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Multi-species distribution modeling, which relates the occurrence
of multiple species to environmental variables, is an important tool
used by ecologists for both predicting the distribution of species in a
community and identifying the important variables driving species co-
occurrences. Recently, Dunstan, Foster and Darnell [Ecol. Model. 222
(2011) 955–963] proposed using finite mixture of regression (FMR)
models for multi-species distribution modeling, where species are
clustered based on their environmental response to form a small num-
ber of “archetypal responses.” As an illustrative example, they ap-
plied their mixture model approach to a presence–absence data set of
200 marine organisms, collected along the Great Barrier Reef in Aus-
tralia. Little attention, however, was given to the problem of model
selection—since the archetypes (mixture components) may depend on
different but likely overlapping sets of covariates, a method is needed
for performing variable selection on all components simultaneously.
In this article, we consider using penalized likelihood functions for
variable selection in FMR models. We propose two penalties which
exploit the grouped structure of the covariates, that is, each covari-
ate is represented by a group of coefficients, one for each component.
This leads to an attractive form of shrinkage that allows a covariate to
be removed from all components simultaneously. Both penalties are
shown to possess specific forms of variable selection consistency, with
simulations indicating they outperform other methods which do not
take into account the grouped structure. When applied to the Great
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Barrier Reef data set, penalized FMR models offer more insight into
the important variables driving species co-occurrence in the marine
community (compared to previous results where no model selection
was conducted), while offering a computationally stable method of
modeling complex species–environment relationships (through regu-
larization).

1. Introduction. Multi-species distribution modeling, which relates the
occurrence of multiple species to environmental covariates, is an important
tool both for predicting how a species community will respond to changing
environmental conditions and for identifying important environmental vari-
ables driving species co-occurrences [Ferrier and Guisan (2006), Ovaskainen,
Hottola and Siitonen (2010), Pollock et al. (2014)]. To construct such mod-
els, statistical methods are required which can handle the underlying het-
erogeneity in species–environment relationships (i.e., different species in the
same community can have very different environmental responses), while
providing accurate predictions for rare species that may not be modeled re-
liably on their own [by borrowing strength across organisms in a community,
Ferrier and Guisan (2006), Ovaskainen and Soininen (2011)].

Recently, Dunstan, Foster and Darnell (2011) proposed using finite mix-
ture of regression [FMR, Wedel and DeSarbo (1995)] models for multi-
species distribution modeling of presence–absence (binary) data, where spe-
cies are clustered based on their environment response to form a small num-
ber of “archetypal responses.” The methodology was extended by Hui et al.
(2013) and Dunstan et al. (2013) to handle count and biomass data, the lat-
ter being a nonnegative continuous value representing the combined weight
of all individuals of each species. By clustering species into archetypes, and
modeling each archetype using a generalized linear model [GLM, McCullagh
and Nelder (1989)], these Species Archetype Models or SAMs offer a power-
ful approach to modeling heterogeneity in a community’s response to a set of
covariates. Clustering species based on environmental response is also con-
sistent with recent findings in ecology that groups of species tend to respond
in a similar manner to environmental gradients [at least with the resolution
of most multi-species data sets, Clark (2010)]. Moreover, Hui et al. (2013)
showed SAMs offer strong predictive performance of rare species by borrow-
ing strength from more prevalent species classified to the same archetype.

While these initial results for SAMs showed promise, little attention was
given to the important issue of model selection. In their application of SAMs
to a data set of presence–absence records collected for 200 species along the
Great Barrier Reef off the northeast coast of Australia, Dunstan, Foster and
Darnell (2011) used a heuristic version of BIC [Schwarz (1978)] to select
the “types of covariates” to enter in the model, that is, physical habitat
covariates, oceanographic measures or both. Also, both Hui et al. (2013)
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and Dunstan et al. (2013) a priori fixed the set of covariates to enter into
their respective SAMs. In all three articles, the same set of covariates were
entered into each archetype. This is a restrictive requirement, as it fails to
account for the numerous (and unknown) ways which organisms react to
their environment.

Since the component densities may depend on different but likely overlap-
ping sets of covariates, a method is needed for performing variable selection
on all components in an FMR model simultaneously. For SAMs especially,
simultaneously performing variable selection over all archetypes is key to
identifying which environmental variables are important in structuring the
species community. On the other hand, given the number of candidate mod-
els is considerably larger than in the standard GLM context, methods which
require fitting all possible models, for example, information criteria, are im-
practical.

In this article, we consider using penalized likelihood methods for vari-
able selection in FMR models and SAMs. Since each covariate in an FMR
model is represented by a group of coefficients, one for each component (and
whose true value may be zero), we propose two penalties which exploit this
grouped structure. This leads to an attractive form of shrinkage that al-
lows a covariate to be removed from all components simultaneously. The
first penalty proposed is a modification of the group LASSO [Yuan and Lin
(2006)] to FMR models, called MIXGL2 (since it is an ℓ2-norm penalty),
which is applied across components on a per covariate basis. The second
penalty, called MIXGL1, is based on the square root of the ℓ1-norm and
allows the component densities to depend on different sets of covariates.
In a diverging number of covariates settings (i.e., the number of parame-
ters grows a slower rate than sample size), we demonstrate that MIXGL1
and MIXGL2 each possess a specific form of variable selection consistency.
Furthermore, simulation studies show MIXGL2 and MIXGL1 outperform
other penalties which do not take into account the grouped structure of the
covariates, both in variable selection and prediction.

We apply both penalties to construct multi-species distribution models for
the aforementioned Great Barrier Reef data set. This data set was collected
as part of a larger biodiversity project aimed at identifying the key envi-
ronmental variables important in structuring seabed biodiversity, as well as
predicting future distributions of species communities along the Great Bar-
rier Reef [Pitcher et al. (2007)]. It consists of presence–absence data of 200
species collected at 1189 sites, along with 13 environmental covariates. Com-
pared to the results from unpenalized SAMs [Dunstan, Foster and Darnell
(2011), Hui et al. (2013)], the penalized versions offer two advantages: (1)
clearer insight is gained into species co-occurrence, as the penalties provide
an automated way of identifying the variables informing each archetypal re-
sponse; (2) the inclusion of penalties smooths the likelihood and leads to a
more stable estimation procedure for SAMs.



4 F. K. C. HUI, D. I. WARTON AND S. D. FOSTER

We conclude this introduction by reviewing previous literature on penal-
ized likelihood methods for FMR models. Khalili and Chen (2007) were the
first to extend the LASSO [Tibshirani (1996)] and SCAD [Fan and Li (2001)]
penalties to FMR models by applying these penalties on a per component
basis, that is, each component has its own tuning parameter. For FMR mod-
els with a diverging number of covariates in each component, Khalili and
Lin (2013) proposed elastic-net type penalties [i.e., a linear combination of
a sparsity-inducing and a ridge penalty, Zou and Hastie (2005)], which were
also applied on a per component basis. For mixtures of linear regression in
particular, Städler, Bühlmann and van de Geer (2010) applied the adaptive
LASSO [Zou (2006)] with one tuning parameter for the entire model. To
date, no penalty has been proposed which exploits the grouped structure of
the covariates in FMR models, something we investigate in this article.

2. Finite mixture of regression models. Consider a sample of observa-
tions {(xi, yi); i= 1, . . . , n}, where yi is a univariate, independent and iden-
tically distributed response and xi is a p× 1 vector of covariates. We allow
p to grow polynomially with sample size, that is, pν/n→ 0 for some ν > 1.
The precise value of ν is specified later on in Section 3.1. All covariates
are assumed to have been standardized to mean zero and variance one. For
an FMR model with K components, the conditional density function for
observation i is given as follows:

h(yi;xi,Ψ) =

K
∑

k=1

πkf(yi;xi, µik, φk); g(µik) = β0k +

p
∑

l=1

xilβkl,(1)

where π = (π1, . . . , πK) denotes the mixing proportions satisfying πk > 0,
∑K

k=1 πk = 1 and f(y;x, µk, φk) is the kth component density assumed to
come from the exponential family with mean µk and dispersion parameter
φk. For observation i, the mean conditional on belonging to the kth compo-
nent, µik, is regressed against covariates xi using a GLM with link function
g(·) and coefficients {βkl; l= 1, . . . , p}.

Let βl = (β1l, . . . , βKl) be the vector of coefficients corresponding to co-
variate l. Notice the coefficients are concatenated on a per covariate basis—
this reflects the grouped structure of the covariates, that is, each covariate
is represented by K coefficients, one for each component and whose true
value may be zero. Finally, let β = (β1, . . . ,βp) be the K × p matrix of re-
gression coefficients, and Ψ = (β1, . . . ,βp, β01, . . . , β0K ,φ,π) denote all the
parameters in the FMR model, where φ= (φ1, . . . , φK).

In this article, it is assumed the parameters in the FMR model in equa-
tion (1) are generically identifiable up to a permutation of the component
labels [see condition (A1) in the Supplementary Material, Hui, Warton and
Foster (2015b)]. Furthermore, we develop our asymptotic theory assuming
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the number of components K is known [analogous to Städler, Bühlmann
and van de Geer (2010), Khalili and Lin (2013)], although for our appli-
cation with SAMs we propose a BIC-type criterion to select the number
of archetypes. General discussions regarding parameter identifiability for
mixture models can be found in McLachlan and Peel (2004) and Frühwirth-
Schnatter (2006), with the specific case of generic identifiability discussed in
Follmann and Lambert (1991), Hennig (2000) and Grün and Leisch (2008),
among others.

3. New penalties for variable selection. To exploit the grouped structure
of covariates in FMR models and SAMs, we consider penalized likelihood
methods using penalties which are applied across components on a per co-
variate basis,

ℓpenn (Ψ) = ℓn(Ψ)− nλ

p
∑

l=1

P(βl),

where ℓn(Ψ) =
∑n

i=1 log(
∑K

k=1 πkf(yi;xi, µik, φk)) is the observed log-like-
lihood and P(βl) denotes a penalty function which is nonnegative and sat-
isfies P(0) = 0. Let β̃ = (β̃1, . . . , β̃p) denote the unpenalized maximum like-
lihood estimates of β. We propose two penalty forms for P(βl). The first is
a modification of the group LASSO [Yuan and Lin (2006)] for FMR models.

Definition 1. For the FMRmodel defined in equation (1), the MIXGL2
estimates are given by maximizing the penalized log-likelihood function

ℓpenn (Ψ) = ℓn(Ψ)− nλ

p
∑

l=1

w̃l

√

√

√

√

K
∑

k=1

β2
kl,

where w̃l = (
∑K

k=1 β̃
2
kl)

−γ/2 and γ > 0.

MIXGL2 possesses the group sparsity property, that is, it is nondifferen-
tiable when β1l = · · ·= βKl = 0 for covariate l. This is an attractive property
to have for variable selection in FMR models, as it encourages a covariate to
be removed from all components simultaneously. Such a form of sparsity in
the solution is useful for multi-species distribution modeling, as often there
are numerous environmental covariates which are completely uninformative
for all archetypes (a covariate is defined as completely uninformative if all its
coefficients are truly zero). MIXGL2 is useful for screening these covariates
out, potentially as a first stage in variable selection for SAMs.

The second penalty we propose is based on the square root of a weighted
ℓ1-norm.
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Definition 2. For the FMRmodel defined in equation (1), the MIXGL1
estimates are given by maximizing the penalized log-likelihood function

ℓpenn (Ψ) = ℓn(Ψ)− nλ

p
∑

l=1

√

√

√

√

K
∑

k=1

w̃kl|βkl|,

where w̃kl = |β̃kl|−γ and γ > 0.

MIXGL1 not only possesses the group sparsity property like MIXGL2,
it also possesses individual coefficient sparsity analogous to the adaptive
LASSO, that is, it is also nondifferentiable for all individual coefficients
βkl. This individual sparsity allows MIXGL1 to remove covariates from
only K ′ < K components. It is therefore well suited to species distribu-
tion modeling—since the archetypal responses typically depend on different
sets of covariates, MIXGL1 can accommodate for differing mean structures
in each archetype. Put another way, the set of variables that drive the co-
occurrences of one group of species are usually slightly different to those
that drive the co-occurrence of another group. The form of MIXGL1 allows
for this, while maintaining the ability to remove completely uninformative
covariates from the entire SAM. Of course, the choice of which penalty also
depends on the analysis objectives—sometimes, it is of interest to see which
covariates affect any (or all) components, in which case MIXGL2 is more
appropriate. Other times, we may want to know how each covariate affects
the archetypes in the most compact way, in which case MIXGL1 is suitable.

Definition 2 is a special case of the Composite Absolute Penalty (CAP)
family of penalties [Zhao, Rocha and Yu (2009)], although our work is the
first to apply such a penalty to the FMR model context. Both MIXGL2
and MIXGL1 incorporate data-dependent weights based on the unpenalized
estimates, β̃, with the severity of these weights controlled by γ. The inclusion
of weights builds on the idea of the adaptive LASSO and allows the penalized
estimates to achieve desirable large sample properties as discussed in the
next section. Finally, unlike the penalties in Khalili and Chen (2007) and
Khalili and Lin (2013) which are applied on a per component basis, MIXGL1
and MIXGL2 do not depend on the mixing proportions. When penalization
occurs on a per component basis, having penalties which are a function of
π makes sense since it relates the severity of penalization to the “effective
sample size” of each component. For penalization across components on a
per covariate basis, specifically, the MIXGL1 and MIXGL2 penalties, the
need to incorporate mixing proportions is less obvious.

3.1. Asymptotic properties. In this section, we consider the large sample
behavior of the MIXGL2 and MIXGL1 estimators. As mentioned previously,
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we assume the number of components K is fixed and known a priori, but
the number of covariates in each component grows with sample size n. We
shall use pn, as well as a subscript n in other quantities, for example, λn

and βn, to reflect this. Let Ψ0
n = (β0

n,1, . . . ,β
0
n,pn , β

0
n,01, . . . , β

0
n,0K ,φ0

n,π
0
n) be

parameter values corresponding to the true model, which is assumed to be
identifiable. We can partition all the regression coefficients in the true model
as follows:

Definition 3. The regression coefficients in the true model, (β0
n,1, . . . ,

β0
n,pn) can be partitioned into the following mutually exclusive sets:

• An = {(k, l) :β0
n,kl 6= 0} denotes the set of truly nonzero coefficients.

• Bn = {(k, l) :β0
n,kl = 0,‖β0

j‖2 6= 0} denotes the set of zero coefficients be-
longing to partly uninformative covariates.

• Cn = {(k, l) :β0
n,kl = 0,‖β0

j‖2 = 0} is the set of zero coefficients belonging
to completely uninformative covariates.

As formalized below, the group sparsity property of MIXGL2 allows it to
asymptotically set all coefficients belonging to set Cn to zero, while the com-
bined group and individual coefficient sparsity property of MIXGL1 allows
it to asymptotically set all coefficients belonging to sets Bn and Cn to zero.

For both penalties, assume the following regularity conditions are satis-
fied:

(A) λnan = op(n
−1/2),

(A′) λnan = op(n
−1/2p−1

n ),

(B) p2n/(λ
2
nbn) = op(n),

(C) p4n/n→ 0,

(C′) p5n/n→ 0,

where for the MIXGL2 penalty, an =max{w̃n,l; l ∈An} and bn =min{w̃2
n,l;

l ∈ Cn}, and, analogously for the MIXGL1 penalty, an = max{w̃kl; (k, l) ∈
An} and bn =min{w̃kl; (k, l) ∈ Bn ∪Cn}. Conditions (A) and (A′) ensure the
existence of penalized likelihood estimates which are asymptotically unbi-
ased, while condition (B) ensures an appropriate degree of shrinkage. The
rate of growth of the number of covariates in conditions (C) and (C′) is
the same as Khalili and Lin (2013), and we believe it to be appropriate in
many applications of species distribution modeling in ecology, that is, the
number of environmental variables recorded is usually small compared to
the number of sites visited.

We first consider the asymptotic behavior of the MIXGL2 estimator:

Theorem 1 (Oracle property—MIXGL2). Assume conditions (A)–(C)

hold. Then there exists a local maximizer Ψ̂n of ℓpenn (Ψn) in Definition 1
which satisfies the following:
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• Estimation consistency: ‖Ψ̂n −Ψ0
n‖=Op(

√

pn/n).

• Covariate selection consistency: P (β̂n,Cn = 0)→ 1.
• Asymptotic normality: If conditions (A′) and (C′) are also satisfied, then

√
nΓnIn(Ψ0

n,Cc
n
)1/2(Ψ̂n,Cc

n
−Ψ0

n,Cc
n
)

d→N(0,G),

where Ψ̂n,Cc
n
= (β̂n,Cc

n
, β̂n,01, . . . , β̂n,0K , φ̂n, π̂n), Γn is a q × |Cc

n| matrix such

that ΓnΓ
′
n→pG, and In(Ψ0

n,Cc
n
) is the Fisher information matrix knowing

Cc
n.

All proofs have been relegated to the Supplementary Material [Hui, Warton
and Foster (2015b)]. Theorem 1 states MIXGL2 is covariate selection con-
sistent, that is, it will asymptotically remove completely uninformative co-
variates from the FMR model. On the other hand, if the true model contains
partly uninformative covariates (Bn 6=∅), MIXGL2 will in the large sample
limit retain these covariates in all components. This makes sense because
MIXGL2 does not possess individual coefficient sparsity. By contrast, if we
consider the asymptotic behavior of the MIXGL1 estimator, then we have
the following:

Theorem 2 (Oracle property—MIXGL1). Assume conditions (A)–(C)

hold. Then there exists a local maximizer Ψ̂n of ℓpenn (Ψn) in Definition 2
which satisfies the following:

• Estimation consistency: ‖Ψ̂n −Ψ0
n‖=Op(

√

pn/n).

• Coefficient selection consistency: P (β̂n,Bn∪Cn = 0)→ 1.
• Asymptotic normality: If conditions (A′) and (C′) are also satisfied, then

√
nΓnIn(Ψ0

n,An
)1/2(Ψ̂n,An −Ψ0

n,An
)

d→N(0,G),

where Ψ̂n,An = (β̂n,An
, β̂n,01, . . . , β̂n,0K , φ̂n, π̂n), ‖ · ‖ denotes the ℓ2-norm,

Γn is a q× |An| matrix such that ΓnΓ
′
n→pG, and In(Ψ0

n,An
) is the Fisher

information matrix knowing An.

Theorem 2 states MIXGL1 is coefficient selection consistent, that is, it will
asymptotically remove completely uninformative covariates and zero coef-
ficients belonging to partly uninformative covariates from the FMR model.
This is a stronger form of selection consistency compared to MIXGL2, and
is a desirable property in terms of identifying the truly important covariates
facilitating species co-occurrence.

To compute the MIXGL2 and MIXGL1 estimates, we use an estimation
procedure combining the Expectation Maximization [EM, Dempster, Laird
and Rubin (1977)] algorithm with a local quadratic approximation [LQA,
Fan and Li (2001)]. Details regarding this estimation procedure, and a proof
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that it possesses the desired ascent property, may be found in the Supple-
mentary Material [Hui, Warton and Foster (2015b)]. To select the tuning
parameters (λn, γ), we use a BIC-type criterion [see Zhang, Li and Tsai
(2010) for the use of information criteria in selecting tuning parameters],

BICλn,γ =−2ℓn(Ψ̂n) + log(n)dim(β̂n),

where dim(β̂n) denotes the number of nonzero estimates in β̂n. Note Ψ̂n

and dim(β̂n) both depend on λn and γ, for example, as λn increases, more

values of β̂n are shrunk to zero. For our simulations and applications, we
select from γ ∈ {0.5,1,2}.

4. Application. We apply MIXGL1 and MIXGL2 to Species Archetype
Models and the Great Barrier Reef data set introduced in Section 1. To
recap, the data set consists of presence–absence data of 200 species at
1189 sites, along with 13 environmental covariates. Five of these covari-
ates were descriptors of physical habitat: depth (BATHY), bottom stress
(BSTRESS), percent gravel (GRAVEL), percent mud (MUD), percent car-
bonate (CARBON), and the other eight covariates were oceanographic mea-
sures: mean and intra-annual standard deviation of temperature (T.AV,
T.SD), mean and intra-annual standard deviation of oxygen concentration
(O2.AV, O2.SD), mean and intra-annual standard deviation of salinity (S.AV,
S.SD), mean and intra-annual standard deviation of K490 (K490.AV,
K490.SD). K490 is measure of turbidity based on light penetration and is
related to the presence of light scattering particles in the water.

To model the 200 species separately using a GLM (say) would be a difficult
task, especially since 164 out of 200 species are present at less than 5% of the
sites. Such sparsity in the response (in the sense that most species are rarely
observed) is characteristic of multi-species data and motivates methods such
as SAMs which are able to borrow strength across species. On the other
hand, while the applications of SAMs in Dunstan, Foster and Darnell (2011)
and Dunstan et al. (2013) were mainly for illustrative purposes, the goal in
this article is to perform (consistent) variable selection in order to identify
the key drivers of species co-location.

Let Y denote the multi-species response matrix collected i= 1, . . . , n sites
for j = 1, . . . , s species, with [Y]ij = 1 if species j was found at site i and 0
otherwise. For the Great Barrier Reef data set, n= 1189 and s= 200. Let xi

be the vector of environmental covariates at site i. SAMs are an extension
of FMR models in (1) to the case of product Bernoulli component densities:

h(yj ;xi,Ψ) =
K
∑

k=1

πk

(

n
∏

i=1

µ
yij
ijk(1− µijk)

1−yij

)

;

(2)

logit(µijk) = β0j +

p
∑

l=1

xilβkl.
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Note in (2), the intercepts β0j are species-specific instead of component-
specific. As discussed in Dunstan et al. (2013), this is so that species are
clustered solely on the shape of their environmental responses and not as
well on the prevalence.

For each of the 13 covariates, we fitted linear and quadratic terms, result-
ing in 26 terms available for selection in each archetype. We used MIXGL2
and MIXGL1 to perform variable selection, with the tuning parameters cho-
sen using BICλn,γ defined in Section 3.1, and log(n) replaced by log(s) as
the model complexity penalty. The reason for this replacement is because
the fundamental observational unit in SAMs is a species instead of a site [see
Dunstan, Foster and Darnell (2011) and also the Discussion in Section 6]. For
a fixed K, the combined EM plus LQA algorithm used for fitting penalized
FMR models can be straightforwardly extended to the case of SAMs [see the
Supplementary Material for details, Hui, Warton and Foster (2015b)]. To se-
lect the number of archetypes, we considered a candidate range K = [1,20]
and used another BIC-type criterion [see Sections 6.8–6.9, McLachlan and
Peel (2004), on using information criteria for selecting K],

BICK =−2ℓn(Ψ̂(K)n) + log(s)dim(Ψ̂(K)n),

where dim(Ψ̂(K))n denotes the number of nonzero parameters in the SAM
with K archetypes. The model selection procedure thus proceeds as follows:
for each candidate K, the best penalized SAM is selected using BICλn,γ .
Afterward, the final model is selected from these “best penalized SAMs”
using BICK .

Figure 1 shows a plot of coefficients estimates for the two penalized SAMs,
with exact values of the coefficients provided in the Supplementary Mate-
rial [Hui, Warton and Foster (2015b)]. Using BICK , MIXGL2 and MIXGL1
produced SAMs with K = 9 and 10 archetypes, respectively [note Dunstan,
Foster and Darnell (2011) chose K = 11 archetypes when applying unpe-
nalized SAMs to the same data set]. Compared with the unpenalized SAM
in Dunstan, Foster and Darnell (2011), penalized variable selection offers
much more insight into the drivers of seabed biodiversity. Both models in-
dicated the five physical habitat covariates were informative for almost all
archetypes (Figure 1—bottom 10 rows in both plots), meaning these vari-
ables are important in structuring the entire marine species assemblage. In
contrast, MIXGL1 and MIXGL2 deemed several of the oceanographic mea-
sures to be either completely or close to completely uninformative, for exam-
ple, the quadratic terms T.SD2 and S.SD2. It is also in these oceanographic
covariates where the archetypal responses were largely differentiated for the
MIXGL1 model. For example, archetype 2 was the only archetype where
the four terms corresponding to mean and intra-annual standard deviation
of oxygen were informative. That is, the co-occurrence of species classified
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Fig. 1. Map of coefficients for penalized SAMs with MIXGL2 (left) and MIXGL1 penal-
ties (right). Empty circles indicate coefficients shrunk to exactly 0. Based on BICK , the
former chose K = 9 archetypes while the latter chose K = 10 archetypes.

to this archetype could be partly attributed to their shared environmental
response to oxygen. Also, archetypes 2 to 6 all had coefficients for mean
annual temperature which were substantially different from zero. However,
species in archetypes 3 and 6 tend to occupy regions of higher temperatures,
while species classified to archetype 2, 4 and 5 tend to occur in relatively
cooler regions.

For prediction purposes, maps were constructed for each archetype show-
ing how the probability of presence on the linear predictor scale varies spa-
tially along the entire Great Barrier Reef. That is, for archetype k = 1, . . . ,K,
these were constructed using the linear predictor,

η̂ik =

∑s
j=1 τ̂jkβ̂0j
∑s

j=1 τ̂jk
+

p
∑

l=1

xilβ̂kl,

which were then mapped across all sites in the Barrier Reef region. To clarify,
we chose to map the linear predictors η̂ik directly rather than convert them
to probabilities, as this generally makes it easier to identify any differences
between the archetypes. Note the intercept used in the predicted maps is a
weighted average of all species-specific intercepts, with weights proportional
to the posterior probabilities of belonging to archetype k. These maps are
provided in the Supplementary Material [Hui, Warton and Foster (2015b)].
Note that maps could also be constructed for each species, although for
managerial purposes maps constructed on a per archetype basis tend to be
more useful, since managing an archetype is equivalent to simultaneously
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managing all the species classified into the archetype [Dunstan, Foster and
Darnell (2011)].

Both MIXGL2 and MIXGL1 produced some similar maps, for example,
archetype 4 in both models exhibited a high probability of presence from
the central to the southeast region of the reef toward the Coral sea, with
the probability decreasing sharply toward land. Also, species in archetype
9 for both models tend to be found with relatively high probability toward
the southeast Queensland coast. Given the differing properties of MIXGL2
and MIXGL1, however, it was not surprising to also observe some notable
differences between the two sets of maps, for example, archetype 2 for the
MIXGL2 fit displayed relatively high probabilities of presence in a small
region on the southeast region of the Barrier Reef, where percent gravel
was rather high. However, no corresponding archetype was observed for the
MIXGL1 fit—while archetypes 4 and 7 also had positive linear terms for
percent gravel (Figure 1—right), the environmental response of species in
these two components tends to be driven more by other covariates. This
suggests incorporating a penalty such as MIXGL1, which allows different
mean structures in each archetype and leads to more precise differentiation
of the sources of species co-occurrences.

5. Simulation study. A small simulation was performed to assess the
finite sample performance of the MIXGL1 and MIXGL2 in FMR models in
equation (1). The number of covariates in each component was determined
as pn = ⌈4n1/4⌉ − 5, where ⌈·⌉ is the ceiling function [see also Khalili and
Lin (2013)]. Covariates {xi; i = 1, . . . , n} were generated from a standard
multivariate Gaussian distribution with correlation structure Cor(xir, xis) =
0.5|r−s|. Responses were then simulated from a K = 2 binomial FMR model
with trial size 10, using the four models below:

(β01,β1) = ( 1, 0.7, 2,−2, 1.5, 0, 0, 0, . . .),
Model I: (β02,β2) = (−0.5, 2, 0, 0, 0, 1, −2, 0.5, . . .),
Model II: (β02,β2) = (−0.5, 2, 0, 0, 1, −2, 0.5, 0, . . .),
Model III: (β02,β2) = (−0.5, 2, 0, 1, −2, 0.5, 0, 0, . . .),
Model IV: (β02,β2) = (−0.5, 2, 1,−2, 0.5, 0, 0, 0, . . .),

where “. . .” indicates extra zeros. The models are designed such that, as we
move from models I to IV, the number of partly uninformative covariates
decreases. We considered combinations of π1 = 0.5,0.7 and n= 100,200,400,
with the latter corresponding to pn = 7,9,12 covariates (excluding intercept)
in each component, respectively. 500 data sets were generated for each com-
bination. We assumed K = 2 was known in advance.

We compared MIXGL1 and MIXGL2 to three penalties proposed pre-
viously for FMR models: adaptive LASSO [ADL, Städler, Bühlmann and
van de Geer (2010)], MIXLASSO-ℓ2, and MIXSCAD-ℓ2 [Khalili and Lin



MULTI-SPECIES MODELING USING MIXTURES 13

(2013)]. The latter two penalties are linear combinations of the ridge and
LASSO (SCAD) penalty. ADL penalizes coefficients separately, while
MIXLASSO-ℓ2 and MIXSCAD-ℓ2 penalize on a per component basis. Per-
formance was assessed using mean sensitivity (proportion of true nonzeros
estimated to be nonzero) and specificity (proportion of true zeros estimated
to be zero), and predicted log-likelihood. The latter was calculated using
an independent test data set of n= 10,000 observations, with higher values
implying better predictions. Note that to remove variation across the differ-
ent data sets, we centered the predicted log-likelihood values by subtracting
the average obtained across the different methods in each data set. Also, to
deal with the problem of label-switching prior to calculating sensitivity and
specificity [see Section 4.9, McLachlan and Peel (2004)], we permuted the
estimated coefficients so as to minimize the ℓ2-norm between the estimated
and true coefficients. For brevity, we only present results for π1 = 0.5. Sim-
ilar outcomes were observed for π1 = 0.7, and these results are provided in
the Supplementary Material [Hui, Warton and Foster (2015b)].

MIXGL1 performed consistently well, with sensitivity and specificity lar-
gely unaffected by the number of completely uninformative covariates (Ta-
ble 1). Compared to MIXGL1, the three methods which did not penal-
ize on a per-covariate basis had lower specificity indicative of overfitting.
The result makes sense given the group sparsity property of MIXGL1 and
MIXGL2—for all four models, there was a proportion of coefficients which
always belonged to completely uninformative covariates. Therefore, penal-
ties which can remove a covariate from all components simultaneously were

Table 1

Mean sensitivity/specificity for various sample sizes and π1 = 0.5. Transitioning from
models I to IV, the proportion of completely uninformative covariates increases

Sensitivity/Specificity

n Model MIXGL1 MIXGL2 ADL MIXLASSO-ℓ2 MIXSCAD-ℓ2

100 I 0.962/0.948 0.947/0.040 0.958/0.897 0.991/0.170 0.978/0.690
II 0.962/0.962 0.959/0.373 0.956/0.855 0.992/0.128 0.975/0.683
III 0.966/0.972 0.957/0.747 0.950/0.832 0.989/0.160 0.970/0.647
IV 0.957/0.980 1/0.970 0.965/0.825 0.981/0.183 0.970/0.635

200 I 0.983/0.986 0.960/0.320 0.994/0.948 0.998/0.388 0.996/0.826
II 0.986/0.983 0.954/0.651 0.987/0.935 0.999/0.430 0.993/0.819
III 0.985/0.985 0.956/0.864 0.994/0.911 0.999/0.415 0.995/0.803
IV 0.985/0.989 1/1 0.987/0.908 0.995/0.392 0.991/0.782

400 I 0.998/0.992 0.979/0.636 0.999/0.961 1/0.546 1/0.918
II 0.999/0.991 0.978/0.761 0.999/0.958 1/0.576 0.999/0.901
III 0.999/0.995 0.981/0.884 0.999/0.940 1/0.561 0.999/0.897
IV 0.999/0.992 1/1 0.997/0.942 1/0.543 0.998/0.895
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Fig. 2. Predicted log-likelihood (centered) as a function of a simulation model for
π1 = 0.5. The methods shown are the following: MIXGL1 (©), MIXGL2 (△), ADL (+),
MIXLASSO-ℓ2 (×), MIXSCAD-ℓ2 (♦). As we move from models I to IV, the proportion
of completely uninformative covariates increases. Note the different scales on the y-axis
for the three figures.

much better at shrinking these coefficients to zero. As the number of partly
uninformative covariates decreased, the performance of MIXGL2 dramati-
cally improved, especially in specificity. Another interesting trend observed
when Transitioning from models I to IV, in this simulation at least, was a
slight but noticeable decline in specificity for ADL and MIXSCAD-ℓ2 (in-
dicating overfitting). Finally, MIXLASSO-ℓ2 had the highest sensitivity in
most models, but significantly lower specificity than all the other methods
tested, which suggested a substantial amount of overfitting.

The trends in sensitivity and specificity (Table 1) were similarly observed
in predictive performance. MIXGL1 predicted the best overall, while as we
move from models I to IV and decrease the number of partly uninforma-
tive covariates, predictions from MIXGL2 improved significantly (Figure 2).
There is also a slight decreasing trend in predictive log-likelihood for ADL
and MIXSCAD-ℓ2, which appeared to coincide with a slight drop in speci-
ficity. In the Supplementary Material [Hui, Warton and Foster (2015b)], we
present an additional simulation conducted with mixtures of linear regres-
sion, K = 4, and more covariates, with similar results to those observed
above despite the larger number of components.

6. Discussion. Species in a community exhibit significant heterogeneity
in their occurrence patterns. A major source of this heterogeneity is due
to species responses being driven by different but potentially overlapping
sets of environmental covariates. In the context of multi-species distribution
modeling using SAMs, this means we require a method of variable selec-
tion which can consistently identify the covariates responsible for shaping
each archetypal response (and thus shaping species co-occurrences within
each archetype). In this article, we proposed two penalties, MIXGL2 and
MIXGL1, which exploit the grouped structure of covariates in FMR models
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and SAMs. By penalizing across components on a per covariate basis, these
penalties can remove a covariate simultaneously from all components of an
FMR model. Both penalties were shown to posses specific forms of selec-
tion consistency, with simulations indicating they outperform other penal-
ties which do not take into account the grouped structure of covariates.
Applying penalized SAMs to the Great Barrier Reef data set offered clearer
insight into the variables structuring seabed biodiversity, while providing a
relatively simple idea of how the species assemblage as a whole responds to
the environment.

While we have demonstrated that penalized SAMs can help to unravel
how the distribution of a species community depends on environmental co-
variates, imposing a penalty on the likelihood also offers computational ad-
vantages. Given the high dimensionality (s/n being a nonnegligible ratio)
and heterogeneity in environmental responses of multi-species data sets, the
likelihood for a SAM is expected to be “bumpy” with numerous local max-
ima. The estimates obtained from applying the EM algorithm to an unpe-
nalized SAM may therefore depend heavily on the starting point, and may
correspond to a local instead of the (one of K! equivalent) global maxi-
mum. Adding a penalty to the likelihood can help to resolve this problem
by smoothing the likelihood surface and making the global maxima more
apparent.

As an illustration of this, we considered two models fitted to the Great
Barrier Reef data set: (1) the MIXGL1 penalized SAM with K = 10 and the
tuning parameter fixed at it the final value used in Section 4; (2) an unpenal-
ized SAM, that is, λ= 0, with K = 10 and the 26 covariate terms included
in each archetype. Each model was fitted 50 times using the same estimation
procedure as in Section 4, each time using a random starting point gener-
ated by simulated posterior probabilities for each species from a Dirichlet
distribution with hyperparameters all set to 1. Figure 3 shows a comparative
boxplot of the resulting log-likelihood values. Importantly, the variability of
the log-likelihood values for the penalized SAM was smaller compared to
the unpenalized SAM (ratio of variance = 1.510; F -test p-value< 0.01). The
reduction in variability can be attributed to the MIXGL1 penalty smoothing
the SAM likelihood surface, removing some of the “bumps and small hills”
and leading to a more stable estimation algorithm.

In future work, we hope to extend penalized SAMs to multi-species pre-
sence-only data, particularly given the commonality of such data and re-
cently shown equivalences between point process models and Poisson/Logistic
GLMs [Warton and Shepherd (2010), Fithian and Hastie (2013)]. Whether
the consistency and oracle properties of MIXGL1 and MIXGL2 hold in
this context should be considered. Also, other penalties which exploit the
grouped structure of the covariates should be considered [e.g., the sparse
group LASSO, Simon et al. (2013)]. In our application to the Barrier Reef
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Fig. 3. Comparative boxplot of the log-likelihood values from 50 fits of a penalized SAM
with the MIXGL1 penalty (left) and an unpenalized SAM (right). Both models fitted the
same set of covariates and the same number of archetypes.

data set, MIXGL2 and MIXGL1 did not take into account the hierarchi-
cal structure of polynomials, for example, the linear term for intra-annual
standard deviation of K490 (K490.SD) was removed while the quadratic
term remained in the model. While this still makes sense ecologically (i.e.,
given all covariates were centered, then the values of K490.SD where species
are most likely to be found was around the average value observed in the
data set), a penalty which explicitly obeys this hierarchical principle would
be preferred, such as the fused lasso [Tibshirani et al. (2005)]. Finally, the
validity of BIC or any other information criterion for choosing the tuning
parameter in MIXGL1 and MIXGL2 remains an open question. In particu-
lar, whether the model complexity penalty for SAMs should be modified to
log(s) (as was done in this article to reflect the fundamental observational
unit being a species), remain as log(n) or perhaps be something else [see,
e.g., Hui, Warton and Foster (2015a)] warrants further investigation.

Acknowledgments. Thanks to the Associate Editor, two anonymous re-
viewers and Bill Venables for useful discussions.

SUPPLEMENTARY MATERIAL

Supplement to “Multi-species distribution modeling using penalized mix-
ture of regressions” (DOI: 10.1214/15-AOAS813SUPP; .pdf). Material in-
cludes technical proofs, details on estimation procedure and additional sim-
ulation and application results.
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