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During the spindown of a unidirectional, geostrophic current in a homogeneous fluid,
asymmetry arises in the vertical velocity and vertical relative vorticity fields. A closed-
form, time-dependent solution valid to order Rossby number is derived to explore
these asymmetries. Momentum advection in the interior and the Ekman layer leads to
competing tendencies in the vertical vorticity’s evolution. In the interior, momentum
advection hastens spindown in cyclonic regions. In the Ekman layer, momentum
advection weakens Ekman pumping over Ekman suction and thus tends to slow the
spindown of cyclonic vorticity. It is shown that the former effect dominates, and
hence cyclonic vorticity decays faster than anticyclonic vorticity. C© 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4731280]

I. INTRODUCTION

The adjustment of a geostrophically balanced flow over a boundary produces frictionally driven
circulations, in which convergences in the Ekman transport eject fluid out of the boundary layer
(Ekman pumping) and divergences in the Ekman transport inject fluid into the boundary layer
(Ekman suction). The magnitude and lateral structure of Ekman pumping and suction determine the
strength and structure of interior secondary circulations that spin down the geostrophic flow. In the
linear Ekman balance, the vertical velocity at the top of the frictional boundary layer is dependent on
the vertical component of the geostrophic relative vorticity, ζ .1 Then, Ekman pumping is symmetric
to Ekman suction for a change in the sign of the vertical relative vorticity. The purpose of this work
is to examine how nonlinearity breaks this symmetry between Ekman pumping and suction and
modifies the geostrophic vertical vorticity field during spindown.

Previous studies have shown that Ekman advection of momentum in a homogeneous fluid over
a flat bottom weakens Ekman pumping for cyclonic flows, ζ > 0, and strengthens Ekman suction
for anticyclonic flows, ζ < 0, at O(ε), ε = U/fL, where U is the characteristic flow speed, f is the
planetary vorticity and f > 0 is assumed in this work, and L is the characteristic lateral length scale.
For flows with lateral shear that is temporally and spatially constant, Benton et al.2 identified that
the vertical velocity was stronger for anticyclonic flows than cyclonic flows at O(ε). For steady
general shear lines and circular vortices, Hart3 analytically solved for higher order corrections to
nonlinear Ekman pumping. Horizontal Ekman advection of momentum weakens Ekman pumping
and strengthens Ekman suction at O(ε).3 Further examination of the steady Ekman layer reveals that
the Ekman layer depth is modified from its linear value, δe = √

2ν/ f , by momentum advection,4, 5

where ν is the kinematic viscosity. For general shear lines, a formal perturbation expansion demon-
strates that vertical advection of momentum causes the Ekman layer to thicken in cyclonic regions
and to thin in anticyclonic regions.5 With the nonlinear Ekman layer depth, the O(ε) correction
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to Ekman pumping remains unchanged from Hart’s3 formula.5 These studies detail the contribu-
tions of horizontal and vertical momentum advection in the nonlinear modification of the Ekman
layer thickness and Ekman pumping. However, the feedback between nonlinear Ekman pumping
and the interior vertical vorticity field is a fundamental aspect of the time-dependent spindown
problem.

The nonlinear spindown of a homogeneous, geostrophic current is subject to nonlinear Ekman
pumping as well as horizontal momentum advection in the interior. Hart6 derived an O(ε) accu-
rate equation for vertical vorticity, and, for the special case of spatially uniform vertical vorticity,
determined an approximate solution for its time-dependent decay. The solution showed that spa-
tially uniform cyclones spin down faster than anticyclones, even though Ekman pumping is weaker
than Ekman suction.6 In the present study, a more general initial vertical vorticity field is used
to illustrate how horizontal momentum advection in the interior dominates over nonlinear Ekman
pumping.

Other numerical7, 8 and laboratory8 experiments have also indicated that momentum advection
in the interior controls the asymmetric spindown of vertical vorticity. Zavala Sansón and van Heijst7

compared the homogeneous spindown of cyclonic vortices in a laboratory experiment with a model,
in which momentum advection in the interior was included but the nonlinear correction to Ekman
pumping was neglected. They justified neglecting the nonlinear correction to Ekman pumping due to
good agreement between results from the laboratory and numerical model. Numerical simulations for
the spindown of axisymmetric vortices subject to linear Ekman pumping and suction showed a faster
decay in cyclonic vortices than anticyclonic vortices. This behavior is consistent with the hypothesis
that horizontal momentum advection in the interior dominates over the effects of nonlinear Ekman
pumping and suction.6–8 Thus, the question remains regarding why nonlinear Ekman pumping plays
a subdominant role during nonlinear spindown.

This work aims to more generally quantify the relative roles of nonlinear Ekman pumping and
horizontal momentum advection during nonlinear spindown. The problem is formulated in Sec. II
for a general, unidirectional flow that is horizontally bounded or periodic. The time-dependent, O(ε)
problem is solved in Sec. III. This solution shows that horizontal momentum advection in the interior
controls the asymmetric spindown of cyclonic and anticyclonic vorticity and, in doing so, enhances
the asymmetry in Ekman pumping and suction from the magnitude predicted by Hart’s formula.3 In
Sec. IV, the results are compared with past studies and conclusions are presented.

II. FORMULATION

The equations for a homogeneous fluid rotating about the vertical axis at an angular velocity f/2
are

∂u
∂t

+ u · ∇u + f k̂ × u = − 1

ρo
∇ p − gk̂ + ν∇2u, (1)

∇ · u = 0, (2)

where u is the velocity field, p is pressure, ρo is the constant density, g is gravitational acceleration,
and k̂ is the vertical unit vector. The kinematic viscosity is assumed constant. The flow is assumed to
have no spatial variations in the x-direction. The fluid is unbounded in the y-direction and is confined
to a constant depth H. The initial, geostrophic flow is assumed either horizontally bounded such that
|u| → 0 as y → +∞ or periodic with zero spatial average.

The flow, u, is decomposed into contributions from a frictionless interior region and an Ekman
layer, with subscripts i and e denoting the respective domains. Time is nondimensionalized as
t ′ = t/Tspindown, whereTspindown = E−1/2 f −1 is the homogeneous spindown timescale and the Ekman
number is defined as E = (δe/H)2. On this timescale, the magnitude of vertical vorticity,
ζ = −∂u/∂y, is shown to decay asymmetrically for cyclonic and anticyclonic vorticity. With primes
denoting nondimensional quantities, the variables are nondimensionalized in the interior and Ekman
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boundary layers by the following set of scalings:

ui = U u′
i , ue = U u′

e,

vi = U E1/2 v′
i , ve = U v′

e,

wi = U E1/2� w′
i , we = U E1/2� w′

e,

pi = ρo f U L p′
i .

The vertical coordinate is nondimensionalized in the Ekman boundary layer as η′ = z/δe.
In order to filter inertial oscillations, the Rossby number, ε = U/fL, is assumed greater than the

Ekman number such that ε > E1/2 and E � 1. The aspect ratio, � = H/L, is assumed sufficiently small
so that the flow is hydrostatic. Within the Ekman layer, vertical variations in the pressure field are
negligible. The upper boundary is assumed rigid, where the Froude number, F = U/

√
gH , satisfies

F < εE1/4. The flow is subject to the following no-slip and no normal flow boundary conditions:

u = v = 0 at z = 0, (3)

w = 0 at z = 0 and H. (4)

The interior equations to O(ε), primes dropped, become

∂ui

∂t
+ εvi

∂ui

∂y
− vi = 0, (5)

ui = −∂pi

∂y
, (6)

∂vi

∂y
+ ∂wi

∂z
= 0. (7)

The Ekman layer equations to O(ε), where slow variations in the Ekman layer thickness are
not explicitly expressed, become

εve
∂(ue + ui )

∂y
+ ε(we + wi (z = 0))

∂ue

∂η
− ve = 1

2

∂2ue

∂η2
, (8)

εve
∂ve

∂y
+ ε(we + wi (z = 0))

∂ve

∂η
+ ue = 1

2

∂2ve

∂η2
, (9)

∂ve

∂y
+ ∂we

∂η
= 0. (10)

The interior vertical velocity is evaluated at z = 0 because vertical variations of the interior flow
within the Ekman layer are O(E1/2). The nondimensional boundary conditions to O(ε) become

ui (z = 0) + ue(η = 0) = 0, (11)

ve(η = 0) = 0, (12)

wi (z = 0) + we(η = 0) = 0, (13)

wi (z = 1) = 0, (14)

ue, ve, we → 0 as η → ∞. (15)

The flow variables are expanded in terms of the Rossby number as u = u(0) + ε u(1). The
Ekman pumping solution3, 5 to O(ε) is modified to include time-dependent feedback with the O(ε)
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geostrophic flow, where

wi (z = 0) = − 1

2

∂u(0)
i

∂y

− 7ε

40

(
u(0)

i

∂2u(0)
i

∂y2
+ (

∂u(0)
i

∂y
)2

)
− ε

2

∂u(1)
i

∂y
. (16)

This expression for Ekman pumping includes the first term, which is symmetric in magnitude when
the vertical relative vorticity changes sign, the second term, which is Hart’s3 nonlinear correction
to Ekman pumping due to Ekman advection of momentum, and the third term, which represents
feedback with the time-dependent, O(ε) vertical relative vorticity.

III. RESULTS

A. O(1) solution

At leading order, the geostrophic flow spins down by the O(1) secondary circulation, where

∂u(0)
i

∂t
− v

(0)
i = 0. (17)

The solution to the flow is determined by vertically integrating the interior continuity equation and
applying the Ekman pumping condition. The resulting expression

−∂v
(0)
i

∂y
= −1

2

∂u(0)
i

∂y
(18)

is horizontally integrated from y0 to y, under the constraint that u(y0) = v(y0) = 0. This constraint
is applicable for flows that are horizontally bounded, in which |u| → 0 as y → +∞, or periodic
with zero horizontal average. Then, the secondary circulation is given by

v
(0)
i = −1

2
u(0)

i , (19)

w
(0)
i = −1

2

∂u(0)
i

∂y
(1 − z), (20)

which is nonzero at initial time due to its spin up on the inertial timescale. By integrating (17) in
time, the leading order geostrophic flow decays as

u(0)
i = u(0)

i (t = 0, y)e−t/2. (21)

B. O(ε) solution

Next, the O(ε) interior flow is solved to show that lateral momentum advection in the interior
causes cyclones to spin down faster than anticyclones and enhances the asymmetry in Ekman
pumping and suction from Hart’s3 nonlinear correction. The O(ε) equations for the interior flow
field are

∂u(1)
i

∂t
+ v

(0)
i

∂u(0)
i

∂y
− v

(1)
i = 0, (22)

∂v
(1)
i

∂y
+ ∂w

(1)
i

∂z
= 0. (23)

The continuity equation, (23), is vertically integrated, subject to the Ekman pumping condition,
(16), and then horizontally integrated from y0 to y under the assumption u(0)

i (y0) = v
(0)
i (y0) = 0. The
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FIG. 1. The O(ε) vertical relative vorticity, which is scaled with the square of the initial vertical relative vorticity, is shown on
the cyclonic or anticyclonic axis. The total correction (solid line) has contributions from momentum advection in the interior
(dotted-dashed line) as well as feedback with the O(ε) Ekman pumping, which includes modification by Ekman advection of
momentum (dashed line).

resulting secondary circulation is given by

v
(1)
i = − 7

40
u(0)

i

∂u(0)
i

∂y
− 1

2
u(1)

i , (24)

w
(1)
i =

{
− 7

40

(
u(0)

i

∂2u(0)
i

∂y2
+ (

∂u(0)
i

∂y
)2

)
− 1

2

∂u(1)
i

∂y

}

× (1 − z). (25)

The equation for the O(ε) geostrophic current becomes

∂u(1)
i

∂t
+ 1

2
u(1)

i = − 7

40
u(0)

i

∂u(0)
i

∂y
+ 1

2
u(0)

i

∂u(0)
i

∂y
. (26)

The interior geostrophic flow is forced by two opposing components from the O(1) flow. The first
term on the right side of (26) is from Hart’s3 nonlinear Ekman pumping formula, and the second
term is from lateral advection of the interior geostrophic flow. Lateral momentum advection in
the interior not only dominates the forcing of the O(ε) geostrophic flow but is opposite in sign to
the contribution from Hart’s3 nonlinear Ekman pumping formula. Thus, Hart’s3 nonlinear Ekman
pumping alone predicts a change to the O(ε) geostrophic flow that is of opposite sign than if
lateral momentum advection is taken into account. Furthermore, forcing by only lateral momentum
advection overestimates the change to the O(ε) geostrophic current. As the O(1) forcing decays in
time, the feedback term, which is the second term on the left side of (26), dominates and spins down
the O(ε) geostrophic flow.

The nonlinear modification of the geostrophic current can also be represented in terms of vertical
relative vorticity. From (22), the O(ε) vertical relative vorticity evolves as

∂ζ
(1)
i

∂t
+ v

(0)
i

∂ζ
(0)
i

∂y︸ ︷︷ ︸
I

= ∂w
(1)
i

∂z︸ ︷︷ ︸
II

+ ζ
(0)
i

∂w
(0)
i

∂z︸ ︷︷ ︸
III

. (27)

Momentum advection drives lateral advection of vorticity (term I in (27)) and affects the O(ε)
contribution to stretching and squeezing of vortex tubes via term III in (27). The vertical velocity
generated by nonlinear Ekman pumping and suction also modifies the O(ε) contribution to stretching
and squeezing of vortex tubes through term II in (27). Figure 1 compares the contributions to ζ

(1)
i

from terms II and III evaluated at the cyclonic (anticyclonic) axis, defined as the location where
∂ζ

(0)
i /∂y = 0 and vertical vorticity is a local maximum (minimum). Terms II and III are of opposite

sign but of different magnitudes such that momentum advection in the interior dominates the vorticity
balance, causing cyclones to spin down faster than anticyclones. Nonlinear Ekman pumping at O(ε)
tends to reduce this effect.
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The O(ε) geostrophic current and the vertical relative vorticity solutions are

u(1)
i = 13

80
e−t/2 ∂

∂y

∫ t

0
eτ/2(u(0)

i )2dτ, (28)

ζ
(1)
i = 13

40
e−t/2

∫ t

0
eτ/2

(
u(0)

i

∂ζ
(0)
i

∂y
− (ζ (0)

i )2

)
dτ. (29)

The nonlinear correction to the vertical relative vorticity shows that the total vertical relative vor-
ticity is weakened on the cyclonic axis, where ζ

(0)
i > 0 and ∂ζ

(0)
i /∂y = 0, and strengthened on the

anticyclonic axis, where ζ
(0)
i < 0 and ∂ζ

(0)
i /∂y = 0.

During spindown, the asymmetry in cyclonic vorticity, ζ c, and anticyclonic vorticity, ζ a, is
measured by the ratio |ζ c/ζ a|. Consider the spindown of a cyclone and an anticyclone, where ζ c(t
= 0) = −ζ a(t = 0), of initial magnitude |ζ (t = 0)|. On the cyclonic and anticyclonic axis of the
flow, the ratio of cyclonic to anticyclonic vorticity evolves as∣∣∣∣ ζc

ζa

∣∣∣∣ = 1 − εF1(t)

1 + εF1(t)
, where (30)

F1(t) = 13

20
|ζ (t = 0)|(1 − e−t/2).

At initial time, F1(t = 0) = 0 but in the limit t → ∞, F1 → (13/20)|ζ (t = 0)|. Thus, the asymmetry
in cyclonic and anticyclonic vorticity increases with time and increasing Rossby number.

Next, the complete solution to the time-dependent, O(ε) correction to the Ekman pumping
solution is

w
(1)
i (z = 0) = 7

40

(
u(0)

i

∂ζ
(0)
i

∂y
− (ζ (0)

i )2

)

+ 13

80
e−t/2

∫ t

0
eτ/2

(
u(0)

i

∂ζ
(0)
i

∂y
− (ζ (0)

i )2

)
dτ. (31)

On the cyclonic and anticyclonic axis, where ∂ζ
(0)
i /∂y = 0, Ekman pumping becomes

w
(1)
i (z = 0) = − 7

40
(ζ (0)

i )2 − 13

40
e−t/2

∫ t

0
eτ/2(ζ (0)

i )2dτ, (32)

which is negative for all time. Thus, at O(ε), Ekman suction on the anticyclonic axis strengthens and
Ekman pumping on the cyclonic axis weakens. The first term in the nonlinear correction, (32), is
Hart’s3 nonlinear Ekman pumping, which is nonzero at initial time. As shown in Figure 2, the second
term in (32) provides a significant contribution to the asymmetry in Ekman pumping and suction

FIG. 2. The O(ε) Ekman pumping, which is scaled with the square of the initial relative vertical vorticity, is shown on the
cyclonic or anticyclonic axis. The total correction (solid line) has contributions from Hart’s3 formula (dashed line) as well as
feedback with the interior geostrophic flow, which is predominantly modified by lateral momentum advection (dotted-dashed
line).
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FIG. 3. Frictional spindown of a (a) cyclone and (b) anticyclone. A geostrophic flow, ui, induces a leading order Ekman
flow, v

(0)
e , that is directed laterally toward (away from) the cyclonic (anticyclonic) axis. Ekman advection of momentum

contributes to an Ekman flow, v
(1)
e , that is directed laterally outward in both cases. This nonlinear correction weakens

(strengthens) Ekman pumping, wi (z = 0), from its zeroth-order approximation on the cyclonic (anticyclonic) axis. Ekman
pumping drives an interior lateral circulation, vi , that spins down the geostrophic flow. This secondary circulation also advects
lower momentum fluid outward (inward), which causes the cyclone (anticyclone) to spin down faster (slower).

due to feedback with the interior vorticity field. This time-dependent contribution is necessary for
an accurate calculation of the O(ε) Ekman pumping and suction.

The asymmetry in Ekman pumping, wp, and Ekman suction, ws , is measured by the ratio
|wp/ws |. Consider the time evolution of Ekman pumping and suction for cyclonic and anticyclonic
vorticity, where ζ c(t = 0) = −ζ a(t = 0) and wp(t = 0) = −ws(t = 0), for vertical relative vorticity
of initial magnitude |ζ (t = 0)|. On the cyclonic and anticyclonic axis of the flow, the ratio of Ekman
pumping to Ekman suction evolves as

∣∣∣∣wp

ws

∣∣∣∣ = 1 − εF2(t)

1 + εF2(t)
, where (33)

F2(t) = 13

20
|ζ (t = 0)|(1 − 6

13
e−t/2

)
.

At initial time, F2(t = 0) = (7/20)|ζ (t = 0)| but in the limit t → ∞, F2 → (13/20)|ζ (t = 0)|. Within
an inertial period, lateral Ekman advection of momentum leads to asymmetry in Ekman pumping
and suction. With time, this asymmetry increases by momentum advection in the Ekman layer and
the interior.

Figure 3 summarizes the roles of momentum advection in the Ekman layer and the interior in
setting the asymmetry in Ekman pumping and suction and the asymmetric decay of cyclonic and
anticyclonic vorticity.

IV. CONCLUSIONS

During the nonlinear spindown of a geostrophic flow, two primary mechanisms lead to an
asymmetry in Ekman pumping and suction as well as cyclonic and anticyclonic vorticity for increas-
ing Rossby number. An analysis of the O(ε) correction shows that momentum advection in both
the Ekman layer and the interior reduces Ekman pumping and enhances Ekman suction. The full
time-dependent solution to O(ε) shows that horizontal momentum advection in the interior causes
cyclonic vorticity to decay faster than anticyclonic vorticity despite weaker Ekman pumping than
Ekman suction.

In the particular case of uniform vorticity, ζ (t), with unit amplitude at initial time, Hart6

determines that the vertical relative vorticity’s amplitude decays as

|ζ (t)| = 1

et/2(1 + γ ε 13
20 ) − γ ε 13

20

. (34)
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FIG. 4. The vertical relative vorticity is shown on the cyclonic or anticyclonic axis for the O(1) solution (solid line) and to
O(ε) with (dashed line) or without (dotted-dashed line) the nonlinear Ekman pumping term. The solutions are shown for |ε|
= 0.2, where ε > 0 is for cyclonic vorticity and ε < 0 is for anticyclonic vorticity.

Note that the above solution has been nondimensionalized as in Sec. II, and γ = 1 (or −1) for
cyclonic (anticyclonic) vorticity. By expanding this solution, the vertical relative vorticity to O(ε) is

|ζ (t)| = e−t/2(1 − γ ε
13

20
(1 − e−t/2)). (35)

This solution is consistent with the general solution presented in Sec. III. For this case, a simple
application of the O(1) time-dependent spindown solution, (21), to (29) leads to the same expression
and shows that the amplitude decays faster for cyclonic vorticity. This results supports Hart’s6 con-
clusion that horizontal momentum advection in the interior dominates over the nonlinear correction
to Ekman pumping during spindown.

The asymmetric spindown in vertical relative vorticity is also consistent with Zavala Sansón’s8

findings in numerical experiments, in which the cyclonic vortices decay faster than anticyclonic
vortices. Although the numerical simulations in that work neglect the nonlinear correction to Ekman
pumping, the inclusion of the O(ε) correction in this work still shows the same behavior, a faster decay
of cyclonic vorticity than anticyclonic vorticity. In order to evaluate how nonlinear Ekman pumping
modifies the spindown solutions (29) and (31), new solutions are derived in which the nonlinear
Ekman pumping term (the term in parentheses in (16)) is removed. Without this correction, the O(ε)
solutions are

ζ
(1)
i = 1

2
e−t/2

∫ t

0
eτ/2

(
u(0)

i

∂ζ
(0)
i

∂y
− (ζ (0)

i )2

)
dτ, (36)

w
(1)
i = 1

2
ζ

(1)
i . (37)

Figures 4 and 5 compare the spindown solutions to O(ε) with and without the nonlinear Ekman
pumping term on the cyclonic or anticyclonic axis, where |ζ (t = 0)| = 1, and |ε| = 0.2. Without

FIG. 5. The Ekman pumping solution is shown on the cyclonic or anticyclonic axis for the O(1) solution (solid line) and
with (dashed line) or without (dotted-dashed line) the nonlinear correction to Ekman pumping.
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the nonlinear Ekman pumping term, cyclonic (anticyclonic) vorticity appears to spin down more
(less) rapidly. For the vertical velocity, neglect of this term initially overestimates (underestimates)
Ekman pumping (suction) on the cyclonic (anticyclonic) axis. Interestingly, this solution reveals that
the vertical velocity with or without this term becomes similar in magnitude after approximately
a spindown time. The rapid weakening of the nonlinear Ekman pumping term’s contribution to
the total vertical velocity indicates that the linear Ekman pumping approximation may hold after a
certain time, which supports previous studies7, 8 use of linear Ekman pumping. However, without
the nonlinear contribution to Ekman pumping, the measure of the vertical circulation within vortices
will initially overestimate Ekman pumping and underestimate Ekman suction and lead to errors in
the early spindown of vertical vorticity.
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