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Abstract14

Environmental science has developed a diverse set of theories, analytical tools and 15

models to understand and predict ecological responses to human impacts. We review 16

recent innovations in the family of methods used to forecast global environmental 17

change, and offer constructive critiques of five common approaches: 18

phenomenological projections, storyline scenarios, integrated assessment models, 19

decomposition-identity approaches, and global climate simulations. Overall, there is a 20

lack of coherent, empirically based validation for many methods and their 21

assumptions, and only partial incorporation of underlying uncertainties in both 22

parameter estimates and interrelationships of model components. The greatest 23

improvements in global environmental forecasting will likely come from a more 24

systemic approach to quantifying the aggregate socio-economic drivers of the agents 25

of change, along with better integration of multi-disciplinary approaches.26

27

Zusammenfassung28

Die Umweltwissenschaft hat vielfältige Theorien, analytische Methoden und Modelle 29

entwickelt, um ökologische Reaktionen auf anthropogene Einflüsse zu verstehen und 30

vorherzusagen. Wir untersuchen hier jüngste Innovationen aus der Familie der 31

Methoden zur Vorhersage von globalen Umweltveränderungen und unterbreiten 32

konstruktive Kritik zu fünf verbreiteten Forschungsansätzen: phänomenologische 33

Projektion, "storyline"-Szenarien, integrierte Schätzmodelle, Ansätze zur 34

Zerlegungsidentität, und Simulationen des globalen Klimas. Insgesamt herrscht ein 35

Mangel an kohärenter Empirie-gestützter Validierung bei vielen Methoden und ihren 36

Annahmen. Und die zugrunde liegenden Unsicherheiten, was sowohl. 37
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Parameterschätzung als auch Beziehungen zwischen den Modellkomponenten angeht, 38

werden nur teilweise eingearbeitet. Die größten Verbesserungen für globale 39

Umweltvorhersagen werden wahrscheinlich mit einem mehr systemischen Ansatz zur 40

Quantifizierung der aggregierten sozio-öko! 41

 nomischen Treiber 42

der bestimmenden Kräfte des Wandels erreicht werden, in Verbindung mit einer 43

engeren Integration von multi-disziplinären Forschungsansätzen. Environmental44

45

Keywords:46

Projection; Scenario; Integrated Assessment; Decomposition; Multi-criteria Decision 47

Making Analysis; Climate Models; Decoupling.48

49
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49

Introduction50

How might the activities of human civilization drive changes in the Earth system 51

during the 21st century and beyond? Projections of future environmental states are 52

inherently constrained by imperfect knowledge and systemic uncertainties in the 53

drivers of change (Clark et al. 2001). As the famous aphorism goes, all models are 54

wrong, but some are useful (Box 1979). Forecasts of environmental change are useful 55

in helping planners trade off the consequences of, and opportunities offered by, 56

alternative future scenarios (Loftus et al. 2015). Forecasts offer decision makers a way 57

to anticipate the response of complex systems to chronic stressors or disturbance, and 58

can permit the evaluation of realistic development pathways to improve conservation 59

benefit (Ausubel 2000; Leadley et al. 2010; Sala et al. 2000). There are many uses for 60

scenarios: here we focus primarily on their application to conservation management, 61

ecology, and their relation to other planning outcomes such economic development. In 62

this context, the development of ‘what if?’ scenarios can aid in identifying critical 63

‘pressure points’ and flexible ‘levers’ for policy, thereby expanding the design space 64

and opportunities for global conservation while balancing the concessions between 65

the drive towards equitable human prosperity and the vital need to conserve as much 66

of our rich natural history and biodiversity as possible.67

Forecasting should be based on a robust causal framework. One useful 68

heuristic for conceptualising the linkages between human activities and environmental 69

transformation is the Driver-Pressure-State-Impact-Response (DPSIR) framework 70

(Omann et al. 2009). Drivers, including population, consumption, and technology, 71

determine the aggregate amount of ‘pressures’ (although such a structure lacks 72

explicit consideration of the role of governance and other aspects of institutional 73
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behaviour that influence the drivers in this framework). Pressures are defined as 74

physical interventions in the environment, and include, for example, land-use change 75

(due to expanding areas of cropland, pasture, biofuels, plantation forests, and built-up 76

land), emissions of greenhouse gases, water extraction, and pollution of air and water 77

(Foley et al. 2005; MEP 2005; Rands et al. 2010). These pressures alter the state of 78

environmental variables (like the distribution of habitats, or the concentration of 79

greenhouse gases in the atmosphere), with attendant impacts on biodiversity (species 80

and populations), in the form of changing abundance, altered geographical 81

distributions, and extinctions (Brook et al. 2008). Responses are the actions taken by 82

humans to address these problems.83

Forecasting possible future pathways of biodiversity change (impacts) requires 84

understanding—and modelling—each prior step in this causal chain. Conservation 85

science has developed and validated a rich set of theories and methods to understand 86

and predict the impacts of various human pressures, including population viability 87

analyses, species-area relationships and coupled niche-population models (Botkin et 88

al. 2007; Brook et al. 2000; Ibáñez et al. 2006; Lacy et al. 2013). Conservation 89

science has, however, made less progress on modelling the connections between 90

drivers and pressures. By contrast, in the physical sciences, computer simulations of 91

the Earth System are now routinely used to project emissions of greenhouse gases, the 92

resultant climate change, and its associated risks and impacts (Fordham et al. 2012; 93

Hansen et al. 2007; Lenton et al. 2008). And in the socio-economic realm, integrated 94

assessment models are used to summarize diverse inputs on complex problems such 95

as multi-regional energy projections (Golub et al. 2012; Ostrom 2009). 96

Despite the progress outlined above, there remains considerable work to do in 97

developing the theoretical and applied tools needed to project and optimize human 98



Page 6 of 37

Acc
ep

te
d 

M
an

us
cr

ip
t

6

development pathways to minimize biodiversity loss from climate change, land-use 99

change, and other pressures. Local interventions like protected areas and payments for 100

ecosystem services can safeguard some of the most valuable elements of biodiversity 101

and ecosystem integrity (Mace et al. 2012). Yet they do little to mitigate the overall 102

level of human pressures, since this is governed primarily by changing patterns of 103

consumption (e.g., demand for material resources) and implementation of new 104

technology (e.g., affecting environmental impacts per unit of production) (Andam et 105

al. 2008; Ausubel 2000; Butchart et al. 2010; Clark et al. 2013). If the hypothesis that 106

technology is a driver (rather than simply a consequence) of social/governance 107

pressures holds true, then the success of biodiversity conservation in the 21st century 108

will depend, to a large extent, on how effectively society can decouple environmental 109

impacts from economic growth and rising human prosperity (Blomqvist et al. 2015; 110

Grubler et al. 1999; UNEP 2011). A failure to achieve this will likely result in an 111

accelerated rate of species extinctions and severe damage to climate and 112

ecosystems—leading to degradation in human health and irreversible loss of natural 113

history (Laurance 2001; Pereira et al. 2010).114

Forecasting can play an important role in tackling these problems (some key 115

methods discussed in this paper are outlined in Table 1). To map out future options 116

for managing the planetary environment, it is necessary to incorporate the large 117

uncertainties across both the human dimensions of global change (e.g., technological 118

development, population and demographics, and wealth) (Fig. 1), as well as inherent 119

variability and uncertainty in geophysical and biological processes and feedbacks. The 120

portfolio of past successes and failures in environmental stewardship provides 121

important insights on what has been achievable; when integrated with well-structured 122

and parameterized systems models, we then have the critical tools for telling us what 123
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might be possible. Here we explore some of the challenges to projecting change in 124

global-change science.125

126

Phenomenological (‘top-down’) approaches127

Phenomenological models are based on observed relationships between socio-128

economic and environmental variables (e.g., curves fitted to empirical trend data). 129

These have been used widely across all major impacts of global change, including 130

deforestation, agriculture and pollution (Defries et al. 2010; Ewers et al. 2009; Loh et 131

al. 2005; Sala et al. 2000; Stern et al. 1996; Tilman et al. 2001). For instance, Wright 132

& Muller-Landau (2006) found a strong correlation between rural population density 133

and remaining forest cover across tropical countries and, based on United Nations 134

projections of urbanization and declining rural populations, projected a reduction in 135

pressure on tropical forests in this century. DeFries et al. (2010), using a similar 136

methodology, came to the opposite conclusion, finding that urbanization was the 137

socio-economic factor most strongly correlated with forest loss. Tilman et al. (2001)138

used a phenomenological approach to forecast impacts of nitrogen use in agriculture, 139

by extrapolating from historical relationships between nitrogen use, global population, 140

gross domestic product (GDP) and time—estimating that nitrogen use will increase by 141

a factor of 2.7 between 2000 and 2050. The same methodology also underpins a large 142

body of work on the so-called ‘Environmental Kuznets Curve’, based the proposition 143

that once countries reach a certain income level, environmental impacts peak and then 144

decline (Carson 2009; Jordan 2010). The method used to investigate this question 145

generally involves looking for cross-country statistical relationships between income 146

(represented by GDP) and environmental indicators such as pollution levels or forest 147

loss. Results from these studies are mixed, and often conflicting (Dasgupta et al. 148
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2002; Stern 2004).149

Phenomenological studies like the above have been useful in bringing 150

attention to socio-economic and technological drivers of environmental change, and 151

attempting to assess which factors are most influential. Yet, this approach, for a 152

number of reasons, is strongly limited in its application to forecasting. This is because 153

it cannot illuminate the mechanisms whereby socio-economic or technological factors 154

drive environmental change. Its results can therefore be misleading, especially when 155

extrapolated beyond the historical range of data. For instance, neither Wright & 156

Muller-Landau (2006) nor DeFries et al. (2010) look at the set of interlinked changes 157

in consumption, production, and trade patterns that are associated with urbanization. 158

Thus, while urbanization may be correlated with forest loss, phenomenological 159

studies do not show whether it is causally related, or in which ways. Geist et al. 160

(2002) concluded that these top-down approaches to studying drivers of deforestation 161

have failed to reveal “any distinct patterns” and thus left the broader question “largely 162

unanswered”—a conclusion echoed also by DeFries et al. (2010). Similarly, the 163

Tilman et al. (2001) extrapolation of global nitrogen use fails to account for regional 164

patterns in nitrogen use, which tend to follow an inverse U-shaped trend as countries 165

first adopt synthetic fertilisers and then improve the precision by which it is applied 166

(Zhang et al. 2015). Combining regional trends thus likely yields a plateauing and 167

even declining trend in nitrogen pollution from agriculture over this century, rather 168

than a three-fold increase.169

Studies in the Environmental Kuznets Curve tradition allude to the 170

mechanisms underpinning improvements in environmental quality in qualitative 171

terms, but do not analyse them directly. Thus the method does not differentiate 172

between technological improvements per se, and displacement of environmentally 173



Page 9 of 37

Acc
ep

te
d 

M
an

us
cr

ip
t

9

harmful activities abroad (Ansuategi & Perrings 2000). It also overlooks the often 174

significant differences in environmental pressures between countries at similar income 175

levels, which seem to have resulted from path-dependent economic and technological 176

choices rather than differences in economic growth.177

178

‘Storyline’ scenarios179

Storyline scenarios have been used extensively by the Intergovernmental Panel on 180

Climate Change in their five Assessment Reports, and underpinned the ‘Scenarios’ 181

volume of the 2005 Millennium Ecosystem Assessment (MA; MEP 2005), the Global 182

Biodiversity Outlook (CBD 2013), and many other assessments and horizon scans. 183

Indeed, this approach has become the main analytical lens through which the future of 184

global biodiversity and ecosystems has been perceived and interpreted.185

Storyline scenarios start with a narrative that defines a hypothetical pathway 186

for population growth and economic development, as well as technological and 187

institutional change. In the case of the MA, the scenarios are framed along two axes: 188

degree of globalisation and proactive versus reactive policies—yielding four different 189

storylines (MEP 2005). These assumptions then serve as input to complex cross-190

disciplinary simulations—in most cases a form of ‘bottom-up’ economic analysis 191

called Integrated Assessment Modelling (IAM, see next section)—which can be used 192

to project (i) the magnitude of pressures like land-use change or pollution, and (ii) 193

resultant changes in biodiversity and ecosystem integrity. 194

Storyline approaches, although intellectually appealing and easy to 195

communicate, almost certainly underestimate the range of plausible future outcomes 196

(Leadley et al. 2010) and typically say little about the feasibility of implementation 197

(Loftus et al. 2015). For example, projections for increases in global agricultural area 198
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fall within a relatively narrow 11% range for all Millennium Ecosystem Assessment 199

scenarios. This seems to be due to compensatory mechanisms whereby inputs that 200

lead to increased land use (e.g., vastly expanded use of crops for bioenergy) are 201

combined in the same scenario with other parameters that reduce land use (e.g., 202

reduced meat consumption and higher agricultural yields). Similarities across 203

‘different’ storyline scenarios are exacerbated further by use of the same IAMs for 204

estimating drivers and biodiversity responses (Tallis & Kareiva 2006). Furthermore, a 205

well-established psychological effect exists whereby a high level of detail, such as 206

exists for any of the MA storylines, leads to a high level of perceived likelihood of the 207

scenario coming true (Morgan & Keith 2008). Thus, contrary to the stated objective of 208

typical storyline scenarios, this method might often lead to constrained thinking 209

around different options and pathways. Perhaps most critically, the fact that storyline 210

scenarios come as a fixed bundle of parameters also makes it nearly impossible to 211

gauge the effects or sensitivity of the environmental outcomes to individual policy 212

options, such as organic versus conventional farming, or wind power versus biomass. 213

214

Integrated Assessment Models215

Integrated Assessment Models are closely linked to storylines in that they often base 216

their projections on assumptions about drivers like population, GDP, and technology 217

derived from storylines, IAMs leverage well-verified economic approaches such as 218

computable general equilibrium models to assimilate data on how individual 219

economies might respond to changes in policy, technology, or cross-border factors 220

(Fig. 2), and then aggregate these results to produce plausible bottom-up scenarios of 221

change (Garnaut 2008; Valin et al. 2013). This is typically achieved using recursive-222

dynamic approaches, based on mechanistic relationships, which are solved 223
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sequentially. These models can also be used for probabilistic assessments of policy, 224

especially in situations where uncertainty is accepted to be high (such as for 225

evaluating interventions to mitigate climate change; Mastrandrea & Schneider 2004). 226

The philosophy of IAMs is relatively blind to disciplinary borders and typically 227

involves inputs from a diversity of specialized experts. Widely used examples in the 228

climate-energy policy realm include MiniCAM, MERGE and IGSM (Clarke et al. 229

2007).230

Although IAM results provide cohesive information that can assist policy 231

makers in developing more transparent approaches to scenario analysis, they have the 232

disadvantage of being (by definition) quite complex, heavily assumption driven, and 233

can be rather opaque (Pielke et al. 2008; van der Sluijs 2002). For instance, modelling 234

the stabilization pathways for greenhouse-gas emissions involves three broad items: a 235

reduction in end-use demand (efficiency and conservation), an increase in carbon-free 236

energy to replace fossil fuels (e.g., renewables and nuclear), and some switch-over of 237

fossil fuels to carbon capture and storage (CCS) (Hoffert et al. 2002). On this basis, 238

the IAMs attempt to resolve cost-optimized scenarios that meet defined emissions 239

targets, usually in decadal bands through to mid- or end-of century (Clarke et al. 240

2007; Wise et al. 2009).241

The principal challenge in projecting something like greenhouse gas emissions 242

using IAMs is to realistically characterize both socio-political choices (e.g. when and 243

at what level a carbon price or low-carbon-energy production credit is implemented, 244

community antagonism against widespread use of nuclear fission or building of wind 245

farms) and the scientific-economic evolution of, and deployment rates for, the 246

underlying technologies themselves (e.g., engineering efficiencies of energy 247

conversion, dispatchability of the resource for load balancing, or cost-reduction 248
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curves for grid-scale renewables with integrated storage) (Lenzen et al. 2013; Utgikar 249

& Scott 2006). This is important, because these uncertainties and assumptions are not 250

only difficult to constrain a priori, they also cascade into a wide range of possible 251

climate-forcing scenarios (which are fed into global climate models; GCMs) (Wigley 252

et al. 2009). As a consequence, methods that build upon the intrinsic uncertainties in 253

the GCMs typically result in (necessarily) wide bounds of probability for projections 254

of habitat change and species distributions when forecasting biodiversity responses, 255

thus appropriately reflecting our high degree of uncertainty about many future 256

ecological outcomes (Botkin et al. 2007; Fordham et al. 2011).257

258

Decomposition and Identity approaches259

The alternative to the phenomenological and storyline approaches is to apply a suite 260

of relatively simple, bottom-up decompositions of human drivers into a set of 261

multiplicative factors, using a set of methods associated with ecological economics 262

and industrial ecology (Duchin & Lange 1995; Steinberger et al. 2010; Thomas et al. 263

2003; Wiedmann 2009). This approach seeks to make all assumptions and exogenous 264

inputs into the models transparent. Drawing on the classical IPAT formula (Impact = 265

Population x Affluence x Technology) (Chertow 2001; Ehrlich & Holdren 1971), 266

Waggoner & Ausubel (2002) developed a mathematical identity, ImPACT (with C 267

being consumer use per GDP), wherein environmental impacts are the product of 268

population, income, intensity of use (material throughput per unit of income), and 269

intensity of impact (environmental impact per unit material throughput). This type of 270

‘decomposition’ (i.e., breakdown of general models into more fined-grained factors) 271

(Ang 2004) has been applied extensively to the study of energy and greenhouse-gas 272

emissions, under the umbrella of the Kaya Identity, where total emissions are a 273
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product of population, income, energy intensity (energy use per unit income), and 274

emissions intensity (emissions per unit energy) (Hamilton & Turton 2002; Rosa & 275

Dietz 2012). The framework and precise factors used are flexible, provided they form 276

an identity; for instance transport-sector emissions can be decomposed into passenger-277

km, transport modes, carbon and energy intensity, and fuel mix (Stern 1997).278

The idea behind this approach to projecting change is that demand forecasts 279

for key economic goods, as outlined above, should be combined with a rigorous 280

analysis of technological trajectories and options to estimate aggregate environmental 281

impacts. The benefit of the decomposition-identity approach is that the contribution of 282

each factor to the aggregate change in impacts can be determined readily, with general 283

models broken down into increasingly fined-grained factors, thereby allowing direct 284

investigation of the sensitivity of outcomes to different policy levers. The method has 285

also served to highlight how a combination of declining intensity of use 286

(dematerialization) and intensity of impact (i.e., increasing technical efficiency) can 287

offset some or all of the pressure from growing population and economic activity, 288

thereby decoupling environmental impacts like land use and water consumption from 289

economic growth (Ausubel & Waggoner 2008; Ausubel et al. 2012; Voet et al. 2005).290

However, as York et al. (2003) have pointed out, rudimentary mathematical 291

identities like ImPACT, while useful accounting tools, have limited utility in 292

forecasting. Although it encourages mechanistic ‘bottom-up’ approaches to 293

forecasting, the aggregated parameters have to be assumed, rather than being data-294

driven; interactions between factors are not accounted for, and growth functions are 295

typically assumed to be exponential. Moreover, this method has primarily been 296

applied to very high levels of aggregation, often global, thereby omitting many lower-297

scale patterns and dynamics. The STIRPAT (Stochastic Impacts by Regression on 298
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Population, Affluence and Technology) method is a step forward, because it allows 299

for data-driven fitting of coefficients and sensitivity evaluation (Liddle & Lung 2010). 300

However, it does not offer a fully adequate and comprehensive method, since, for 301

instance, it ignores model selection and does not make use of prior information. For 302

more accurate forecasting, the technology factor must be disaggregated into distinct 303

processes or transformations, each with their own theoretical limits, learning curves, 304

and variation across systems and countries. Technological change has a second 305

component in addition to incremental improvement: understanding the benefits and 306

limits of substitution, whereby one technology replaces another (Chang & Baek 2010; 307

Grubler et al. 1999; Mace 2012).308

309

Global Climate and General Ecosystem Models310

Predicting future impacts of climate change on biodiversity illustrates the many 311

challenges involved in forecasting the interlinked components of the causal chain, 312

from drivers like consumption and technology, to pressures (greenhouse gas 313

emissions), to changes in the state of the global climate system, and finally to impacts 314

on biodiversity. Indeed, in seeking to bracket the range of plausible anthropogenically 315

forced scenarios, climate modellers typically employ a combination of mechanistic 316

and scenario-based approaches to projecting change (Moss et al. 2010) (Fig. 1). They 317

assess the skill of global climate models (GCMs) based on validation against 318

historical data (Fordham et al. 2013). The linking of GCM outputs to forecasts of 319

biodiversity response necessitates estimates of both mean trends in climatic variables 320

like temperature and precipitation, and also a characterization of their variability, 321

extremes, and key uncertainties in the underpinning models (Botkin et al. 2007; Brook 322

et al. 2009). 323
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One of the challenges in projecting climate change lies in the structural 324

adequacy and spatial resolution of the atmosphere-ocean global circulation models 325

that underpin the simulations (Wigley & Raper 2001). This stems from modellers’ 326

incomplete understanding (and weak parameterization) of crucial mechanisms such as 327

heat transport in the ocean, cloud formation, and boundary-layer formulations (IPCC 328

2013). Another source of ambiguity is in how well-known geophysical processes and 329

less-certain amplifying or diminishing feedbacks should be best represented and 330

integrated, which results in a band of nearly irreducible uncertainty in the equilibrium 331

climate sensitivity of different GCMs (Hansen et al. 2007). A reassuring result of the 332

last few decades of work in this area has been steady improvements in both the short-333

term forecasting (used for weather predictions) and longer-term hindcasting ability of 334

GCMs, thanks to greatly increased spatial resolution and inclusion of increasingly 335

complex features (e.g., layered-ocean modelling, carbon-cycle processes, and explicit 336

incorporation of dynamic vegetation and ice-sheet models) (Reichler & Kim 2008). 337

These enhancements have been made possible by the exponential recent growth in 338

computer power, and should continue for many years.339

Even accepting that current GCMs will remain an imperfect simplification of 340

the highly complex Earth system for years to come, we can still make progress in the 341

challenge of more objectively representing future change. A well-regarded method is 342

to accept that there are a range of potentially valid ways of simulating these complex 343

systems and so treat the diversity of approaches tried by different climate-modelling 344

communities as an advantage, by pooling their probabilistic GCM results in an 345

‘ensemble’ forecast (Tebaldi & Knutti 2007). This combining of multi-model output 346

can include the assignment of differential weightings to alternative models on the 347

basis of, say, their ‘skill’ score with respect to their ability to simulate past climates 348
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(Gleckler et al. 2008). Besides global metrics, this skill ranking can also be 349

disaggregated at regional scales and separately for different outputs (e.g., some 350

models seem to be better at reconstructing changes in temperate, whereas others are 351

superior at reconstructing past interannual variability in precipitation (Scherrer 2011), 352

even though their temperature forecasts may be sub-par). Recent advances in user-353

friendly emulation software (e.g. MAGICC/SCENGEN and GridMapper) have more 354

readily opened the application of the climate-ensembling approach to ecologically 355

focused end-users (Fordham et al. 2012) (Fig. 3). Another simpler but related 356

approach relies on projecting change using both the best-performing and the most 357

extreme models (for a given output), to attempt to encompass the full range of 358

possible futures using selected inter-model comparisons. 359

An additional component of uncertainty in climate models is in characterizing 360

the likely future pathways of climate forcing factors, which includes long-lived 361

greenhouse gases such as carbon dioxide and methane, aerosol loads, the capacity of 362

the oceans, vegetation and soil to continue to act as a net carbon sink, as well as the 363

dynamics of natural variability in ocean circulation, volcanoes, and solar output 364

(Wigley et al. 2009). This can be done by assuming little or no long-term trend in 365

volcanic or solar forcing, treating observed regional fluctuations such as El Niño 366

Southern Oscillation (ENSO) as canonical or emergent properties, and exploring the 367

climatic implications (over the next few centuries, and for the stabilized equilibrium 368

condition) of a range of different ‘storylines’ of future global energy and emissions 369

profiles (from business-as-usual to explicit mitigation policies). Forecasts then can be 370

expressed either via socio-economic pathways using IAMs (Nakicenovic & Swart 371

2000) or selected from a large suite of possible scenarios on the basis of their resultant 372

radiative forcing potential (e.g. the ‘representative concentration pathways’ of the 373
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Intergovernmental Fifth Assessment Report; IPCC 2013).  374

It is obvious from the above discussion that the development of General 375

Circulation Models for climate simulation has advanced considerably over the last 376

few decades, and these arguably offer salutary lessons for the design of analogous 377

system-level biodiversity-response models. For instance, one promising recent 378

approach is the ‘General Ecosystem Model’ (GEM), developed in a collaboration 379

between the United Nations Environment Program, World Conservation Monitoring 380

Centre, and Microsoft Research. The ambitious goal of this global simulation model is 381

to capture the fundamental ecological processes that affect all life on Earth as a 382

‘virtual biosphere’ using an interactive mathematical simulation (called the Madingley 383

Model: madingleymodel.org). The code has been released as open source, and is 384

undergoing testing, validation and ongoing community development (Harfoot et al. 385

2014). An ongoing challenge for such GEMs will be solving the challenges of 386

integrating human decision-making processes and including institutional complexities 387

into the underpinning regional- and global-level processes (Geographical Sciences 388

Committee 2014; Rounsevell et al. 2013). 389

390

Conclusions391

A range of useful methods has been developed to project global change. Yet, as 392

reviewed above, there are clearly limitations with all of these lines of attack. Perhaps 393

most pressingly, global-change science still lacks a coherent, empirically based, 394

statistically robust, and transparent methodology to understand and forecast human 395

drivers of land-use change (and associated impacts) and in turn connect this to 396

biodiversity responses at regional to global scales. This constrains our understanding 397

of both the long-term prospects of biodiversity change and on what interventions 398
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might be most effective. At higher levels of aggregation, patterns in consumption and 399

use of technology over time and between countries and regions constitute perhaps the 400

most readily identifiable and consistent bases for projecting change. 401

To increase confidence in our representations of the future, we must seek 402

broad expert elicitation (for proper representation of different disciplinary 403

perspectives) and ensure that models (and assumptions) are validated against robust 404

historical data on key uncertainties, such as rates of technology uptake and barriers to 405

deployment. Confidence in the likelihood of scenarios can be enhanced by analysis of 406

the short-term impact of already announced government policy targets (assuming they 407

are implemented in full, e.g., IEA 2010) or by reference to the envisaged goals from 408

organizations or businesses with a strong track record at delivery (Chang & Baek 409

2010; Nicholson et al. 2011; Smil 2010). Quantitative tools like multi-criteria 410

decision-making analysis, decomposition and input-output models (Hong et al. 2013; 411

Rose & Casler 1996) offer a particularly useful pathway for ensuring high levels of 412

robustness and openness in such validation. Models should also be tested repeatedly 413

against real-world data on patterns and trends—just like hypotheses—to learn from 414

their failures as much as their successes (Brook et al. 2002; Grimm et al. 2005). 415

Crucially, the modelling of aggregate drivers provides boundary conditions for more 416

local contexts, which are often more complex, and so can complement and support 417

studies and methodologies at lower spatial scales. To further improve our forecasting, 418

mechanistic approaches based on robust data—on demographics, incomes, industrial 419

sectors, per-capita consumption of key resources, trade, land use, technical 420

efficiencies of production methods, pollution, and so on—will need to come from 421

many sources: global to national reporting inventories, remote sensing, and biological 422

surveys, among others. These sources should be set up in a way that is readily 423
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interrogated with relational databasing.424

A transformation is underway in research on global-change science, driven by 425

ready access to ‘big data’ from observational and experimental networks, ongoing 426

growth in computational power, and complementary advances in statistical and 427

optimisation methodologies. What is critically needed to complement these 428

developments are validated, mechanistic models of the drivers of global change, 429

integrated with approaches that are flexible enough to capture key uncertainties and 430

complex interrelationships, but simple and transparent enough to be applied 431

efficiently for optimising decision-making and testing the sensitivity of assumptions.432
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Table 1. Summary of some key strengths and weaknesses of widely used large-scale approaches to forecasting global environmental change.711

712

Method Strengths Weaknesses Examples

Phenomenological models Simple to parameterise and 

validate (at a high level); Suitable 

for top-down analysis of global or 

regional data; Easy to interpret.

Many embedded (opaque) 

assumptions; No explicit 

modelling of processes; 

Composite parameters are 

impossible to disaggregate.

Species Area Relationship;

Environmental Kuznets 

Curve

Storyline scenarios Intuitive to communicate; Maps 

readily to ‘pathway’ frameworks 

and socio-economic narratives; 

Captures ‘snapshots’ of 

continuous axes of discrimination 

(e.g., global vs regional, 

technological vs social). 

Underestimate range of plausible 

future outcomes; Constrains 

thinking about alternative 

scenarios that cannot be 

accommodated across selected 

axes; Programmed with a fixed 

bundle of parameters.

Special Report on 

Emissions Scenarios; 

Millennium Ecosystem 

Assessment Report

Integrated Assessment Models Based on well-verified economic 

methods for assimilating local to 

regional data; Aggregates results 

to produce ‘bottom up’ analysis of 

Different storylines often borrow 

from same underlying models of 

drivers; Complex and heavily 

assumption driven; Difficult to 

MiniCAM; MERGE; IGSM
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change; Relatively blind to 

disciplinary borders; Can lead to 

probabilistic assessments. 

determine sensitivities, especially 

in relationship to the constraints 

imposed by strong assumptions.

Decomposition and Identity Approaches Permits use of simple, bottom-up 

decompositions of aggregate 

drivers; Based on well-grounded 

methods developed in industrial 

ecology; Makes assumptions and 

exogenous inputs highly 

transparent; Contribution of each 

factor can be broken into fine-

grained factors.

Rudimentary approaches have 

limited utility in forecasting; 

High-level aggregated parameters 

are often assumed rather than 

data-driven; Typically ignores 

problems of model 

selection/choice and stopping 

rules for ‘sufficient’ 

disaggregation are not clear. 

ImPACT; STIRPAT

Global Climate (and Ecosystem) Models Coupled (interlinked) system 

model of geo-physical and some 

biophysical processes; Captures 

interaction across multiple 

atmospheric and oceanic strata; 

Allow for forecasting using future 

forcing scenarios that are derived 

Spatial grid-resolution makes 

simulation of fine-scale processes 

difficult; Simplified 

parameterization of poorly 

measured processes (e.g. clouds); 

Assumes hierarchical scaling of 

local-scale processes to biomes 

HadCM3; CCSM; 

MAGICC; Madingley 

Model (GEM)
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from other modelling methods; 

Explicitly incorporates feedbacks.

and biosphere (GEM).

713
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713

Fig. 1. Projected global energy demand trajectories for the 21st century, drawn from a 714

wide range of storyline scenarios. Two notable points are that the results group into 715

clusters (based on similar assumptions), but also that a wide range of possible futures 716

can be imagined by groups working with different methodologies and goals. A major 717

challenge of projecting change, beyond data and limitations, is coping with inherent 718

uncertainties about future drivers of socio-economic decision-making.719

720

Source: Loftus et al. (2015)721
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722
Fig. 2. Example of the multi-sectorial components of Integrated Assessment Models, 723

and how they link to assessments of environmental impacts and climate forecasts. 724

725

Source: Moss et al. (2010)726

727

728
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728
Fig. 3. Schematic depiction of ensemble forecasting of climate change, whereby high-729

resolution baseline climate grids from station data are linked to global climate models 730

with good regional skill, to produce downscaled probabilistic multi-model predictions.731

732

733

734

Source: Modified from Fordham et al. (2011) 735

736
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