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ABSTRACT

Changes in Earth’s climate are influenced by internal climate variability and external forcings, such as

changes in solar radiation, volcanic eruptions, anthropogenic greenhouse gases (GHG), and aerosols. Al-

though the response of surface temperature to external forcings has been studied extensively, this has not

been done for sea level. Here, a range of climate model experiments for the twentieth century is used to study

the response of global and regional sea level change to external climate forcings. Both the global mean

thermosteric sea level and the regional dynamic sea level patterns show clear responses to anthropogenic

forcings that are significantly different from internal climate variability and larger than the difference between

models driven by the same external forcing. The regional sea level patterns are directly related to changes in

surface winds in response to the external forcings. The spread between different realizations of the same

model experiment is consistent with internal climate variability derived from preindustrial control simula-

tions. The spread between the different models is larger than the internal variability, mainly in regions with

large sea level responses. Although the sea level responses toGHGand anthropogenic aerosol forcing oppose

each other in the global mean, there are differences on a regional scale, offering opportunities for dis-

tinguishing between these two forcings in observed sea level change.

1. Introduction

More than 90% of the energy accumulated in the

climate system over recent decades has been stored in

the ocean (Rhein et al. 2013), causing ocean thermal

expansion and, together with the addition of mass to the

ocean, the rise of sea level. In the past century, global

mean sea level has risen by 196 2 cm (1901–2010) and it

is projected to rise by another 28–98 cm by 2100 (relative

to 1986–2005), depending on the level of anthropogenic

greenhouse gas emissions, and potentially several deci-

meters more if there is a collapse of a portion of the

Antarctic Ice Sheet (Church et al. 2013). However, past

and future sea level change is not spatially uniform and

is projected to locally deviate more than 10% from the

global mean in almost 30% of the ocean area (Slangen

et al. 2014a).

Studies by Pardaens et al. (2011), Yin et al. (2010), and

Yin (2012) have shown that the intermodel spread in

twenty-first-century regional sea level projections has

been reduced from the previous generation of climate

models [phase 3 of the Coupled Model Intercomparison

Project (CMIP3; Meehl et al. 2007)] to the current

generation [phase 5 of the Coupled Model Inter-

comparison Project (CMIP5; Taylor et al. 2012)]. They

also found a number of robust features in the sea level

projections of both model ensembles, such as dynamic

sea level rise in high-latitude and polar regions and a

beltlike structure in the Southern Ocean. Recent studies

by Bouttes et al. (2012, 2014) and Bouttes and Gregory

(2014) used a single climate model (FAMOUS) driven

by surface fluxes from a range of CMIP3 and CMIP5

models to study regional patterns in sea level under a

1% per year increase in CO2 concentration scenario to

determine the main drivers of change. Recently, Bilbao

et al. (2015) identified a scenario-independent sea level
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pattern in response to increasing anthropogenic forcings

in sea level projections for the twenty-first century, valid

for all representative concentration pathway (RCP)

scenarios (Moss et al. 2010). These forced patterns are

partly masked by the internal climate variability, which

has a larger influence at regional scales than on the

global scale (Hu and Deser 2013; Monselesan et al.

2015). Nevertheless, Lyu et al. (2014) found that the

anthropogenic signal in total sea level change will

emerge from the internal variability by 2020 in 50% of

the ocean area.

Earth’s climate system is influenced by a range of

external forcings, such as anthropogenic greenhouse

gases (GHG), ozone, volcanic and anthropogenic

aerosols, and changes in solar radiation. Each of these

forcings can result in a different response of the climate

system and thus potentially lead to a different contri-

bution to the regional pattern of sea level change. The

current generation of climate models produce signifi-

cant, but poorly understood, differences in the regional

distribution of sea level change. Determining how each

of the individual forcings influences global mean and

regional sea level change may assist in identifying the

reasons for these differing model responses, leading to

improved understanding of the observed regional sea

level changes and more robust projections of future re-

gional change. Formal attribution is an important eval-

uation of the consistency of models with the real world

and contributes to increased confidence in projections.

Attribution of sea level change also has direct implica-

tions for decisions on the mitigation of greenhouse gas

emissions.

Using a range of CMIP5 experiments, Slangen et al.

(2014b) performed a formal detection and attribution

analysis on globalmean thermosteric sea level (GMTSL),

which is the sea level change caused by density variations

as a result of ocean temperature changes. They showed

the partition of the observed GMTSL for 1957–2005 be-

tween external forcings from natural origin (volcanic

eruptions and solar cycles) and from anthropogenic ori-

gin (greenhouse gases, ozone, and anthropogenic aero-

sols). Both this study and a study by Marcos and Amores

(2014) unequivocally demonstrated that the majority of

the observed GMTSL in the second half of the twentieth

century is of anthropogenic origin.

This study extends the analysis presented by Slangen

et al. (2014b) to the period 1861–2005 by considering not

just the GMTSL, but also the regional sea level patterns.

The regional patterns are referred to as the dynamic sea

level (DSL) or the sea surface height relative to the

geoid, and represent the sea level change because of

atmospheric and oceanic circulation changes and as a

result of heat and salt redistribution in the ocean.

While a number of studies have focused on the DSL in

response to future RCP scenarios [which are dominated

byGHG forcing (e.g., Bouttes andGregory 2014; Bilbao

et al. 2015)], to date, there are no studies showing the

DSL patterns in response to individual anthropogenic

forcings or to other external forcings, which are impor-

tant for our understanding of the observed historical

changes. Here, we use CMIP5 climate model simula-

tions for the historical period driven by GHG, anthro-

pogenic aerosol, ozone, and natural forcings, as well as

combinations of these, to estimate the influence of ex-

ternal forcings on historical sea level change. Addi-

tionally, preindustrial control simulations are used as a

measure of the internal climate variability.

The contributions to sea level change from glaciers,

ice sheets, groundwater extraction, dam construction, or

glacial isostatic adjustment (GIA) are not included in

climate models, and are not included in this analysis.

However, these contributions are important to include

when studying total sea level change, as each can add

mass to the ocean and have a significant regional sig-

nature, especially close to the source of the mass change

(e.g., Church et al. 2013; Slangen et al. 2012, 2014a).

During the twentieth century in regions away from the

ice sheets (the so-called far field), the high spatial vari-

ation of theDSL dominates the relatively smooth spatial

patterns that are caused by mass redistribution and their

related gravitational, rotational, and deformational

effects.

The main question addressed here is as follows: can

we identify and explain a robust modeled response in

both global mean and regional sea level change to a

range of external forcings in historical climate model

runs? To answer this question, a large climate model

ensemble with five different forcing experiments is used

(section 2). Individual model runs are compared to study

the impact of internal variability, study the agreement

between different climate models, and examine the

multimodel ensemble means to identify a robust re-

sponse to the different external forcings. This will be

done for the global mean thermosteric sea level change

(section 3) and the dynamic sea level patterns (section 4)

over the period 1861–2005.

2. Data and methods

We use output from the CMIP5 climate model data-

base (Taylor et al. 2012; Table 1) and focus on the his-

torical experiments driven by a range of external

forcings. Themodel selection is based on the availability

of the dynamical sea surface height variable in at least

one external-forcing experiment in addition to the his-

torical experiment (Table 1). There has been no further
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selection based on model quality, as the reproduction of

the observed dynamic sea level climatology by the

models gives no clear basis to select a subset of models

(Flato et al. 2013, their Fig. 9.16). Although some

modeling groups contributed multiple models to the

CMIP5 database, possibly causing results not to be fully

independent (Knutti et al. 2013), we find that a model

selection based on model heritage would not have

changed our results (not shown); therefore, all available

models are included in our analysis.

Five different forcing experiments are used: 1) natural

only (solar and volcanic forcing), 2) anthropogenic only

(anthropogenic aerosol, greenhouse gas, and ozone

forcing), 3) greenhouse gas only, 4) anthropogenic

aerosol only, and 5) historical (including all anthropo-

genic and natural forcing). In each experiment, one or

more forcings are changing with time (e.g., greenhouse

gas in the GHG-only experiment), while all other forc-

ings are held constant at their preindustrial levels. There

are at least 6 models available for each experiment.

To estimate the internal climate variability, we use the

preindustrial control runs (herein called the control

runs) of each of the climate models, which are forced by

nonevolving preindustrial conditions (Taylor et al.

2009). The available control runs vary in length, ranging

from 250 (ACCESS1.3) to 1000 model years (IPSL-

CM5A-LR). By using the control runs as an estimate for

internal variability, it is assumed that the internal vari-

ability is well represented in the climate models. Cur-

rently, coupled climate models do not yet have a perfect

representation of various modes of climate variability,

such as the ElNiño–SouthernOscillation (ENSO) or the

Pacific decadal oscillation (PDO). However, the simu-

lation of the western tropical Pacific climate variability

and processes has improved for the new generation of

climate models (CMIP5) with respect to the CMIP3

generation (e.g., Bellenger et al. 2014; Grose et al. 2014).

In addition, Monselesan et al. (2015) showed that, for

sea level and sea surface temperature, the spatiotem-

poral characteristics of the variances over various fre-

quencies or bands in the CMIP5 control runs and the

observations are in reasonable agreement for those pe-

riods and regions where there are reliable observations.

The model variables used here are the GMTSL

(CMIP5 variable zostoga), the sea surface height above

geoid (CMIP5 variable zos), and the zonal and meridi-

onal wind stress from the atmosphere on the ocean

(CMIP5 variables tauuo and tauvo). For all monthly

model data, we first removed the seasonal cycle by

computing the monthly climatology over the full his-

torical period and subtracting that from the time series.

Thenwe computed yearlymean values and dedrifted the

data to correct for spurious trends as a result of the

model spinup being too short for the ocean to be in

equilibrium at the beginning of the experiments (Sen

Gupta et al. 2013). To dedrift, a quadratic fit was per-

formed over the full length of the control run, and only

the corresponding portion of the fitted drift was re-

moved from the historical experiment at each grid point,

taking into account the time correspondence. For zos,

the global mean was subtracted at each time step to

obtain the DSL, as not all models provide zos with re-

spect to the global mean. Finally, all fields were re-

gridded onto a common 18 3 18 grid using bilinear

TABLE 1. Climate models from the CMIP5 database (Taylor et al. 2012) used in this study, listing the number of model realizations for

each forcing experiment.

Model All forcings Anthropogenic Natural GHG Anthropogenic aerosol

ACCESS1.3a 1 — — 2 —

CanESM2 5 — 5 5 5

CNRM-CM5b 10 10 6 6 —

CSIRO Mk3.6.0 10 10 10 10 10

GFDL CM3 5 3 3 — 3

GFDL-ESM2M 1 1 1 1 1

GISS-E2-Ra,b 5 5 2 4 5

HadGEM2-ESa,b 4 — 4 3 —

IPSL-CM5A-LRb 2 3 3 5 1

IPSL-CM5A-MRb 2 — 3 3 —

MIROC-ESMb 3 — 3 3 —

MIROC-ESM-CHEMb 1 — 1 1 —

MRI-CGCM3 3 — 1 1 —

NorESM1-Mb 3 — 1 1 —

Total no. realizations 55 32 43 45 25

Total no. models 14 6 13 13 6

aWind stress data not available/accessible.
b Volcanic forcing included in preindustrial control run.
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interpolation, with a multimodel ensemble land–ocean

mask. The longest common time period among all

available models for the historical period is 1861–2005.

To create a model ensemble, some climate modeling

groups ran the same experiment multiple times with

different initial conditions by branching from different

points in the control run. This results in multiple re-

alizations, which are also used (in addition to the control

simulations) to estimate the internal variability (section

4c). Multimodel ensemble mean values are computed,

after the data are processed following the procedures

described above, by averaging over all realizations of

eachmodel before averaging over themodel means such

that each model is equally weighted in the multimodel

ensemble irrespective of the number of realizations.

Although models with few realizations may retain more

internal variability than models with a larger number of

realizations, the influence on the final multimodel en-

semble mean is small, as all models are averaged in the

multimodel ensemble anyway.

In section 3, the modeled GMTSL is compared to an

observational estimate over the full depth of the ocean

for 1957–2005. The observational estimate used is a

combination of Domingues et al. (2008, v.3.1; 0–700m),

Levitus et al. (2012, downloaded 7 February 2014; 700–

2000m), and Purkey and Johnson (2010; below 2000m;

0.1mmyr21). Although there are other estimates avail-

able for the upper 700m, such as Levitus et al. (2012) and

Ishii and Kimoto (2009), these estimates fall well within

the uncertainty range presented by Domingues et al.

(2008) and would not lead to different results (Slangen

et al. 2014b).

3. Global mean thermosteric sea level change

In the natural-only forced experiment, the GMTSL

shows temporary decreases immediately following vol-

canic eruptions (Fig. 1a). This GMTSL fall is caused by

decreased ocean temperatures as a result of negative

radiative forcing after volcanic eruptions and is followed

by a slow recovery (Church et al. 2005; Gleckler et al.

2006; Gregory et al. 2006). The net GMTSL change in

historical simulations with volcanic forcing is dependent

on whether or not volcanic forcing was included in the

control run, as the omission of volcanic forcing in the

control run results in a negative bias in GMTSL when

volcanic forcing is introduced in the historical period

(Gregory 2010; Gregory et al. 2013). Five models fall

into this category [Table 1, from Table 12.3 in Collins

et al. (2013)], of which four models show a GMTSL fall

of 0–0.03m over the historical period, in agreement with

theAOGCMexperiments of Gregory et al. (2013). Only

the CSIRO Mk3.6.0 model does not follow this pattern

and, for unknown reasons, has a small net GMTSL in-

crease despite having no volcanic forcing in the control

run. For the simulations that do include an average vol-

canic forcing in the control run, the net change over 1861–

2005 is less than 0.01m in the natural-only experiment.

Compared to observations, the GHG-only forced

experiment (Fig. 1b) results in an overestimated

GMTSL rise of 0.09 6 0.02m, while the negative radi-

ative forcing effect of anthropogenic aerosols and the

resultant decrease in ocean heat content is associated

with a substantial GMTSL fall of 0.056 0.03m (Fig. 1c).

The rate of GMTSL change for the GHG experiment

increases sharply from 1950 onward and reaches nearly

2mmyr21 in 2005. The shape of GMTSL in the GHG

experiment closely follows the evolution of atmospheric

GHG radiative forcing (Myhre et al. 2013, their Fig. 8.6).

The aerosol experiments show an acceleration in the

negative rate of GMTSL change after 1950 down to

around 21mmyr21 in 2000. The changes in GMTSL

rate agree with the temporal evolution of the aerosol

radiative forcing (Myhre et al. 2013, their Fig. 8.8),

which increases slowly until 1950, then accelerates and

stabilizes after 1990. Note also the larger model spread

in aerosol-only simulations compared to GHG-only

simulations, because of the larger uncertainty in the

aerosol–radiative forcing response in the climate models

(Myhre et al. 2013).

The anthropogenic experiment includes GHG, an-

thropogenic aerosol, and ozone forcing. The aerosol

forcing mitigates most of the GHG forcing until 1960,

but after 1960 the GHG forcing becomes larger and the

rates of change increase to 1mmyr21 in 2005. As a result

of the combined forcing, the anthropogenic-only

GMTSL (Fig. 1d) is in much closer agreement with the

observed GMTSL than the natural, GHG, or aerosol-

only GMTSL. The anthropogenic simulations lack the

response to volcanic eruptions as natural forcings are

excluded, resulting in a smoother GMTSL change than

observed.

The historical experiment (Fig. 1e) agrees well with

the observed changes over the period 1957–2005. This

agreement confirms the results of Slangen et al. (2014b),

while here the modeled GMTSL is shown for fewer

models but over a much longer period. The temporal

variability in GMTSL across all models is consistent

with the response to volcanic forcing.

By combining the information of the forcing experi-

ments, differences in the historical simulations can be

better understood. For example, forGFDL-CM3 (Fig. 1,

solid magenta line) we have no GHG experiment

available, but, using the other experiments, it can be

deduced that the GMTSL response to GHG forcing

must be of opposite sign and slightly larger magnitude
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FIG. 1. Full-depthGMTSL (m) 1861–2005 (individual models extended to 2012 where possible). Multimodel mean

(black),62smodel spread (gray shading, including control run uncertainty), model means (color), and observations

(dark gray) [Domingues et al. (2008), 0–700m; Levitus et al. (2012), 700–2000m; and Purkey and Johnson (2010),

.2000 m]. (a) Natural only, indicating volcanic radiative forcing (blue; arbitrary scale; multiplied by21) and major

volcanic eruptions (vertical dashed lines) (Meinshausen et al. 2011), (b) GHG only, (c) anthropogenic aerosol only,

(d) anthropogenic only, and (e) historical. Models marked 1 include volcanic forcing in the preindustrial control run.
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than the GMTSL aerosol response. For the ACCESS1.3

model (Fig. 1, solid red line) there is no aerosol-only

experiment, but the information of the GHG and an-

thropogenic experiments implies that the GMTSL re-

sponse to aerosol forcing in this model must be large

(Lewis and Karoly 2014).

4. Regional patterns in dynamic sea level change

a. Ensemble mean trend patterns

While the internal climate variability has a relatively

small effect on GMTSL, it can be larger regionally (Hu

andDeser 2013), mainly on shorter (up to multidecadal)

time scales, but also on centennial time scales (Carson

et al. 2015; Bordbar et al. 2015; Monselesan et al. 2015).

We have compared DSL trends for the five different

forcing experiments over various periods and find that,

while the overall response to the external forcings is

consistent, the patterns show more variability over

shorter (decadal to multidecadal) periods because of the

larger influence of internal climate variability. On cen-

tennial time scales, the effect of internal variability is

much smaller, allowing for a better quantification of the

response to external forcings; therefore, the DSL pat-

terns are studied over the longest time period available

in the historical simulations (1861–2005).

To fully sample the range of internal variability in

DSL trends in the control runs, 50 trends of 145 yr (same

length as the 1861–2005 period) are randomly drawn

from each of the 14 control runs, which is about once

every 2 yr in the shortest control run, up to once every

15 yr in the longest control run. The multimodel en-

semble mean DSL trend in the control runs is near zero

(Fig. 2a, left), showing that the internal variability on

centennial time scales averages out in the ensemble

mean. There is some spread in the DSL trends (Fig. 2a,

middle), mainly in the high latitudes, caused by a com-

bination of model differences and internal variability.

This agrees with Monselesan et al. (2015), who found

that the variance in the DSL control runs moves from

middle to higher latitudes on progressively longer time

scales. As the ensemble mean internal variability DSL

trend is near zero and smaller than the standard de-

viation of the trend, the signal-to-noise ratio is also small

(Fig. 2a, right).

In the natural-only experiments, the ensemble mean

DSL trend is small (Fig. 2b) but slightly larger than the

control run trends (Fig. 2a). The main difference com-

pared to the control runs is the addition of forcing from

episodic volcanic eruptions and the 11-yr solar cycle.

The spread of the natural-only forced DSL trends is

similar to the control run spread, while the signal-to-noise

ratio is below 1 everywhere, as the ensemble spread is

larger than the ensemble mean. If the natural-only ex-

periment standard deviation is replaced by the standard

deviation of the control runs, all values are smaller than 1,

indicating that the natural-forced ensemble mean DSL

trend is also within the range of internal climate

variability.

In contrast to the natural-only and control experi-

ments, each of the experiments that includes anthropo-

genic forcing does show long-term DSL trends in the

ensemble mean. The GHG ensemble mean DSL trend

(Fig. 2c) closely resembles the Bouttes et al. (2014)

projected twenty-first-century DSL under a 1%yr21

increase in CO2 scenario, both showing a Southern

Ocean dipole (e.g., Yin et al. 2010), a North Atlantic

dipole (e.g., Yin et al. 2009), and an increase in the low-

latitude western Pacific. A similar pattern is also found

in Bilbao et al. (2015) using RCP scenarios for the

twenty-first century, whichmainly includeGHG forcing,

indicating that theGHG-forcedDSL pattern is robust in

time. The anthropogenic aerosol-forced DSL trend

(Fig. 2d) is almost a mirror image of the GHG-forced

trend, though not exactly. Most of the Southern Ocean

shows a sea level rise where the GHG forcing causes a

sea level fall, although the Southern Ocean dipole is not

perfectly mirrored, and aerosol-only forced DSL trends

are smaller. In the Indian Ocean and the North Pacific,

the negative DSL trend in the aerosol experiments op-

poses the positive GHG-forced response. The anthro-

pogenic ensemble mean trend (Fig. 2e), which is driven

by both anthropogenic aerosol and GHG forcing,

resembles a reduced-amplitude version of the GHG-

forced trend pattern, especially in the Southern Ocean.

The historical DSL ensemble mean trend (Fig. 2f) is

similar to the anthropogenic-forced DSL trend, in-

dicating that most of the DSL change in the historical

experiment is driven by anthropogenic forcing, as was

the case for the GMTSL.

For each of the anthropogenically forced experi-

ments, the ensemble spread in DSL trend is larger than

in the control and natural-only experiments (Fig. 2,

middle). This shows that the ensemble spread is not a

measure of internal variability alone, but also of the

different model responses to external forcing. The

standard deviation in the DSL trends is largest in the

high latitudes, where the ensemble mean trend is large,

while it is smaller (0–0.2mmyr21) in the 308N–308S re-

gion. For the four experiments that include anthropo-

genic forcing (Figs. 2c–f), the signal-to-noise ratio is

larger than 1 in parts of the North Pacific andmost of the

Southern Ocean, although the exact location differs

between the experiments. Areas with a signal-to-noise

ratio larger than 2 are sparser. The ratio doubles when
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FIG. 2. Multimodel ensemble mean (left) linear DSL trends (mmyr21), (middle) spread of multimodel ensemble

trends (1s; mm yr21), and (right) the signal-to-noise ratio (mean s21) for 1861–2005. (a) Internal variability only,

(b) natural only, (c) GHG only, (d) anthropogenic aerosol only, (e) anthropogenic only, and (f) historical.
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the noise is replaced by the standard deviation of the

DSL trend in the control run, indicating that the varia-

tion in the experiment patterns is significantly larger

than internal variability. The signal-to-noise ratio is not

significantly different for DSL trends over shorter

periods.

b. Ensemble mean EOF analysis

In addition to the ensemble mean DSL trends, the

modes of variability are computed with empirical or-

thogonal function (EOF) analysis (Fig. 3), which has the

advantage that the principal component (PC) time series

indicate how the strength of the spatial field varies with

time. The EOFs are computed for the multimodel en-

semble means of each of the five historical experiments,

for yearly and pentadal DSL time series. The multi-

model ensemble mean of the first 145 yr of the dedrifted

control runs is used to compute the EOFs of the internal

variability.

The leading EOFs of the yearly time series of the

control runs (Fig. 3a) and of the natural-only experiment

(Fig. 3b) show an ENSO-like pattern in the Pacific and

a weak dipole in the Atlantic, consistent with changes

in the Atlantic meridional overturning circulation

(AMOC). In contrast, the leading EOF of the pentadal

time series of the natural-only experiment (not shown)

has a slightly stronger signal in the midlatitudes, con-

sistent with a PDO/interdecadal Pacific Oscillation sig-

nal (Mantua et al. 1997; Power et al. 1999). The leading

EOF is stronger in the natural experiment than in the

control runs, possibly because of the presence of syn-

chronized external forcing (solar cycle and volcanic

eruptions).

In the literature, there is an ongoing discussion if and

how volcanic eruptions can influence internal climate

variability. Robock (2000) showed how volcanoes can

cause short-term cooling on a global scale for up to a

couple of years from one eruption or up to a century

from multiple eruptions, but finds little evidence that

volcanic eruptions can trigger El Niños. On decadal time

scales, Stenchikov et al. (2009) found that volcanic

forcing strengthens the AMOC in the GFDL CM2.1.

More recently, Swingedouw et al. (2015) showed that

volcanic forcing in CMIP5 simulations over the latter

half of the twentieth century can reset multidecadal

variability in the North Atlantic such that volcanic

forcing is responsible for the timing of the Great Salinity

Anomalies in the 1970s and 1990s. There is also paleo

evidence of excitation of bidecadal North Atlantic var-

iability following earlier eruptions. In contrast to

Robock (2000), Mann et al. (2005) argue for an in-

creased likelihood of El Niño events the year after vol-

canic eruptions in a large model ensemble (100

realizations), particularly for more powerful eruptions.

However, they find that this effect is relatively weak in

the twentieth century.

The PC time series of the natural-forced experiment

DSL (Fig. 3b) shows an increase (more El Niño-like
conditions) the year following larger volcanic eruptions,

in agreement withMann et al. (2005). On a decadal time

scale, all eruptions (except El Chichon in 1982) result

in a decrease in the PC consistent with a strengthening of

the AMOC, in line with Stenchikov et al. (2009) and

Swingedouw et al. (2015). However, there is also con-

siderable internal variability in the PC time series that is

not linked to volcanic eruptions.

For each of the experiments that include anthropo-

genic forcing, the leading EOF patterns (Figs. 3c–f, left

column) are similar to their ensemble mean DSL trends

(Figs. 2c–f, left column). There is no linear trend present

in the higher-order PCs, indicating that most of the

forced response is in the first EOF. We find that both

methods agree on the forced response of the DSL trend.

Again, the Southern Ocean dipole in response to GHG

forcing dominates the anthropogenic and historical DSL

pattern and is only partly mitigated by the anthropo-

genic aerosol forcing. The same leading EOF patterns

and PC time series are found for yearly and pentadal

data (Figs. 3c–f, right column), and the PCs show in-

creasing strength (in time) of the leading EOF modes.

The explained variance of the pentadal time series is

larger (118%–26%), because the pentadal averaging

filters out some of the short-term variability, which in

the yearly time series will be placed in a higher EOF

mode. The explained variance of the GHG experiments

is the largest, possibly as a result of the strong GHG

forcing and less spatial and temporal variability in the

model response.

We compute the correlation coefficients of the leading

EOF patterns of the five experiments with the historical

ensemble mean DSL time series to determine which

forcings drive the historical DSL changes [Fig. 4, anal-

ogous to Fig. 8 in Bilbao et al. (2015)]. The 5%–95%

internal variability interval (gray shading) is constructed

from correlations of the control runs with each of the

five leading EOFs. The natural-only correlation co-

efficients (green) do not emerge permanently from the

internal variability but do show increases after volcanic

eruptions, as the historical DSL pattern is temporally

more influenced by natural forcing. The correlations of

all anthropogenically forced experiments temporally

decrease (the aerosol correlation time series becoming

less negative) after volcanic eruptions. The aerosol-only

correlation coefficients (cyan) do emerge from the in-

ternal variability at times but nevertheless appear to be

difficult to identify in the historical DSL patterns,
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FIG. 3. (left) LeadingEOFof yearlymultimodel ensemblemeanDSL (mm),

and (right) the associated PC time series for yearly (red) and 5-yr running mean

(blue) EOF analysis (1861–2005). (a) Internal variability only, (b) natural only

(including major volcanic eruptions), (c) GHG only, (d) anthropogenic aerosol

only, (e) anthropogenic only, and (f) historical.
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probably because part of the aerosol response is ob-

scured by the stronger and partially opposing GHG re-

sponse. TheGHG-only correlation (red) reaches 0.8 and

the anthropogenic-only correlation (blue) is even larger,

as this EOF includes most of the relevant forcings. The

highest correlations are with the leading EOF of the

historical time series itself (black), reaching almost 1 by

2005. Before 1930, the correlations of the historical DSL

time series with all three EOFs that include GHG

forcing are highly variable and even partly negative,

although mostly within the range of internal variability.

The actual GHG forcing and the resultingDSL response

is still small in this period, and it is likely that the DSL is

still mostly influenced by internal variability. Later in

the twentieth century, theGHG forcing increases as well

as the DSL (and GMTSL, Fig. 1) response, leading to

higher correlation coefficients between the leading

EOFs and the historical time series.

c. Internal variability in the models

Out of the 52model–experiment combinations (Table 1),

there are 34 with at least three realizations available for

the same experiment. From this subset, the first re-

alization of each model–experiment combination (sup-

plementary Figs. S1–S5) is compared to the corresponding

model mean and model standard deviation; Fig. 5 shows

one randomly selected model for each experiment. A

comparison of the standard deviation within the models

(Fig. 5, middle) to the standard deviation of the control

runs (Fig. 5, right, constructed by computing the DSL

trend over fifty 145-yr sections from the control run to

obtain a representative sample of the internal variability)

shows that, irrespective of the model or experiment

choice, the spread between realizations is similar to the

internal variability, both in terms of spatial patterns and

magnitude. This indicates that within each model the in-

dividual realizations respond similarly to the same exter-

nal forcing. This is true for all model–experiment

combinations in this study with at least three re-

alizations. In addition, the similarity between re-

alization spread and control run spread indicates that

the external forcings do not influence the internal

variability (about a possibly changing mean field)

substantially, suggesting there are no or little feedbacks

between the forcings and internal climate modes in the

models in the historical period for DSL. However,

model projections suggest that there may be some

changes in climate phenomena such as ENSO in the

future (Christensen et al. 2013), and Lu et al. (2014)

suggest that for surface air temperature there is a two-

way interaction between forced and internal climate

variability in climatemodels. The spread in themultimodel

ensembles (Fig. 2, middle) is larger than the spread within

the individual models (Fig. 5, middle), which means that

the different response of each of the models is responsible

for uncertainties in addition to the internal variability.

d. Linearity in the response to external forcing

Detection and attribution studies [see, e.g., Bindoff

et al. (2013), and references therein] implicitly assume

that different forcings can be either applied separately

or combined and that feedback effects are negligible.

To see how much of the signal is explained by linear

additions of the response to external forcing, we com-

pare the sum of the natural and anthropogenic exper-

iments to the historical experiment (the historical

comparison) and the sum of the GHG and aerosol ex-

periments to the anthropogenic experiment (the an-

thropogenic comparison). We select the models that

provide all three experiments needed: six models in the

historical comparison and four models in the anthro-

pogenic comparison.

First, root-mean-square differences (RMSD, weighted

for ocean area) are computed for both cases to compare

the summed DSL trends (e.g., natural 1 anthropogenic)

to the full DSL trends (e.g., historical). This is done for

the multimodel mean, for model means, and for indi-

vidual realizations (Table 2). The RMSDs of the indi-

vidual model realizations and the model means are on

the order of 0.10–0.20mmyr21, which is 5%–20% of the

total range of DSL trends. The multimodel ensemble

mean RMSDs are smaller as they are less influenced by

internal climate variability: 0.07 and 0.14mmyr21 for the

historical and anthropogenic comparison, respectively.

FIG. 4. The correlation coefficients of the historical DSL en-

semble mean with the leading EOF patterns of the five forcing

experiments as presented in Fig. 3. The shaded band indicates the

internal variability (5th–95th percentile), obtained by correlating

the preindustrial control runs to the leading EOFs; black dashed

lines represent the major volcanic eruptions.

8530 JOURNAL OF CL IMATE VOLUME 28



FIG. 5. Model realizations (left) mean linear DSL trends (mmyr21), (middle) spread of multirealization trends (1s; mm yr21) and

(right) spread in 50 control run trends (1s; mm yr21) for 1861–2005 for five randomly selected models. (a) Natural only (HadGEM2-ES),

(b) GHG only (IPSL-CM5A-LR), (c) anthropogenic aerosol only (CanESM2), (d) anthropogenic only (CSIRO Mk3.6.0), and

(e) historical (MIROC-ESM).

1 NOVEMBER 2015 S LANGEN ET AL . 8531



The RMSDs of the historical comparison are generally

smaller than those of the anthropogenic comparison.

For the multimodel mean DSL trend pattern, based

on 1 realization per model, we find that the majority of

the signal is explained by linear addition of the forced

responses. Only 6% of the grid points in the historical

comparison (Fig. 6c) have a difference of more than

1s of the multimodel ensemble spread and 29% in the

anthropogenic comparison (Fig. 6e). In the historical

comparison (Figs. 6a–c), the differences are relatively

small and occur in regions with larger DSL signals, such

as the Southern Ocean and the North Atlantic. The in-

dividual model simulations (not shown) are less smooth,

but the largest differences occur in the same regions,

although the magnitude and the sign may vary. The

anthropogenic comparison (Figs. 6d–f) shows larger and

TABLE 2. Root-mean-squared difference (mmyr21) for the sum of the natural and anthropogenic experiment vs the historical experiment

and the sum of the GHG and aerosol experiment vs the anthropogenic experiment for model means and individual realizations.

Historical vs natural 1 anthropogenic

Model Model mean Individual realizations

CNRM-CM5 0.07 0.14, 0.15, 0.17, 0.17, 0.15, 0.13

CSIRO Mk3.6.0 0.04 0.20, 0.13, 0.11, 0.12, 0.16, 0.18, 0.15, 0.14, 0.16, 0.19

GFDL CM3 0.07 0.15, 0.12, 0.16

GFDL-ESM2M 0.15 0.15

GISS-E2-R 0.16 0.20

IPSL-CM5A-LR 0.11 0.22, 0.17

Anthropogenic vs GHG 1 aerosol

Model Model mean Individual realizations

CSIRO Mk3.6.0 0.09 0.13, 0.18, 0.14, 0.18, 0.16, 0.18, 0.18, 0.16, 0.15, 0.19

GFDL-ESM2M 0.22 0.22

GISS-E2-R 0.14 0.19, 0.22, 0.20, 0.22

IPSL-CM5A-LR 0.13 0.29

FIG. 6. Ensemble mean linear DSL trends (mmyr21; 1861–2005): (a) Historical compared to (b) anthropogenic 1 natural, and (c) the

difference between (a) and (b) (first realization of six models in Table 2). (d) Anthropogenic compared to (e) GHG 1 anthropogenic

aerosol, and (f) the difference between (c) and (d) (first realization of four models in Table 2). (c),(f) Stippled for abs(difference) .1s

spread in the multimodel ensemble (containing six and four models, respectively).
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more widespread differences (Fig. 6f) than the historical

comparison (Fig. 6c). Similar differences are found in

the individual model simulations (not shown).

One reason for the larger differences in the anthro-

pogenic comparison is that there are anthropogenic

forcings that are not included in the GHG and aerosol

(GHG 1 aerosol) experiments, such as changes in land

use or ozone concentrations. Also, in the historical

comparison, a large signal (the anthropogenic forcing) is

added to a small signal (the natural forcing), so the an-

thropogenic forcing dominates the response, and the

resulting differences caused by additional feedbacks are

small (Fig. 6c). In the anthropogenic comparison how-

ever, two signals of comparable magnitude are com-

bined (GHG and aerosol forcing), which may cause

feedback effects to be larger (Fig. 6f). The short lifetime

of aerosols and the complexity of their interaction with

other forcing agents may also lead to feedback effects

(Myhre et al. 2013). Without dedicated single-forcing

experiments of these contributions, it is not possible to

say whether the differences in the anthropogenic com-

parison are caused by unresolved contributions and/or

nonlinear feedback effects.

e. Differences in zonal mean trends

The climate models in the CMIP5 database have dif-

ferences in resolution, subgrid parameterizations,

implementation of forcing agents in the experiments

(aerosol and cloud schemes), and different combina-

tions of ocean and atmosphere models. This section uses

the zonal mean DSL trends to simplify the complex

spatial DSL patterns, to identify the most robust fea-

tures for each experiment, and to understand the dif-

ferences between the models. In this section, the first

available realization of each model is used to show the

robustness of the trends in individual models, and the

ensemble mean is based on these first realizations only.

The internal variability is estimated by sampling 50

zonal 145-yr trends from each of the control runs.

While the zonal DSL trends of the natural experiment

(Fig. 7a) are entirely within the range of internal vari-

ability, the experiments that include anthropogenic

forcing (Figs. 7b–e) show values larger than the internal

variability in all models. The largest trends are in the

Southern Ocean in all models irrespective of which

forcing is applied and even with just control run vari-

ability, implying that internal variability can induce

trends in DSL at centennial time scales in the Southern

Ocean (O’Kane et al. 2013). The location of the peaks is

more consistent across models in the GHG experiment

(Fig. 7b, around 418S and 698S) than in the anthropo-

genic and historical experiments (Fig. 7d,e; see also

supplementary Figs. S1 to S5, which show the individual

model DSL patterns). This difference is caused by the

larger spread in the response to aerosol forcing (Fig. 7c,

supplementary Fig. S3), which leads to a positive re-

sponse south of 418S. Although the correlation between

the GHG and aerosol multimodel means is high and

mainly driven by the Southern Hemisphere (20.76;

20.47 for NH; 20.76 for SH), it also indicates that the

DSL response to GHG and aerosol forcing is not a

perfect mirror image, offering some hope to separate the

aerosol andGHG responses. For instance, the minimum

of the GHG is around 698S, while the maximum of the

aerosol experiment occurs around 588S, which results

in a negative peak around 628S in the anthropogenic

experiment and also a change in shape of the zonal mean

trend. The positiveGHGpeak around 418S, on the other
hand, is notmitigated by the aerosol experiment at all, as

these are close to zero, resulting in a positive trend in the

anthropogenic experiments.

The experiments that include anthropogenic forcing

(Figs. 7b–e) also show larger variability north of 208N,

albeit less than in the Southern Ocean. These zonal

trends are a trade-off between changes in the North

Pacific and the North Atlantic. In the Pacific, the re-

gional patterns show a negative DSL around 308N and a

neutral-to-positive DSL around 508N under aerosol-

only forcing (supplementary Fig. S3). This is reversed

in most of the GHG experiments (supplementary

Fig. S2). In the combined anthropogenic experiments

(supplementary Fig. S4), sometimes the response to

GHG forcing is the stronger effect (GFDL-ESM2M,

GISS-E2-R, and IPSL-CM5A-LR), and sometimes the

response to aerosol forcing is (GFDL CM3 and CSIRO

Mk3.6.0). In the North Atlantic, most models show a

strong response to the aerosol forcing, with a tendency

for a positive–negative–positive tripolar structure. Under

GHG forcing, this region is strongly influenced as well,

although not exactly opposing the response to the aerosol

forcing. Somemodels show an opposing tripolar structure

(e.g., CanESM2 and MIROC-ESM), while others tend

toward a dipole (e.g., CSIRO Mk3.6.0 and GFDL-

ESM2M) or even a mostly positive or negative North

Atlantic DSL trend (CNRM-CM5 and ACCESS1.3).

5. Discussion

a. Wind stress as a driver of sea level change

Many studies have been conducted on the underlying

mechanism that connects the changes in external forcing

to the sea level, using a range of models, and focusing on

different regions. For instance, in the Indian and Pacific

Oceans it was shown that DSL change is mainly driven

by wind stress, using either a simplified dynamical ocean
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FIG. 7. Zonal average trends (mmyr21; 1861–2005; 58 smoothed meridionally): (a) natural only, (b) GHG only,

(c) anthropogenic aerosol only, (d) anthropogenic only, and (e) historical. Internal variability (2s; blue shading)

based on 50 randomly drawn zonal mean 145-yr trends from each preindustrial control run. Model first realizations

(in color) and multimodel ensemble mean and spread (black line and gray shading; 62s).
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model (Timmermann et al. 2010) or an ocean general

circulation model (Nidheesh et al. 2013). In addition,

Piecuch and Ponte (2011, 2012) pointed out that buoy-

ancy forcing is important to explain interannual vari-

ability in sea level in both the tropical Atlantic and the

tropical Pacific regions. Using AOGCMs, Bouttes et al.

(2012, 2014) and Bouttes and Gregory (2014) found that

changes in sea level can mostly be explained by wind

stress (e.g., in the SouthernOcean) but also by heat (e.g.,

in the North Atlantic) and freshwater fluxes (e.g., in the

Arctic Ocean). In the Southern Ocean, Böning et al.

(2008) found that observed changes in the Antarctic

Circumpolar Current transport can be partly explained

by trends in heat and freshwater fluxes but that there is

also a strong effect of a wind-induced increase in the

eddy fluxes as simulated by eddy-resolving models.

More recently, Frankcombe et al. (2013) used an eddy-

permitting model and found that sea level falls around

Antarctica as a result of increasing westerly winds that

are moving poleward, which corresponds to a positive

shift in the southern annular mode.

Although the importance of the different drivers

seems to vary depending on the type of model and the

region studied, it is clear that wind stress changes are one

of the main drivers of dynamic sea level change. In-

deed, the magnitude and shape of the DSL trend

closely corresponds to changes in wind stress in each of

the five different experiments for the period 1861–2005

(Fig. 8). For the natural-only experiment, both the wind

stress changes and the DSL trends are small. The wind

stress trends in the experiments that include GHG

forcing agree with the results of Bouttes et al. (2012)

and Frankcombe et al. (2013) and show a poleward

intensification in the wind stress (Figs. 8b,d,e). The

zonal component of the wind stress is larger than the

meridional component (Fig. 8f), with the peaks in

the Southern Ocean within 18 difference for the GHG,

anthropogenic, and historical experiments. The wind

stress curl indicates the divergence/convergence zones in

the wind stress in the Southern Ocean, and these match

the zonal DSL peaks in Fig. 7. The driving effect of the

wind stress is strongest in the GHG-only experiment but

is also large in the anthropogenic and historical experi-

ments. In the aerosol experiment, the Southern Ocean

wind stress trends weaken and show an opposite direction

to the GHG-forced wind stress trends, causing a sea level

rise around Antarctica instead.

b. Correlation of GHG and anthropogenic aerosol
responses

Previously, Slangen et al. (2014b) found that GHG

and aerosol forcing have opposing effects with a similar

FIG. 8. Multimodel ensemblemean linearDSL trends (shading and contours; mmyr21) and the wind stress trend from the atmosphere onto

the ocean (vectors, Nm22 yr21) for 1861–2005. (a) Natural only, (b) GHG only, (c) anthropogenic aerosol only, (d) anthropogenic only,

(e) historical, and (f) zonal mean wind stress trend of all experiments in zonal (solid lines) and meridional direction (dashed lines). Note that

DSL and wind stress are both shown for a reduced number of models because of reduced availability of wind stress data (Table 1).
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time evolution in the GMTSL for the period 1957–2005.

Actually, the correlation coefficient of ensemble mean

GMTSL is ,20.99 for every time period starting 1861–

2004 and ending in 2005 (p; 0), andGHG;521:573
aerosol for 1861–2005. Individual realizations and

model mean GMTSL time series also have correlation

coefficients between 20.97 and 20.99. Clearly, with

such high correlations it is not possible to separate the

contributions from these two forcing agents to GMTSL.

In contrast, the DSL trends from theGHG and aerosol

experiments (Figs. 2c,d) do not mirror each other com-

pletely, reflected by a correlation coefficient of 20.78

(p; 0) and a zonal mean trend correlation of20.76. For

the fivemodels withGHGand aerosol-only experiments,

the correlation coefficients for themodelmean trends are

around 20.7, while, for the individual realizations, the

values are closer to20.5, because individual realizations

are influenced more by internal variability than the in-

tramodel or multimodel means.

The temporal evolution of the spatial correlation be-

tween GHG- and aerosol-forced DSL may provide

better opportunities to separate the two forcings (Fig. 9;

correlations 10-yr averaged for clarity). For individual

simulations (thin lines) before the 1960s, the correla-

tions are small and not significantly different from the

internal variability. The correlations of themodel means

(thick lines) are larger than for the individual simula-

tions as there is less influence of internal variability than

in the individual simulations. As a result, the model

means depart from the control run 5%–95% interval

earlier, between 1930 and 1960. The multimodel en-

semble mean correlation emerges from the internal

variability 5%–95% in the 1920s, as there is even more

averaging. The correlations of the model means and

ensemble mean drop in the 1950–60 period and stabilize

from 1980 onward between 20.6 and 20.8. Figure 9

suggests that, in a formal detection and attribution

study, the analysis might start in 1950, since the corre-

lations in the period 1950–2005 are detectably different

from internal variability while the aerosol and GHG

response is not yet perfectly correlated. This implies

the use of data before the satellite era, such as ocean

reanalyses or reconstructions.

We note that the greenhouse gases are well mixed in

the atmosphere, and thus the forced response is driven

by the total concentration of GHG in the atmosphere

(Meinshausen et al. 2011). In contrast, aerosols are

generally short-lived and comprise a variety of aerosol

species, which are emitted in different locations and

during different time periods as economies around the

world develop (Lamarque et al. 2010). The impacts of

aerosols on the radiative forcing, particularly the in-

direct effects, are poorly understood in comparison to

the effect of well mixed greenhouse gases. As a result of

these factors, the historical pattern of the aerosol forcing

may not be scalable to the global aerosol concentration

into the future, as the emissionmagnitudes and locations

will likely change. The attribution question may there-

fore be better answered by simulating the DSL pattern

forced by aerosol emissions from certain regions sepa-

rately and combining these aerosol fingerprints to ex-

plain the observed changes.

6. Conclusions

This paper has demonstrated the influence of a range

of external forcings on the global mean thermosteric sea

level (GMTSL) and on the dynamic sea level change

(DSL) in climate models. For this, we used simulations

from the CMIP5 archive for the period 1861–2005

driven by five different external forcing combinations:

natural only, GHG only, aerosol only, anthropogenic

only, and historical.

In GMTSL, the influence of the forcings is clearly

distinguishable: while anthropogenic aerosol forcing

causes sea level to fall as a result of decreased radiative

forcing, increased GHG forcing leads to a sea level rise

in the global mean. The natural-only forced experi-

ments show the influence of volcanic forcing on

GMTSL, with some models exhibiting a negative bias

as a result of absence of volcanic forcing in the pre-

industrial control run.

FIG. 9. Correlation coefficients (10-yr smoothed from yearly

correlation coefficients for clarity) of GHG vs aerosol DSL time

series, for multimodel mean (black), model means (thick colored

lines), and individual realizations (thin colored lines) for 1866–2000

(first and last 5 yr discarded to avoid end effects from smoothing).

Gray shading reflects the 5th–95th percentile of internal variability,

based on correlations of the preindustrial control runs w.r.t. GHG

and aerosol multimodel ensemble mean DSL.
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TheDSL trends are highly variable in time and in space,

and again there are clear differences between the five

forcing experiments, as shown by long-term trends and

EOF analysis. The response of the DSL trends to anthro-

pogenic forcings is significantly different from the response

to internal climate variability only, both in spatial pattern

and in magnitude. The response of DSL trends to natural-

only forcing is smaller and much closer to the internal

variability. While the spread in the DSL trend between

different realizations from the same model is consistent

with the spread in the internal variability (DSL trends de-

rived from the preindustrial control runs), the spread in

response to external forcings between the different models

is larger, mainly in regions with large DSL trends.

The correlation between the historical DSL time se-

ries and the leading EOFs of each of the five historical

forcing experiments shows that the pattern associated

with GHG already emerges early in the twentieth cen-

tury, although the initial amplitude of the pattern is

small. While the GHG and aerosol-forced responses are

highly correlated in GMTSL (;20.99), making the two

forcings indistinguishable, the correlation is smaller in

DSL (20.76 for the ensemble mean), time dependent,

and emerges from the 5%–95% range in internal vari-

ability between 1930 and 1960, depending on the model.

Feedback effects between different forcings are ex-

amined by comparing the historical-forced response to

the anthropogenic1 natural forced response (historical

comparison) and the anthropogenic-forced response to

the GHG 1 aerosol-forced response (anthropogenic

comparison). The differences are small and localized in

the historical comparison, while the anthropogenic

comparison shows larger differences in more locations,

which may be related to both nonlinear feedback effects

and unresolved anthropogenic forcings.

The largest forced DSL response is in the Southern

Ocean, where the GHG experiments show zonal mean

DSL trend peaks at 418S and a minimum at 698S. The
DSL response to the aerosol experiments shows a pos-

itive trend everywhere south of 418S and a maximum at

588S. The combination of these two forcings in the an-

thropogenic experiment results in a minimum around

628S and a maximum around 418S. The regional DSL

trends are closely related to changes in surface wind

stress in response to external forcings.

Both the zonal mean DSL trends and the correlations

of GHG and aerosol-forced responses in DSL suggest

that there is a chance to separate GHG and aerosol-

forced responses in sea level observations, provided that

the observations used are of sufficient quality and

length. Future work will focus on distinguishing the

contributions of the forcings found in the models in

observed sea level change patterns.
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