
Accounting for Location Error in Kalman Filters:
Integrating Animal Borne Sensor Data into Assimilation
Schemes
Aritra Sengupta1*, Scott D. Foster2, Toby A. Patterson3, Mark Bravington2

1 Department of Statistics, The Ohio State University, Columbus, Ohio, United States of America, 2 CSIRO Mathematical and Information Sciences, Hobart, Tasmania,

Australia, 3 CSIRO Wealth from Oceans Research Flagship, Castray Esplanade, Hobart, Tasmania, Australia

Abstract

Data assimilation is a crucial aspect of modern oceanography. It allows the future forecasting and backward smoothing of
ocean state from the noisy observations. Statistical methods are employed to perform these tasks and are often based on or
related to the Kalman filter. Typically Kalman filters assumes that the locations associated with observations are known with
certainty. This is reasonable for typical oceanographic measurement methods. Recently, however an alternative and
abundant source of data comes from the deployment of ocean sensors on marine animals. This source of data has some
attractive properties: unlike traditional oceanographic collection platforms, it is relatively cheap to collect, plentiful, has
multiple scientific uses and users, and samples areas of the ocean that are often difficult of costly to sample. However,
inherent uncertainty in the location of the observations is a barrier to full utilisation of animal-borne sensor data in data-
assimilation schemes. In this article we examine this issue and suggest a simple approximation to explicitly incorporate the
location uncertainty, while staying in the scope of Kalman-filter-like methods. The approximation stems from a Taylor-series
approximation to elements of the updating equation.
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Introduction

The process of updating physical ocean models using observa-

tions, to obtain accurate estimates of ocean state is referred to as

data assimilation (DA) and is used to forecast current and future

ocean conditions, as well as for hind-casting (backward smoothing)

of historical states (e.g., [1], [2]). Data assimilation schemes must

be computationally cheap, as the scale of oceanographic and

atmospheric systems are generally large, typically with fine

granularity in time, and large number of spatial cells. The ocean

and atmosphere are continuously changing, so it is desirable to

efficiently update model predictions (forecasts and hind-casts) with

new data as it comes online. Also, the DA scheme needs to be able

to use a wide variety of different data sources. Many examples of

atmospheric and oceanographic models exist (for more details on

data assimilation schemes see [1] and [3]). In this study we

consider the use of spatially imprecise measurements in DA

schemes – accurate measurements on the observed state variables,

with imprecise spatial locations.

Modern biologging technology has brought a glut of observa-

tions of ocean temperature and salinity at depth (e.g., [4]), but a

significant barrier to uptake of such data in physical models is the

issue of spatial uncertainty. Traditionally, most data used in DA

schemes are obtained from specially designed sampling devices,

such as Argos floats (http://www.argo.ucsd.edu/), ship-based

instruments, Lagrangian drifters and remote sensing data. These

platforms provide highly accurate information but are costly to

deploy. The Lagrangian drifters have been used for tracking upper

ocean water circulation and sea surface temperature (e.g., [5], [6]).

However, these sampling platforms tend to under-sample in some

areas; for example, Argo floats are often advected away from

coastal areas, or are blocked from ice prone areas (e.g., [7], [8]). In

contrast, a recent and cost effective addition to the suite of ocean

sampling platforms has been miniaturized instruments attached to

marine animals; the sensors sample depth/pressure, ambient

temperature and conductivity (e.g. [9]). Sampling rates vary

between instruments, but recent monitoring devices can collect

data at 1 Hz, although operational sampling rates for lengthy

deployments are often as low as 1/60 Hz.

Using free-swimming animals as data collection sources has

many advantages. However, the key drawback with using this

source of data is that the precise location of the observations are

sometimes poorly known (e.g., [10]). Location data from

oceanographic drifters and Argos floats, being derived from

similar observation technology, also suffer from the problems of

spatial error. However, for these technologies, there is enough

spatial data associated with each ocean-state measurement so that

the locations which are deemed inaccurate can be discarded, or

straightforwardly corrected. With data collected from animal-

borne sensors this is typically not the case, and its use in DA must
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take this into account. This article demonstrates how incorpora-

tion of this sort of data into DA schemes is feasible, despite the

associated location uncertainty.

Broadly speaking, there are two types of widely used animal-

borne sensors, known as ‘tags’ : 1) data-storage (also called archival

tags, see [11], [12]) for which non-spatial sensor data is used to

spatially locate the animal (see [10], [13–14]) and, 2) satellite tags

which are spatially located by satellite providers such as CLS-

Argos (see www.cls.fr).

Satellite tags are attached externally to animals which spend

sufficient time at the surface for the tag antenna to be exposed, and

thus able to transmit. Therefore, satellite tags send near-real time

data. Satellite tags are often more expensive, but have the

advantage of far lower degrees of spatial error in positions (e.g.,

[15] and [16]). However, most satellite tags need to drastically

summarize raw sensor data streams because of the low bandwidth

and limited battery life available for data transmission (e.g., [17]).

In the context of a DA scheme, this means that data from satellite

tags could be used for forward- and hind-casting.

In contrast, data-storage tags, typically used for tracking non-air

breathing animals, simply store data on board, and data retrieval

relies on the tags being retrieved when animals are recaptured.

Such data are highly detailed with many thousands of observa-

tions, but are geo-located only infrequently (e.g., only twice per

24 h) and with low spatial accuracy (see example in Figure 1). In

these data, latitudinal errors are typically much greater than

longitudinal errors, and vary systematically through time (e.g.,

[18]). In the DA scheme context, these data sources are therefore

retrospective, and thus are primarily useful for hind-casting.

Data assimilation for many oceanographic models is based on

variants of the Kalman filter algorithm (see [19] for a statistical

context), with hind-casting naturally performed by corresponding

variants of Kalman smoothing (e.g., [20]). In this article we

describe some simple adjustments to the Kalman filter algorithm

which allow the use of spatially imprecise data in the DA scheme.

We then briefly consider the applicability of these adjustments to

more complex DA schemes. Note that in this article, a direct and

efficient approach that could be implemented within the extensive

existing libraries of oceanographic modelling code, is the key, and

thus we avoid consideration of Bayesian hierarchical models which

tend to be computationally prohibitive in operational DA schemes.

We proceed as follows: A brief review of the Kalman filter

models and the updating equations is given. Then we detail

adjustments to the Kalman filter procedure which account for

location errors. We also discuss the Kalman smoothing algorithm

in the presence of location errors. The setup and the results of

some simple simulation studies are discussed. Finally, we discuss

our methods, the scope and limitations of this study, and some of

the possible extension of the results. Throughout this article we will

assume that the location error variance is known for all time points

although, in practice these need to be estimated. However, they

may be directly obtained from dedicated studies (e.g., [21]).

In this short article, our goal is not to present a fully operational

oceanographic DA scheme that handles location error; that would

be a much larger task. Our contribution is to demonstrate, via

application to simulated data, that accounting for spatial

uncertainty is a surmountable problem, without wholesale

adjustment to standard techniques.

Figure 1. An example of movement data obtained from a data storage tag deployed on a tuna (CSIRO unpublished data). The
Location estimates were derived from the state-space model approach developed by [25]. This method yields a point-estimate along with error-
variances from the 95% error ellipses depicted here were derived. Associated with this track are records of temperature-at-depth recorded every
minute over a period of approximately 12 months (data not shown).
doi:10.1371/journal.pone.0042093.g001
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Materials and Methods

The Kalman Filter
A brief review of the Kalman filter is now given. For a more

thorough treatment see [19] or [22]. We use the notation used in

[19] but acknowledge that this is not the only choice. A notable

alternative is [23]. In Appendix S1 we give a glossary of terms and

a description of each one, for both sets of terminologies. This

should aid translation for those familiar with [23].

Let Y1, . . . Yt denote the observed values of a variable of

interest at time points 1,2, . . . ,t respectively. The observations

may be vector or scalar depending on the particular system under

study in the DA setup, and the spatial locations of these

observations are given by X1, . . . ,Xt. We assume that Yt depends

on an unobserved quantity Zt, known as the state of the nature, or

the system state. Typically, the value of Yt also depends on the

location of the observation, Xt. The model for ½YtD(Xƒt,Zƒt)�,
which is called the observation equation, is

YtD(Xƒt,Zƒt)~Ft(Xt)Ztzdtzvt, ð1Þ

where Ft(Xt) is a known quantity which may change with time

and measurement location. The model for Yt may be governed by

its correlation with the components of Zt. In such cases, the

elements of Ft(:) will depend on the covariance between Yt and

Zt. In (1), dt is a known vector of the same dimension as Yt and it

may, or may not change with time. The observation error, vt, is

assumed to be normally distributed with mean zero and a known

variance Vt, which may also be time dependent, i.e., vt*N(0,Vt).

The model for the state of nature, Zt, is given by the system equation

which is of the form

Zt~GtZt{1zctzwt, ð2Þ

where Gt is a known quantity, ct is some known vector of the same

dimension as Zt, and the system equation error, wt*N(0,Wt), where

Wt is assumed known. Here also Gt, ct and Wt may or may not

change with time. The system equation (2) does not depend on the

location of Yt. If the Zt vectors are measured over space, their

locations are pre-determined, and not subject to any measurement

error. We also assume that wt and vt are independent.

One can write down the joint distribution Zt,Yt½ �, conditional

on Yƒt{1 and Xƒt as:

Zt

Yt

 !
DXƒt,Yƒt{1

 !
*N

ẐZtDt{1:GtẐZt{1Dt{1zct

ŶYt

 ! 
,

Rt RtFt(Xt)
T

Ft(Xt)Rt VtzFt(Xt)RtFt(Xt)
T

 !! ð3Þ

where ẐZt{1Dt{1 is the estimate of the system state at time point

(t{1) using all available information upto time (t{1),

ŶYt:Ft(Xt)(GtẐZt{1Dt{1zct)zdt, and

StDt{1:Rt: GtSt{1Dt{1GT
t zWt

� �
(see [19]).

Once we obtain an observation on Yt, we can use the joint

distribution (3) to obtain the expectation and variance for the

posterior distribution ZtDYƒt,Xƒt½ �. The expected value and the

variance of the posterior distribution are:

ẐZtDt:(GtẐZt{1Dt{1zct)zRtFt(Xt)
T VtzFt Xt)RtFt(Xt)ð ÞT
� �{1

Yt{Ft(Xt) GtẐZt{1Dt{1zct

� �
{dt

� � ð4Þ

and,

StDt:Rt{RtFt(Xt)
T VtzFt(Xt)RtFt(Xt)

T
� �{1

Ft(Xt)Rt: ð5Þ

Note that the posterior distribution depends on the location Xt.

Adjustments for Location Error
Suppose we have an estimate for the location of an observation

Yt, available from auxiliary data (i.e. estimates of location derived

from the tag data). Let us denote the estimate by jt. We assume

that Xt, the true location of the observation, is a random variable,

the distribution of which is centered around the estimate jt and

has some variance which will be denoted by V (XtDjt). That is, we

have

Xt*N xt,V (XtDxt)ð Þ: ð6Þ

We will assume that we have an estimate V (XtDjt) through

previous experimental data (e.g. [15]). We further assume that Xt

is independent between time steps. The necessary adjustments to

the filtering algorithm will now be made using a first-order Taylor-

series expansion.

Adjustments to the Joint Distribution. ½Zt,YtDYƒt{1�
Using a first-order approximation, the expectation of Yt is (see

Appendix S2 for all the derivations in this section)

ŶYt:E(YtDjt,Yƒt{1)&E YtDXt~jt,Yƒt{1ð Þ: ð7Þ

where the conditioning on the left hand side is with respect to

(w.r.t.) the noisy location, and the conditioning on the right hand

side is done w.r.t. the true location, treating the noisy estimate as

the truth.

This suggests that using the noisy estimate of location is a valid

approximation. However, there is potentially substantial bias in

the variance as

V (YtDjt,Yƒt{1)&V YtDXt~jt,Yƒt{1ð Þ

z
L

LXt

E YtDXt,Yƒt{1ð Þð Þ
� �T

Xt~jt

(

V (XtDjt)
L

LXt

E YtDXt,Yƒt{1ð Þð Þ
� �

Xt~jt

:

ð8Þ

Reasuringly, the approximate variance in the unknown location

situation is inflated as compared to knowing locations.

The term L
LXt

E YtDXt,Yƒt{1ð Þð Þ measures how much the

expectation will change for a small change in the location Xt.

The variance inflation term in (8) will not be too significant if the

local slope of the surface of the expectation around Xt~jt is small

(see Figure 2). In such a situation, the precise location of the

observation is less influential. However, if the local slope is large,

then the precise location does matter. See Figure 2 for a pictorial

illustration.

Accounting for Location Error in Kalman Filters
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We complete the adjustments to the joint distribution by

considering the covariance between Yt and Zt,

Cov(Yt,ZtDYƒt{1,jt)&Cov(Yt,ZtDYƒt{1,Xt~jt)

~RtFt(jt):
ð9Þ

So, the covariance, like the expectation, requires no adjustment.

Combining the expectation, the variance, and the covariance,

the joint distribution of Zt and Yt, conditional on Yƒt{1 and jt

can be written as,

Zt

Yt

 !
Djt,Yƒt{1

 !
*N

ẐZtDt{1:GtẐZt{1Dt{1zct

ŶYt

 !
,

 

Rt RtFt(jt)
T

Ft(jt)Rt V (YtDjt,Yƒt{1)

 !!
,

ð10Þ

where V(YtDjt,Yƒt{1) is given by (8) and ŶYt is given by (7). This

should be contrasted with (3). The variance of Zt is larger than

that in (3).

The Taylor-series expansion shown above retained terms up to

the first-order. Better approximations may be obtained consider-

ing the higher order terms. In Appendix S3 we derive the second-

order correction for the expectation. However, computation of

these extra terms is more expensive and difficult to code, so we do

not pursue it further in this article.

The Posterior Estimates. Recall that the posterior estimate

for the state of the system at time point (t{1) is ẐZt{1Dt{1, which is

obtained using all the information available up to time point

(t{1). Then we can write down the joint distribution of Zt and

Yt, conditional on Yƒt{1 and jt, as in (10). From this joint normal

distribution, we can derive the posterior distribution ½ZtD(Yƒt,jt)�
(see [20]).

The mean of the posterior distribution is

ẐZtDt: GtẐZt{1Dt{1zct

� �
zRtFt(jt)

T (V (YtDjt,Yƒt{1)ð Þ{1

fYt{Ft(jt)(GtẐZt{1Dt{1zct){dtg,
ð11Þ

and the variance is

S�tDt:Rt{RtFt(jt) V(YtDjt,Yƒt{1)ð Þ{1
Ft(jt)Rt, ð12Þ

where V (YtDjt,Yƒt{1) is given by (8). The posterior expectation

and variance are both affected by location error through the

alteration of V (YtDjt,Yƒt{1). This posterior distribution gives our

state of knowledge about Zt at time t, using all the information

available up to that time.

Kalman Smoothing
Until now, we have considered only Kalman filtering, where an

estimate of a signal Zt was made from considering all the previous

observations. The process will produce the best forecasts but it will

not produce the best hindcast (estimate of the entire time series). To

obtain the best hindcasts we need to consider all the data, both

previous and future. We denote this estimate as

ẐZtDT:E ZtDY1, . . . ,YTð Þ and refer to it as the Kalman smoothed

estimate. We note that for many tag types (e.g. archival tags) the

Figure 2. A diagrammatic representation of the problem where the curve corresponds to E(Yt DXt,Yƒt{1). j1 is a point with small local
slope (in this case, the precision of the location is less influential) and j2 is a point with a larger local slope (here, the precise location is influential).
doi:10.1371/journal.pone.0042093.g002
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data from animal tags can only be used for hind-casting as the data

cannot be made available in time for forecasting. This is due to the

problems of tag and data retrieval, and data manipulation. It is

possible that this process can be sped up in future.

A detailed discussion and the derivation of the Kalman

smoothing equations, in the general setting, can be found in

[20]. In our current work we are concerned with the so-called

fixed-interval smoothing because of its relevance to hind-casting

problems. Accounting for location error in the Kalman smoothing

algorithm can be obtained directly by following the steps in [20],

using the equations in the previous section.

The approach is to run a Kalman filter forward in time over the

full interval ½0,T �, storing state estimates at each update, and then

these stored quantities are run backwards in time to obtain the

smoothed estimates. This process generates the smoothed

estimates in reverse sequence, ẐZT{1DT ,ẐZT{2DT , . . . ẐZ1DT . The

adjusted Kalman smoothing equations are

ẐZj{1DT~ẐZj{1Dj{1zSj{1Dj{1GT
j S{1

jDj{1 ẐZjDT{ẐZjDj{1

� �
~ẐZj{1Dj{1zAj{1 ẐZjDT{ẐZjDj{1

� �
,

ð13Þ

where Aj{1:Sj{1Dj{1GT
j S{1

jDj{1. The recursion for the error

covariance is

Sj{1DT~Sj{1Dj{1zAj{1 SjDT{SjDj{1

� �
, ð14Þ

where recall that ẐZjDj{1~GjẐZj{1Dj{1zct, ŜSjDj{1~Rj , and the

estimates ẐZj{1Dj{1 and Sj{1Dj{1 are obtained using (11) and (12).

Thus, to account for location error in Kalman smoothing one

needs to only adjust the forward moving filtering process. The

fixed-interval smoothing equations have no further dependence on

the location of the observation. The information in the observa-

tions has already been fully incorporated during the filtering

process.

Results

One-Dimensional Simulation System
To test the efficacy of the adjustments for location error in

Kalman filter and Kalman smoothing we performed a simple one

dimensional simulation along the surface of a ring. In this simple

simulation, we assume that our simulated animal moves along the

surface of the ring taking measurements Yt at time t from 11
possible observation locations labelled from 0 to 10 (the setup of

the simulation is shown in Figure 3). Let us pretend, for the sake of

illustration, that this measurement is of temperature. We introduce

a temperature gradient via a source and a sink at two particular

locations as shown in Figure 3. At the source, for each time point,

there is an increase of 10C in temperature and the sink absorbs

10C. The state vector of interest is therefore

Z~ Z0,Z1, . . . ,Z10ð ÞT, the true water temperature at each of the

locations.

A continuous temperature gradient exists along the surface of

the ring. However, the measured temperature of water at any

given location was considered to be a linear interpolation of the

two neighboring values of Z, plus some random noise. The model

for Yt at any given time t, given the location of the observation Xt,

is given by

YtDXt,Zt~v1,tZtXts,tzv2,tZtXtsz1,tzvt, ð15Þ

where tXts denotes the largest integer less than Xt and the weights

v1 and v2 are determined as v1~tXtsz1{Xt and

v2~Xt{tXts. The expectation is a linear function of the true

location Xt. Note that v1 and v2 are not differentiable at the

boundaries (Xt~0, . . . 10). However,

P(Xt~n)~0

where, n~0, . . . ,10. Therefore, this should not be a problem. The

observation error vt was taken to be a N(0,0:01) variable.

The model for the evolution of Z over time was taken to be

Zt~GZt{1zdzwt ð16Þ

with

G~

0:5 0:25 0 . . . 0:25

0:25 0:5 0:25 . . . 0

. . . . . . . . . . . . . . .

0:25 0 . . . 0:25 0:5

0
BBB@

1
CCCA:

and therefore represents a diffusion process. The constant d is the

vector given by:

d~(0,1,0,0,0,0,{1,0,0,0,0)T

encapsulating the source and sink concept described earlier. The

system equation error is wt*N(0,Wt), where

Wt~diag(0:1,0:1, . . . ,0:1).

The filtering process for each data set was initialized with all

state variables equal to 100C. The system was evolved over time

according to equation (16). The animal’s location Xt was

initialized to be at location 5 and evolves according a random

walk, Xtz1*N(Xt,1). The Yt vectors were simulated according to

the model given by (15), for 100 time steps. A total of 1000 data

sets were created using this model.

We compared several different variants of the Kalman filtering

DA scheme. We estimated the state variables using the true

locations and the noisy locations. Additionally, when using the

noisy locations we used the filtering process ignoring the

uncertainty in locations (eqn. (3)–(5)) and also the filtering process

accounting for location uncertainty (eqn. (10)–(12)). Kalman

smoothing was used to hind-cast the system states. The simulated

values and the predictions from the filtering and smoothing, along

with the mean square prediction errors (MSPEs), were recorded

from 1000 simulation runs for each of the DA schemes. This was

repeated for three different values of the location-error variance,

namely 0.01, 0.1, and 1.

One Dimensional Simulation Results
A summary of MSPEs for the different methods are given in

Table 1. When the measurement error variance was small (0:01),
there was little difference in the results for the three procedures.

This is not surprising as the locations have low uncertainty.

Increasing the location error variance decreases the performance

of the standard Kalman filter. In these cases the location error

adjusted Kalman filter updates performs substantially better (see

Table 1).

Surprisingly, the Kalman smoothing algorithm applied to the

data with noisy locations sometimes achieved a worse MSPE than

the comparable Kalman filtering algorithm, when we didn’t

account for the noise while moving forward in time (i.e., when we

Accounting for Location Error in Kalman Filters
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used the standard Kalman filter algorithm in the presence of

location errors). This is contrary to prior expectation from

theoretical considerations. It implies that the underlying statistical

model used in Kalman filtering does not represent the data

adequately in this situation. On the other hand, applying the

smoothing algorithm to the estimates obtained using the adjusted

Kalman filter algorithm led to a slight improvement in the results

after smoothing. This is expected and indicates that the underlying

statistical model is more consistent than that which ignores the

location errors.

Two-Dimensional Simulation on the Surface of a Torus
The one-dimensional simulation was extended to two dimen-

sions by assuming a model spatial domain where both the X-

coordinates and the Y-coordinates are joined at the ends to form a

torus like structure. The X-axis coordinates ranged from 0{10
and those along the Y-axis ranged from 0{12. Simulations were

run for 200 time steps and a heat source was located along the Y-

coordinate 0 while a heat sink was located along the Y-coordinate

5.

For the two dimensional case, the observation equation

considered was of the form

Figure 3. Figure showing the simulation set-up. Heat flows in the direction from the Source to the Sink.
doi:10.1371/journal.pone.0042093.g003

Table 1. Mean MSPE (+ standard deviation) of a 1000 simulated data sets with predictions from Kalman filtering and Kalman
smoothing.

Location Error? Measurement error variance

0.01 0.1 1

Usual KF No 0.237 (+0.014) 0.238 (+0.014) 0.237 (+0.014)

Smoothing No 0.185 (+0.009) 0.186 (+0.009) 0.185 (+0.009)

Usual KF Yes 0.255 (+0.016) 0.442 (+0.032) 3.515 (+0.320)

Smoothing Yes 0.202 (+0.010) 0.392 (+0.032) 3.892 (+0.396)

Adjusted KF Yes 0.251 (+0.016) 0.313 (+0.023) 0.538 (+0.078)

Smoothing Yes 0.198 (+0.010) 0.253 (+0.017) 0.423 (+ 0.061)

Each data set contains 100 time steps and imitates an animal’s movement over a one-dimensional ring. Location error is included and excluded (first rows) to gauge its
effect.
doi:10.1371/journal.pone.0042093.t001

Accounting for Location Error in Kalman Filters
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YtD(Xt~(x,y),Zt)~v1Z(txs,tys);tzv2Z(txsz1,tys);t

zv3Z(txs,tysz1);tzv4Z(txsz1,tysz1);tzvt

ð17Þ

where Xt~(x,y) denotes the true location of the measurement.

The weights v1,v2,v3,v4f g were determined according to

bivariate linear interpolation (see [24]). The observation error vt

was taken to be a N(0,0:1) variable. The system equation to

describe the evolution of the state over time was defined as

Z(x,y);t~0:4Z(x,y);t{1z0:15Z(x{1,y);t{1z0:15Z(xz1,y);t{1

z0:15Z(x,y{1);t{1z0:15Z(x,yz1);t{1zI(y~0){I(y~5)zwt,
ð18Þ

where I(:) denotes the indicator function. The two terms involving

the indicator function are the heat source and the sink. In these

simulations the system equation error wt was taken to be N(0,1).
The location error variance was held at 1. A total of 1000 data sets

were generated using this model and MSPE was used as the

model’s performance measure.

For the two dimensional simulation we again estimated the state

vector using knowledge of both the true locations and the noisy

locations. When using the noisy locations, we used both the usual

filtering algorithm and the location error adjusted algorithm. As in

the one-dimensional study, we applied both the filtering and the

smoothing phase, again repeating the simulation/estimation

procedure for 1000 iterations, setting the location error variance

to one. A summary of the results are shown in Table 2.

In essence, the two-dimensional simulation results were

concordant with the one dimensional simulation results. The

adjusted Kalman filter updating equations again gave results that

were better than those from an unadjusted DA scheme when there

was uncertainty in location. In the presence of location error, the

smoothing algorithm applied to the estimates obtained by applying

the usual filtering process, produce estimates with larger MSPEs

than those obtained from the filtering process, again indicating

that the underlying statistical model is no longer valid. When we

applied smoothing to the estimates obtained by applying the

location error adjusted updating equations, there was again an

improvement in the MSPEs. In summary, the two dimensional

simulation results suggest that the adjusted updating equations

performs better than the usual updating equations, when errors

affect the measured location of system observations. This is in

complete agreement with the one dimensional simulations.

Discussion

Our motivation for this study was the challenge of utilizing the

voluminous amounts of sensor data collected from marine animals

for oceanographic data assimilation schemes. In this article we

demonstrated how to make simple adjustments to a standard

Kalman filtering DA scheme to account for the uncertainty in the

spatial location of the observations. Our simulations demonstrated

that that the adjustments were effective and gave better results

than a standard Kalman filtering DA scheme, given error prone

location estimates. While our example is simple, we note that our

adjustment method can also be extended to non-linear filtering

schemes like the extended Kalman filter (EKF; e.g., [20]) or the

ensemble Kalman filter (EnKF; e.g., [3]).

The EnKF is a Monte-Carlo implementation of the Kalman

filter algorithm and is often used to data assimilate oceanographic

models (e.g., [3]). Location-error adjustments to the Kalman filter

detailed here will also apply to the EnKF in a simple and

straightforward way. In the EnKF algorithm, at each step, one

needs to simulate observations Yt, by adding N(0,vt) noise,

(recalling that vt is the observation error) to build an ensemble of

model predictions. As before, including location error inflates the

variance of Yt. Hence, as demonstrated above, the correct

variance when replicating Yt is not N 0,vtð Þ random errors but

N 0,V (YtDjt,Yƒt{1)ð Þ random errors, where V (YtDjt,Yƒt{1) is

given by (8).

Throughout this article we assumed that both the system

equation and the observation equation are linear in Zt’s.

However, in many applications this is not the case, and the EKF

was developed to tackle this particular problem. In the EKF, a

linearized approximation, defined by the Jacobian, or the linear

tangent operator, is used for the prediction of the error statistics.

The algorithm is otherwise quite similar to the simple Kalman

filter algorithm. Therefore, the adjustment for this case will be

along the same lines as the corrections proposed above.

In this article, we have assumed that the process variable Zt is

independent and has a diagonal covariance matrix Wt. This is a

simplifying assumption that enables the Kalman filter to be fitted

with relative ease. However, process variables are often spatially

correlated at any given time step. This correlation could be

incorporated into our altered filtering scheme by specifying the

covariance matrix Wt to be an appropriate, non-diagonal,

structure. The results obtained in this article will still hold with

this alteration.

Another simplifying assumption that we made in this article is

the independence of the location errors. However, in many

operational situations, location errors might not be independent

over time, instead they might be auto-correlated. The adjustments

to the Kalman filter based DA scheme may need further

refinement from those described here, depending on the precise

factor giving rise to auto-correlated location error.

In this article we consider data assimilation schemes that use

Kalman filter based methods. However, these methods are not the

only ones used in practice. A notable alternative are the class of

variational methods (e.g., [2]). In variational methods the location

of the observations are still required. A description of how this

extra uncertainty should be incorporated into a variational

method remains a topic of future research.

The simulation study illustrated in this article showed that the

performance of the adjusted Kalman filter updates is better than

the unadjusted Kalman filter updates for data prone to location

error. This study has charted a way forward to address this

problem. However, the methods shown here require further

development and expansion into a real ocean data assimilation

Table 2. Mean MSPE (+ standard deviation) of a 1000
simulated dat sets with predictions from Kalman filtering and
Kalman smoothing.

MSPE (+ S.D)

Usual KF updates; no location error 1.98 (+0.12)

Smoothing 1.85 (+0.08)

Usual KF updates in presence of location errors 3.86 (+0.71)

Smoothing 4.28 (+0.94)

Adjusted KF updates 2.27 (+0.25)

Smoothing 2.18 (+0.21)

Each data set contains 200 time steps and imitates an animal’s movement over
a torus. Location error is included and excluded (first rows) to gauge its effect.
doi:10.1371/journal.pone.0042093.t002
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scheme, in order to assess the performance in the context of more

complicated oceanographic models.

Supporting Information
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