and smoking.1SCORE does not include diabetes as a risk
factor. The user instructions [12] say that those with diabetes are 'at very
high risk' which presumably means their predicted 5-year risk is at least
30 per thousand. (DOCX 30 kb)

Additional file 3: Figure S2. Fitted versus observed annual age/sex
specific cardiovascular death rates, Australia 2000-2013. Fitted values de-
rive from a Poisson regression model. Dots are for men and pluses for
women. (TIF 133 kb)

Additional file 4: Figure S3. Calibration plots for SCORE models
applied to an arbitrary imputed dataset (the same one as in Fig. 2).
Predicted five-year risks were categorised into their tenths and observed
risks computed within each of these tenths. A: the European SCORE
model for low-risk populations; B: the European SCORE model for high-
risk populations. (TIF 267 kb)

Additional file 5 Figure S4. Screen shot from working version of the
CVD risk prediction tool. (TIF 392 kb)
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