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Abstract Fatty acid (FA) signature analysis has been

increasingly used to assess dietary preferences and troph-

odynamics in marine animals. We investigated FA signa-

tures of connective tissue of the whale shark Rhincodon

typus and muscle tissue of the reef manta ray Manta alf-

redi. We found high levels of n-6 polyunsaturated fatty

acids (PUFA), dominated by arachidonic acid (20:4n-6;

12–17 % of total FA), and comparatively lower levels of

the essential n-3 PUFA—eicosapentaenoic acid (20:5n-

3; *1 %) and docosahexaenoic acid (22:6n-3; 3–10 %).

Whale sharks and reef manta rays are regularly observed

feeding on surface aggregations of coastal crustacean

zooplankton during the day, which generally have FA

profiles dominated by n-3 PUFA. The high levels of n-6

PUFA in both giant elasmobranchs raise new questions

about the origin of their main food source.
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Abbreviations

ARA Arachidonic acid

DHA Docosahexaenoic acid

EPA Eicosapentaenoic acid

FA Fatty acid(s)

GC Gas chromatography

LA Linoleic acid

LC-PUFA Long chain- polyunsaturated fatty acid(s)

MUFA Monounsaturated fatty acid(s)

PUFA Polyunsaturated fatty acid(s)

SEM Standard error of the mean

SFA Saturated fatty acid(s)
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Introduction

The whale shark Rhincodon typus and the reef manta ray

Manta alfredi are giant planktivorous elasmobranchs that

are presumed to feed predominantly on aggregations of

zooplankton in highly productive areas [1, 2]. Direct

studies on the diet of these elasmobranchs are limited to

examination of a few stomach contents, faecal material

and stable isotope analyses [3–6], while recent field

observations suggest that their diets are mostly composed

of crustacean zooplankton [1, 7]. It is unknown, how-

ever, whether near-surface zooplankton are a major or

only a minor part of their diets, whether these large

elasmobranchs target other prey, or whether they feed in

areas other than surface waters along productive

coastlines.

Here we used signature fatty acid (FA) analysis to assess

dietary preferences of R. typus and M. alfredi. The essential

long-chain (CC20) polyunsaturated fatty acids (LC-PUFA)

of fishes are most likely derived directly from the diet, as

higher consumers generally lack the ability to biosynthes-

ise these FA de novo [8, 9]. The fatty acid profile of

zooplankton is usually dominated by PUFA with a high

n-3/n-6 ratio, and generally contains high levels of eico-

sapentaenoic acid (EPA, 20:5n-3) and/or docosahexaenoic

acid (DHA, 22:6n-3) [8, 10, 11]. Considering this, it was

expected that FA profiles of R. typus and M. alfredi tissues

would be similarly n-3 PUFA dominated.

Materials and Methods

Tissue samples were collected from live, unrestrained

specimens in southern Mozambique (14 R. typus and 12 M.

alfredi) and eastern Australia (9 M. alfredi) using a mod-

ified Hawaiian hand-sling with a fitted biopsy needle tip

between June–August 2011. Biopsies of R. typus were

extracted laterally between the 1st and 2nd dorsal fin and

penetrated *20 mm deep from the skin into the underly-

ing connective tissue. Biopsies of M. alfredi were of sim-

ilar size, but were mainly muscle tissue, extracted from the

ventro-posterior area of the pectoral fins away from the

body cavity. Biopsies were immediately put on ice in the

field and then stored at -20 �C for up to 3 months before

analysis.

Lipids were extracted overnight using the modified

Bligh and Dyer [12] method with a one-phase metha-

nol:chloroform:water (2:1:0.8 by volume) mixture. Phases

were separated by adding water and chloroform, followed

by rotary evaporation of the chloroform in vacuo

at *40 �C. Total lipid extracts were concentrated by

application of a stream of inert nitrogen gas and samples

were stored in chloroform at -20 �C before FA analysis.

The total lipid extract from each sample was spotted on

chromarods that were developed for 25 min in a polar

solvent system (hexane:diethyl-ether:acetic acid, 60:17:0.1

by volume). The chromarods were then dried in an oven for

10 min at 100 �C and analysed immediately. Lipid class

composition was determined for each sample using an

Iatroscan Mark V TH10 thin layer chromatograph com-

bined with a flame ionisation detector. A standard solution

containing wax esters, triacylglycerol, free FA, sterols and

phospholipids (Nu-Chek Prep. Inc., MN, USA) was run

with the samples. Each peak was identified by comparison

of Rf with the standard chromatogram. Peak areas were

measured using SIC-480II IatroscanTM Integrating Soft-

ware v.7.0-E (System Instruments Co., Mitsubishi Chem-

ical Medicine Corp., Japan) and quantified to mass per lL

spotted using predetermined linear regressions.

An aliquot of the total extracted lipids was treated with

methanol:hydrochloric acid:chloroform (10:1:1), heated

at *80 �C for 2 h and the resulting fatty acid methyl esters

were extracted into hexane:chloroform (4:1). Samples were

analysed using an Agilent Technologies 7890 B gas chro-

matography (GC) (Palo Alto, California, USA) equipped

with a non-polar EquityTM-1 fused silica capillary column

(15 m 9 0.1 mm i.d., 0.1 lm film thickness), a flame

ionisation detector, a split/split-less injector and an Agilent

Technologies 7683 B Series auto sampler. Helium was the

carrier gas. Samples were injected in split-less mode at an

oven temperature of 120 �C. After injection, oven tem-

perature was raised to 270 �C at 10 �C/min and finally to

300 �C at 5 �C/min. Peaks were quantified with Agilent

Technologies ChemStation software (Palo Alto, California,

USA). Sterols were also separated under the GC conditions

used, and largely comprised cholesterol. GC results typi-

cally have an error of up to ±5 % of individual component

area. Peak identities were confirmed with a Finnigan

ThermoQuest GCQ GC mass-spectrometer (GC-MS) sys-

tem (Finnigan, San Jose,CA) [13]. Percentage FA data

were calculated from the areas of chromatogram peaks. All

FA are expressed as mole percentage of total FA.

Results and Discussion

Fatty acids of both M. alfredi muscle tissue and R. typus

connective tissue were predominantly derived from phos-

pholipids (Table 1). The classes of phospholipids were not

distinguished in this study, but should be examined in

future studies where phospholipids are found to be the

dominant lipid class of these two giant elasmobranchs. The

FA profile of M. alfredi was dominated by PUFA (34.9 %

of total FA), while saturated FA were most abundant in

R. typus (39.1 % of total FA) (Table 2). The main FA in

both species included 18:0, 18:1n-9, 16:0 and 20:4n-6.
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Arachidonic acid (AA; 20:4n-6) was the most abundant FA

in R. typus (16.9 %) whereas 18:0 was most abundant in M.

alfredi (16.8 %). Both species had a relatively low level of

EPA (1.1 and 1.2 %) and M. alfredi had a relatively high

level of DHA (10.0 %) compared to R. typus (2.5 %). Fatty

acid signatures of R. typus and M. alfredi were different to

expected profiles of species that feed predominantly on

crustacean zooplankton, which are typically dominated by

n-3 PUFA and have high levels of EPA and/or DHA [8, 10,

11]. Instead, profiles of both large elasmobranchs were

dominated by n-6 PUFA ([20 % total FA), with an n-3/n-6

ratio \1 and markedly high levels of AA (Table 2). The

FA profiles of M. alfredi were broadly similar between the

two locations, although some differences were observed

that are likely due to dietary differences. Future research

should aim to look more closely at these differences and

potential dietary contributions.

The n-6-dominated FA profiles are rare among marine

fishes. Most other large pelagic animals and other marine

planktivores have an n-3-dominated FA profile and no

other chondrichthyes investigated to date has an n-3/n-6

ratio \1 [14–16] (Table 3, literature data are expressed as

wt%). The only other pelagic planktivore with a similar

n-3/n-6 ratio (i.e. 0.9) is the leatherback turtle, that feeds on

gelatinous zooplankton [17]. Only a few other marine

species, such as several species of dolphins [18], benthic

echinoderms and the bottom-dwelling rabbitfish Siganus

nebulosus [19], have relatively high levels of AA, similar

to those found in whale sharks and reef manta rays

(Table 3).

The trophic pathway for n-6-dominated FA profiles in

the marine environment is not fully understood. Although

most animal species can, to some extent, convert linoleic

acid (LA, 18:2n-6) to AA [8], only traces of LA (\1 %)

were present in the two filter-feeders here. Only marine

plant species are capable of biosynthesising long-chain n-3

and n-6 PUFA de novo, as most animals do not possess the

enzymes necessary to produce these LC-PUFA [8, 9].

These findings suggest that the origin of AA in R. typus and

M. alfredi is most likely directly related to their diet.

Although FA are selectively incorporated into different

elasmobranch tissues, little is known on which tissue would

best reflect the diet FA profile. McMeans et al. [14]

recently showed that FA profile of muscle in the Greenland

shark is the most representative of its prey FA profiles. It is

thus assumed here that the muscle tissue of M. alfredi is

representative of its diet, but the extent to which the FA

profile of the subdermal connective tissue of R. typus

reflects its diet is unknown.

Certain species of phytoplankton including diatoms, and

some macro algae such as Rhodophyta can biosynthesise

n-6 PUFA, with levels of over 40 % (as wt%) of AA

recorded [20, 21]. Although phytoplankton and macro

algae have been reported in R. typus stomach contents, they

Table 1 Means ± SE (standard error) lipid class compositions of

whale shark (n = 14) and reef manta ray (n = 15) tissue samples,

expressed as % of total lipid

Lipid class Whale shark

(n = 14)

Reef manta ray

(n = 15)

% Total

lipid ± SE

% Total

lipid ± SE

WE 2.8 ± 1.3 0.6 ± 0.4

TAG 3.3 ± 1.4 3.4 ± 0.7

FFA 5.3 ± 1.0 2.1 ± 0.3

ST 20.5 ± 0.8 10.8 ± 1.1

PL 68.1 ± 3.5 83.0 ± 1.5

Total lipid content (mg g-1) 1.8 ± 1.1 3.8 ± 0.3

Total lipid content is expressed as mg g-1 of tissue wet mass

WE wax esters, TAG triacylglycerols, FFA free fatty acids, ST sterols

(comprising mostly cholesterol), PL phospholipids

Table 2 FA composition (mol% of total FA) of the whale shark R.

typus (n = 14) and the reef manta ray M. alfredi (n = 21) [minor

fatty acids (B1 %) are not shown]

R. typus M. alfredi

Mean (±SEM) Mean (±SEM)

P
SFA 39.1 (0.7) 35.1 (0.7)

16:0 13.8 (0.5) 14.7 (0.4)

17:0 1.6 (0.1) 0

i18:0 1.1 (0.1) 0.3 (0.1)

18:0 17.8 (0.5) 16.8 (0.4)
P

MUFA 31.0 (0.9) 29.9 (0.7)

16:1n-7c 2.1 (0.3) 2.7 (0.3)

17:1n-8ca 1.8 (0.3) 0.7 (0.1)

18:1n-9c 16.7 (0.7) 15.7 (0.4)

18:1n-7c 4.6 (0.5) 6.1 (0.2)

20:1n-9c 0.7 (0.02) 1.0 (0.03)

24:1n-9c 1.9 (0.1) 1.1 (0.1)
P

PUFA 29.9 (0.9) 34.9 (1.2)
P

n-3 6.1 (0.3) 13.4 (0.6)

20:5n-3 (EPA) 1.1 (0.1) 1.2 (0.1)

22:6n-3 (DHA) 2.5 (0.2) 10.0 (0.5)

22:5n-3 2.1 (0.1) 2.0 (0.1)
P

n-6 23.8 (0.8) 21.0 (1.4)

20:4n-6 (AA) 16.9 (0.6) 11.7 (0.8)

22:5n-6 0.9 (0.1) 3.3 (0.3)

22:4n-6 5.5 (0.3) 5.1 (0.5)

n-3/n-6 0.3 (0.02) 0.7 (0.1)

SFA saturated fatty acids, MUFA monounsaturated fatty acids, PUFA

polyunsaturated fatty acids, EPA eicosapentaenoic acid, DHA doco-

sahexaenoic acid, AA arachidonic acid
a Includes a17:0 coeluting

Lipids (2013) 48:1029–1034 1031
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are assumed to be incidentally ingested [22]. The feeding

apparatus and feeding strategy of R. typus and M. alfredi

are adapted for targeting larger prey [23, 24]. There is no

observational evidence of either species targeting phyto-

plankton, but there are frequent observations of feeding on

zooplankton patches. More plausibly, n-6 LC-PUFA from

phytoplankton could enter the food chain when consumed

by zooplankton and subsequently be transferred to higher-

level consumers. It is unclear what type of zooplankton is

likely to feed on AA-rich algae. To date, only a few jel-

lyfish species are known to contain high levels of AA

(2.8–9.9 % of total FA as wt%), but they also have high

levels of EPA, which are low in R. typus and M. alfredi

[17, 25, 26].

Table 3 Polyunsaturated fatty acid composition of chondrichthyan, planktivore, large pelagic and detrivore species

Species Feeding habitat Tissue
P

n-

3

P
n-

6

AA EPA DHA n-3/n-

6

Reference

Whale shark—R. typus (mol%) Epipelagic—

planktivore

Skin 6.1 23.8 16.9 1.1 2.5 0.3 This

study

Whale shark—R. typus (wt%) Epipelagic—

planktivore

Skin 6.7 25.4 17.8 1.2 2.8 0.3 This

study

Reef manta ray—M. alfredi (mol%) Epipelagic—

planktivore

Muscle 13.4 21.0 11.7 1.2 10.0 0.7 This

study

Reef manta ray—M. alfredi (wt%) Epipelagic—

planktivore

Muscle 14.9 21.6 11.8 1.2 11.3 0.7 This

study

Other chondrichthyes

Port Jackson shark—Heterodontus

portusjacksoni

Demersal—carnivore Muscle 23.6 19.4 13.8 3.7 15.4 1.2 [45]

Sandy-backed stingaree—Urolophus

bucculentus

Demersal—carnivore Muscle 32.9 16.5 12.6 3.1 27.9 2.0 [45]

Southern chimaera—Chimaera fulva Deep sea—carnivore Muscle 30.4 11.2 4.7 3.4 23.3 2.7 [46]

Angel shark—Squatina australis Demersal—carnivore Muscle 45.2 10.5 7.6 6.1 36.5 4.3 [45]

Longnose velvet dogfish—Centroselachus

crepidater

Deep sea—carnivore Muscle 39.1 6.6 4.4 2.3 32.2 5.9 [46]

Shortnose spurdog—Squalus megalops Deep sea—carnivore Muscle 37.5 6.4 3.6 1.2 32.3 5.9 [46]

South China catshark—Apristurus sinensis Deep sea—carnivore Muscle 38.5 6.4 3.4 2.9 28.9 6 [46]

Broadnose sevengill shark—Notorynchus

cepedianus

Deep sea—carnivore Liver 23.2 3.2 1.7 3.4 16.6 7.2 [46]

Planktivores

Leatherback turtle—Dermochelys coriacea Epipelagic—

planktivore

Muscle 15.5 17.3 15.5 6.1 5.7 0.9 [17]

Jellyfish—Aurelia sp. Epipelagic—

planktivore

Whole 34.5 12.2 9.9 14.1 9.8 2.8 [25]

Finwhale—Balaenoptera physalus Pelagic—planktivore Blubber

oil

6.7 2.3 0.3 1.8 2.74 2.9 [47]

Anchovies—Engraulis mordax mordax Pelagic—planktivore Whole 22.9 4.9 0.4 13.5 8.8 27.8 [48]

Large pelagics

Dolphin—mixed species Epipelagic—

carnivore

Muscle 16.3 18.6 14.2 6.4 7.6 0.9 [18]

Gray whale—E. robustus Pelagic—planktivore Muscle 4.7 7.5 1.2 *1.8 [49]

Ocean sunfish—Mola mola Pelagic—carnivore Muscle 29.4 10.8 7.73 8.8 17.0 2.7 [50]

Benthic feeders

Sea cucumber—Holothuria scabra Benthic—deposit

feeder

Whole 10.7 22.6 19.1 8.2 1.5 0.5 [19]

Sea urchin—Heliocidaris erythrogramma Benthic—deposit

feeder

Whole 10.7 14.6 6.1 8.3 0.4 0.7 [19]

Dusky rabbitfish—Siganus nebulosus Benthic—deposit

feeder

Muscle 18.5 20.5 12.4 1.3 14.6 0.9 [19]

Data from this study for Rhincodon typus and Manta alfredi are expressed in both mol% and wt% format, with all literature data as wt%

EPA eicosapentaenoic acid, DHA docosahexaenoic acid, AA arachidonic acid
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Some protozoans and microeukaryotes, including het-

erotrophic thraustochytrids in marine sediments are rich in

AA [27–30] and could be linked with high n-6 LC-PUFA

and AA levels in benthic feeders (n-3/n-6 = 0.5–0.9;

AA = 6.1–19.1 % as wt%; Table 3), such as echinoderms,

stingrays and other benthic fishes. However, the pathway of

utilisation of AA from these micro-organisms remains

unresolved. R. typus and M. alfredi may feed close to the

sea floor and could ingest sediment with associated pro-

tozoan and microeukaryotes suspended in the water col-

umn; however, they are unlikely to target such small

sediment-associated benthos. The link to R. typus and M.

alfredi could be through benthic zooplankton, which

potentially feed within the sediment on these AA-rich

organisms and then emerge in high numbers out of the

sediment during their diel vertical migration [31, 32]. It is

unknown to what extent R. typus and M. alfredi feed at

night when zooplankton in shallow coastal habitats emer-

ges from the sediment.

The subtropical/tropical distribution of R. typus and M.

alfredi is likely to partly contribute to their n-6-rich PUFA

profiles. Although still strongly n-3-dominated, the n-3/n-6

ratio in fish tissue noticeably decreases from high to low

latitudes, largely due to an increase in n-6 PUFA, partic-

ularly AA (Table 3) [33–35]. This latitudinal effect alone

does not, however, explain the unusual FA signatures of R.

typus and M. alfredi.

We found that M. alfredi contained more DHA than

EPA, while R. typus had low levels of both these n-3 LC-

PUFA, and there was less of either n-3 LC-PUFA than AA

in both species. As DHA is considered a photosynthetic

biomarker of a flagellate-based food chain [8, 10], high

levels of DHA in M. alfredi could be attributed to crusta-

cean zooplankton in the diet, as some zooplankton species

feed largely on flagellates [36]. By contrast, R. typus had

low levels of EPA and DHA, and the FA profile showed

AA as the major component.

Our results suggest that the main food source of R. typus

and M. alfredi is dominated by n-6 LC-PUFA that may

have several origins. Large, pelagic filter-feeders in tropi-

cal and subtropical seas, where plankton is scarce and

patchily distributed [37], are likely to have a variable diet.

At least for the better-studied R. typus, observational evi-

dence supports this hypothesis [38–43]. While their prey

varies among different aggregation sites [44], the FA pro-

files shown here suggest that their feeding ecology is more

complex than simply targeting a variety of prey when

feeding at the surface in coastal waters. Trophic interac-

tions and food web pathways for these large filter-feeders

and their potential prey remain intriguingly unresolved.

Further studies are needed to clarify the disparity between

observed coastal feeding events and the unusual FA sig-

natures reported here, and to identify and compare FA

signatures of a range of potential prey, including demersal

and deep-water zooplankton.
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