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INTRODUCTION

Food-limited deep-sea benthic ecosystems rely on
depositions of organic matter from the euphotic zone
(Gooday 2002). Concentrated pulses of particulate
organic matter (POM) derived from differing sources

including phytoplankton blooms, other plant or algal
matter, zooplankton faecal pellets and carcasses of
larger fauna are major contributors of organic matter
to the sea floor (Rowe & Staresinic 1979, Smith et al.
2008). Despite the majority of particles being small
(<5 mm) (Alldredge & Silver 1988), these pulses are
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of low nutritional value; however, biochemical analyses revealed that T. vagina has a carbon (31%
dry weight, DW) and energy (11.00 kJ g−1 DW) content more similar to that of phytoplankton
blooms, copepods and fish than to that of jellyfish, with which they are often grouped. The depo-
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casses are likely to be a significant input of carbon to benthic food webs, which, until now, has
been largely overlooked.
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an important source of nutrition for deep-sea benthic
communities, promoting both species richness and
abundance (Butman et al. 1995). Benthic ecosystem
functions are also positively related to increasing
POM supply, including sediment community respira-
tion rates and organic matter remineralisation (Witte
& Pfannkuche 2000, Smith et al. 2008, Sweetman &
Witte 2008).

Large, fast-sinking particles, such as carcasses,
provide food-fall events that augment the nutritional
ecology of deep-sea benthic communities (Rowe &
Staresinic 1979, Stockton & DeLaca 1982, Smith &
Baco 2003). The ‘gelatinous pathway’ (Billett et al.
2006, Lebrato et al. 2012) was first discovered by
Moseley (1880) and illustrates the potential for sink-
ing carcasses of gelatinous organisms to contribute a
large flux of organic matter to the benthic environ-
ment. Because of their swarming nature, depositions
of gelatinous carcasses generally accumulate in high
densities to the benthic environment in areas under-
lying large and persistent gelatinous populations
(Billett et al. 2006, Lebrato & Jones 2009). For ex -
ample, following swarms in surface waters (Wiebe et
al. 1979, Grassle & Morse-Porteous 1987), dense con-
centrations of salp carcasses were observed nearby
on the seafloor in the outer Hudson Canyon (3240 m)
in 1975 and 1986 (Cacchione et al. 1978). Similarly,
pelagic cnidarian deposits (jelly-falls) have been re -
corded on the sea floor off Oman (Billett et al. 2006),
in the Sea of Japan (Yamamoto et al. 2008) and in a
Norwegian fjord (Sweetman & Chapman 2011), while
pyrosome carcasses have been observed on the
Madeira Abyssal Plain (Roe et al. 1990) and on the
seafloor off the Ivory Coast (Lebrato & Jones 2009).

During 2 benthic sampling research voyages, we
observed mass depositions of the large salp Thetys
vagina on the Tasman Sea floor, prompting an exam-
ination into their subsequent fate and the nutritional
value provided by the carcasses to the deep-sea ben-
thic communities. T. vagina reaches up to 306 mm in
size (Nakamura & Yount 1958) and has a distribution
spanning the top 200 m (Thompson 1948, Iguchi &
Kidokoro 2006) of sub-tropical and temperate waters
of the Mediterranean Sea and the Atlantic, Indian
and Pacific oceans (Berrill 1950). Salp carcasses can
potentially sink at rates of up to 1700 m d−1 (Lebrato
et al. 2013), suggesting that little, if any, decomposi-
tion occurs during descent, and mass depositions of
salp carcasses may represent an important and sub-
stantial food-fall event for the benthic ecosystem.
Although several reports indicate that gelatinous
organisms such as salps are important to the diet of
some marine organisms (e.g. Duggins 1981, Clark et

al. 1989, Lyle & Smith 1997, Gili et al. 2006), they are
still generally thought to be of low nutritional value
(Moline et al. 2004). Therefore, to determine whether
salp carcasses can positively contribute to the ben-
thic ecosystem, it is necessary to identify the quality
of food they provide.

In particular, we sought to (1) assess the frequency
and abundance of salp swarms in the Tasman Sea
and eastern New Zealand over 30 yr, (2) quantify the
biomass and relative abundance of Thetys vagina
carcasses on the sea floor, and (3) compare the ener-
getic input and the biochemical composition of T.
vagina carcasses with other gelatinous zooplankton.

MATERIALS AND METHODS

Study region

Long-term trawl surveys and 2 benthic sampling
cruises were conducted in the southern Tasman Sea
and Pacific Ocean east of New Zealand (Fig. 1A). For
the first benthic study on board the RV ‘Tangaroa’ in
June 2007 (TAN0707), sampling was carried out on
the Challenger Plateau, a large submarine plateau
extending from the west coast of central New Zea -
land and considered to be a region of low pelagic
productivity (Wood 1991). In October 2009, on the
second benthic study on board the RV ‘Southern Sur-
veyor’ (SS03/2009), sampling occurred off southeast-
ern Australia in Bass Canyon, one of the largest sub-
marine canyons in the world (Mitchell et al. 2007).

Trawl data analysis

Trawl data were available from 2 sources: a long-
term data series (30 yr) from the New Zealand fish-
eries research trawl database and pelagic trawls in
the Tasman Sea over 3 yr. Salp and pyrosome bio-
mass was obtained from analysis of the New Zealand
fisheries database (stock assessment, research and
observer-monitored commercial trawls) from 1981 to
2011 (n = 2044; see Fig 1A for sampling locations). As
the majority of data was opportunistically sampled,
sampling periods within a year are variable but on
average include every month per year. Trawls (mid-
water or benthic) were towed at a mean depth of
563.17 ± 342.40 m, ranging from 33 to 2532 m. Where
possible, recorded trawl dimensions and tow lengths
were used. If details of trawl size or tow distance
were not available, a standard averaged value calcu-
lated from all trawls was used (headline height = 8 m,
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wing distance = 30 m, tow distance = 4.4 km, tow
speed = 6.5 km h−1). Individuals were not classified
into species. Thetys vagina biomass was obtained
from 3 trans-Tasman cruises in 2008, 2009 and 2011
(n = 12). Depth-stratified midwater tows with a
pelagic trawl were made at 200 m intervals to a max-
imum depth of 1000 m from the surface, with equal
20 min tows at 6.5 km h−1. The biomass estimates of
T. vagina from the trans-Tasman pelagic trawls were
calculated from the net area with the smallest mesh
size capable of capturing them (minimum 40 mm
mesh). Graded mesh area information was not avail-
able for the nets used in the New Zealand fisheries
database, and as a result, biomass estimates are more

conservative than data obtained from the  trans-
Tasman pelagic trawls. All biomass estimates are
represented in wet weight (WW).

Benthic sample collection and analysis

At both benthic sampling locations, video surveys
were conducted using towed camera platforms with
video and still image cameras. All individual salps
observed on the seabed were counted along the full
length of each video transect. If necessary, still cam-
era images taken every 2 min along the transects
were used to aid in identification of individuals.
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Fig. 1. (A) Survey area in the southern Tasman Sea and southwestern Pacific Ocean east of New Zealand showing trawl sta-
tions and benthic sampling stations. (B,C) Density distribution based on video footage/camera stills of Thetys vagina (ind. 1000
m−2) at different stations (B) in Bass Canyon and (C) on the Challenger Plateau. Depth contours are displayed in metres
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Deployments lasted from 30 to 60 min, at speeds of
0.25 to 0.50 ms−1. On the Challenger Plateau, 46
deployments of the Deep Towed Imaging System
(Hill 2009) were conducted at depths ranging from
237 to 1831 m. Both video and still cameras were
 oriented directly downwards, to facilitate scaling,
and video frame width was calculated in ImageJ
(http://rsbweb.nih.gov/ij/) by measuring widths of
approximately 100 frame grabs using the camera’s
paired lasers (20 cm apart) as a reference. In Bass
Canyon, the Benthic Optical and Acoustic Grab Sys-
tem (Sherlock et al. 2010) was deployed at 3 depths:
450, 650 and 1500 m. As the camera system did not
have paired lasers, video frame width was measured
by using the average (± SD) length of Thetys vagina
species caught from the subsequent Bass Canyon
trawls (55.66 ± 5.90 mm, n = 30) to approximate frame
size from 17 randomly chosen screenshots containing
T. vagina. Abundance of individuals per 1000 m2

(ind. 1000 m−2) was calculated by determining salps
per corrected area of deployments (corrected area =
transect seabed area × percentage of usable video
footage). Video analyses were run in Ocean Floor Ob -
servation Protocol (http://ofop.texel.com); see methods
in Bowden et al. (2011). Still image analyses used
ImageJ software.

After each towed camera transect, benthic fauna
were sampled at the same site using either a beam
trawl (4 m mouth width, 10 mm mesh) or an epiben-
thic sled (1 m mouth width, 25 mm mesh). Trawls
were towed for approximately 15 min at 0.75 m s−1.
Once back on deck, all fauna were sorted into species,
weighed for biomass estimates and frozen (−20°C).

Salps were thawed, and total length and wet weight
were measured for each individual. Guts were
removed prior to biochemical analysis to ensure that
only body tissue was analysed. Randomly selected
individuals from each site were then freeze-dried
and their dry weights (DW) recorded. To determine
ash-free dry weight (AFDW) of the specimens, tissue
samples were taken and combusted at 550°C for 24 h.
All remaining tissue was ground in a ball mill to give
a homogenous powder for biochemical analyses.

Biochemical analyses

Protein content of the salps was measured using
the Bradford protein assay (Bradford 1976) with
bovine serum albumin as the standard. Lipid content
of the salps was estimated using a chloroform:
methanol procedure after Folch et al. (1957) and car-
bohydrate content was estimated following Dubois et

al. (1956) with D-glucose as the standard. Energetic
values of the salps were determined with a Parr
6200 isoperibol calorimeter using a benzoic acid stan -
dard and as per the manufacturer’s instructions (Parr
Instrument Company 2008).

Carbon and nitrogen contents were measured by
combusting the material and using gas chromatogra-
phy to separate the resulting N2 and CO2 gases. The
gases were then analysed with an Isoprime isotope
ratio mass spectrometer to give total carbon and
nitrogen content. An average of the carbon content
(n = 68, 31.35% DW) per salp for both locations was
used to calculate carbon standing stock (mg C m−2)
from the carcasses observed. All salps viewed in the
video transects were assumed to have a DW of 0.38 g
(the mean of n = 27 weighed individuals), allowing
carbon standing stock to be calculated per square
metre. While this is an approximation, we are confi-
dent that all carcasses seen in the video and captured
in benthic gear were of similar size.

RESULTS

Observations of Thetys vagina on the sea floor

Carcasses of Thetys vagina were observed in all 3
video transects in Bass Canyon and in 38 out of 46
transects on the Challenger Plateau (Fig. 2A). In
total, 368 carcasses were recorded in Bass Canyon
comprising 47.8% of the total observed fauna over an
area of 2118 m2. The mean (± SD) density of T. vagina
was 219 ± 168 ind. 1000 m−2, with a minimum density
of 85 and a maximum of 408 ind. 1000 m−2 (Fig. 1B).
On the Challenger Plateau, 1400 individuals were
observed, making up 9.8% of total observed fauna
over an area of 72 995 m2. In 11 transects where
abundances of T. vagina were high (>20 ind. 1000 m−2,
Fig. 1B), T. vagina carcasses ranged from 19.6 to
48.7% of the total fauna observed, similar to that
found in Bass Canyon. The mean (± SD) density of T.
vagina on the Challenger Plateau was 26 ± 39 ind.
1000 m−2, significantly lower than densities found in
Bass Canyon (p < 0.001, F1,48 = 40.1, ANOVA), with a
minimum density of 0 and a maximum of 202 ind.
1000 m−2 (Fig. 1C). T. vagina comprised 19.0% of
total haul biomass on the Challenger Plateau and
42.6% of total haul biomass in Bass Canyon and was
the dominant organism in both locations (see Appen-
dix 1). During one transect on the Challenger Pla -
teau, the deep-water spider crab Platymaia maoria
was twice observed directly feeding on T. vagina car-
casses (Fig. 2B; Table 1). On 17 occasions across 9
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transects, demersal fish and sea stars were recorded
near the carcasses (Table 1). The most common dem-
ersal fish were rattails Coelorinchus spp. and were
found close to the carcasses on 10 occasions. At both
locations, all T. vagina individuals observed on the
sea floor were dead, whole and with no visible bacte-
rial mats or biofilms.

Abundance of Thetys vagina and other large salps
and pyrosomes in the Tasman Sea

Analysis of the New Zealand fisheries database from
1981 to 2011 determined that salp and pyrosome bio-
mass exceeded 100 t km−3 WW (56 t km−2) in approx-

imately half of the years sampled (Fig. 3A). Biomass
ranged from 0.006 t km−3 WW (0.003 t km−2) to 1464 t
km−3 WW (824 t km−2), with a 30 yr average (±SD) of
8.54 ± 51.79 t km−3 WW (4.81 t km−2). Salps and pyro-
somes were present year-round but appear to form
dense swarms an order of magnitude greater than
their normal occurrence between December and
June (Fig. 3B).

High densities of Thetys vagina were captured in 3
trans-Tasman cruises in 2008, 2009 and 2011 (Fig.
3A), with a maximum of 734 t km−3 WW (147 t km−2)
caught in 2009 (minimum = 0.003 t km−3 WW, mean
(±SD) = 44.82 ± 158.20 t km−3 WW). Depth-stratified
sampling showed that 98% of T. vagina biomass
occurred in the top 200 m of the water column.

Biochemical composition of Thetys vagina

Lipids accounted for the highest proportion of
macronutrients, making up a mean (±SD) of 10.5 ±
2.8% DW (Table 2). Protein constituted 3.4 ± 1.5%
DW, and carbohydrates constituted 4.4 ± 1.9%. The
mean (± SD) energetic content of Thetys vagina was
11.0 ± 1.4 kJ g−1 DW. AFDW was high, ranging from
33 to 88% DW, and total organic content of T. vagina
represented only 31% of AFDW.

Mean (± SD) carbon content for Thetys vagina
(31.4 ± 5.4% DW) was much higher than nitrogen
content (2.8 ± 1.1% DW; Table 2). Carbon standing
stock of the T. vagina deposition in Bass Canyon was
26.1 mg C m−2. On the Challenger Plateau, carbon
standing stock was lower, with a mean of 3.1 mg C m−2
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Fig. 2. Sea floor photographs from the Tasman Sea. Scale
bars = 10 cm. (A) Thetys vagina carcasses at 1565 m depth
taken in Bass Canyon. (B) Platymaia maora feeding on 

T. vagina carcass at 482 m on the Challenger Plateau

No. of events

Crustacea
Platymaia maoria 2a

Fish
Coelorinchus sp.b 10
Paraulopus sp. 1
Tripterophycis gilchristi 1
Helicolenus sp.c 1
Hoplichthys haswelli 1
Hydrolagus novaezelandiaed 1

Echinodermata
Ophiuroidea 2
Asteroideae 1
aDirect feeding observed; bClark (1985); cBax & Williams
(2000); dDunn et al. (2010); eDomanski (1984)

Table 1. Megafaunal taxa observed directly feeding on or
close to (potential feeders) Thetys vagina carcasses on the
Challenger Plateau. Footnotes b to e denote previous records

of taxa feeding on salps
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but reaching 24.1 mg C m−2 at some stations. Using
C:N ratio and energetic content as an indicator of nu-
tritional quality, T. vagina is nutritionally similar
to phytoplankton (Fig. 4). Values for T. vagina are
much greater than reported values for cnidarians and
ctenophores.

DISCUSSION

Observations of Thetys vagina on the sea floor

Densities of Thetys vagina carcasses observed on
the sea floor in this study are among the highest
recorded for any gelatinous zooplankton deposition.

These mean densities of T. va gina (26 and
219 ind. 1000 m−2 for the Challenger Plateau
and Bass Canyon, respectively) are much
greater than those found for depositions of
the giant jellyfish Nemo pi lema nomurai in
the sea of Japan (1.1 ind. 1000 m−2)
(Yamamoto et al. 2008) and the deep-sea
scyphozoan Periphylla periphylla in a Nor-
wegian fjord (10 ind. 1000 m−2) (Sweetman &
Chapman 2011). Densities were similar to
those of Pyrosoma atlanticum carcas ses off

the Ivory Coast (70.6 ind. 1000 m−2) described by
Lebrato & Jones (2009). The mass depositions of fresh
carcasses observed in this study indicate the recent
demise of swarms at both locations. On the Chal-
lenger Plateau, high densities of T. vagina were
observed at the surface during sampling, suggesting
that the swarm may still have been developing for
several weeks after sampling. Sampling during an
ongoing swarm may limit the accuracy of the deposi-
tion densities, as some salp and pyrosome species are
known to migrate to sea floor depths (Roe et al. 1990,
Gili et al. 2006). As T. vagina mainly occurs in the top
200 m of the water column and all carcasses viewed
on the video were dead or moribund, it is unlikely
that deposition abundances were overstated.
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WW = wet weight

n Mean ± SD Range

Protein content (% DW) 68 3.42 ± 1.46 1.10−7.34
Lipid content (% DW) 31 10.50 ± 2.77 6.19−16.48
Carbohydrate content (% DW) 18 4.36 ± 1.92 1.34−7.77
Energetic content (kJ g−1 DW) 9 11.00 ± 1.38 8.91−13.33
Carbon content (% DW) 68 31.35 ± 5.34 18.77−42.68
Nitrogen content (% DW) 68 2.82 ± 1.13 1.52−8.09
C:N 68 12.03 ± 3.03 4.73−19.05

Table 2. Thetys vagina. Biochemical and elemental composition. n = 
number of individuals measured
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Abundance of Thetys vagina and other large salps
in the Tasman Sea

Other large salps such as Salpa thompsoni (Nishi -
kawa et al. 1995, Perissinotto & Pakhomov 1998) and
S. aspera (Wiebe et al. 1979, Madin et al. 2006) fre-
quently form large swarms, but records of Thetys
vagina are sparse. The largest swarm recorded of T.
vagina occurred in 2004 in the Sea of Japan, with
biomasses as high as 900 t km−3 WW (Iguchi &
Kidokoro 2006), comparable to the maximum of 734 t
km−3 WW recorded in this study. As New Zealand
fisheries surveys were designed for the capture of
large pelagic and demersal fish, they are likely to
under-represent the true abundances of salps. Trawls
would only spend approximately 35% of their time in
the 0 to 200 m depth range that is preferred by the
majority of large salps in the Tasman Sea (Thompson
1948). Regardless, abundances of salps across the
30 yr dataset indicate that salp biomass in the Tas-
man Sea often exceeded 100 t km−3 WW, which is
considerably higher than previously thought.

Tranter (1962) recorded an average zooplankton
biomass (excluding salps) of 36 t km−3 WW from 1959
to 1961 in the Tasman Sea, with salps accounting for
an additional 53 t km−3 WW. Maximum swarm values
from the present study show that large salp and pyro-
some swarms in the Tasman Sea can frequently

exceed zooplankton biomass by 300%. Similarly,
Young et al. (1996) sampled zooplankton in the Tas-
man Sea from 1992 to 1994 and found salps on aver-
age made up 30% of zooplankton biomass across the
3 yr and at some times up to 90%. To put salp bio-
mass into perspective, hoki Macru ronus nova -
ezealandiae constitutes New Zealand’s largest fish-
ery (O’Driscoll 2004), with biomass estimated to be
1.2 t km−2 WW (based on an 8 yr average) and repre-
senting 97% of all fish biomass in the midwater
depth range (Bull et al. 2001). The mean 30 yr
 average of large salp biomass (4.81 t km−2 WW) for
the Tasman Sea and New Zealand region not only
exceeds this value but also indicates the prevalence
of salp swarms in the Tasman Sea.

Biochemical composition of large salps

This study provides the first data on the biochemi-
cal composition of Thetys vagina. Results obtained
are within expected ranges observed for other large
salps (Madin et al. 1981, Clarke et al. 1992, Dubis-
char et al. 2006). Similar to our salps, higher propor-
tions of lipids to protein are found in the Antarctic
species Salpa thompsoni (5.7 to 6.8% DW) (Dubis-
char et al. 2006), while the opposite trend is observed
for North Atlantic salp species: 0.96, 0.25 and 0.97%
DW for Pegea confoderata, S. cylindrica and S. max-
ima, respectively (Madin et al. 1981). Differences in
the biochemical composition of salp species are likely
to arise from either differing lipid concentrations
within food sources (Larson & Harbison 1989) or en -
vironmental conditions inciting higher storage of
lipids in cooler waters (Dubischar et al. 2006). Previ-
ous studies show that carbohydrate contents for salps
are generally low (0.8 to 1.3% DW) (Madin et al.
1981, Clarke et al. 1992, Dubischar et al. 2006); how-
ever, this study recorded levels similar to those of
protein. These higher values are consistent with ex -
pected results, as the salp tunic is mainly comprised of
proteins and polysaccharides (Godeaux 1965).

Although the total organic content (lipids, proteins
and carbohydrates) of an organism should equal its
AFDW (Madin et al. 1981), high values of AFDW are
characteristic for gelatinous zooplankton because of
difficulties in removing ‘water of hydration’ (Madin
et al. 1981) when freeze-drying. Similar AFDW val-
ues have been found for other salps: 27 to 62.7% DW
for Salpa thompsoni (Huntley et al. 1989, Donnelly et
al. 1994) and 66.4% DW for S. fusiformis (Clarke et
al. 1992), with total organic contents ranging from 19
to 51% of AFDW (Madin et al. 1981, Dubischar et al.
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Fig. 4. Relationship between mean (±SD) energetic content
and mean (±SD) C:N ratio as an indicator of quality of differ-
ent marine organisms as a food item. Values for Thetys
vagina obtained from this study. Other values obtained from
previous studies: phytoplankton (Platt & Irwin 1973), cope-
pods (Donnelly et al. 1994, Ikeda et al. 2006), cnidarians
and ctenophores (Clarke et al. 1992) and fish (Childress & 

Nygaard 1973). DW = dry weight
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2006). Apart from residual water, the most likely
causes for the ‘missing’ compounds are those missed
by the methodology. For example, as the nitrogen
content of protein can be assumed to be 16% (protein
= N × 6.25) (Madin et al. 1981), from the nitrogen
 values recorded here, protein content should have
been as high as 17.6% DW, 4 times higher than our
detected values. Similar problems detecting proteins
in gelatinous zooplankton have been seen in previ-
ous studies (Clarke et al. 1992, Dubischar et al. 2006)
and are thought to arise from problems with detect-
ing cross-linked proteins.

Contribution to the benthic food web

Energetic content of Thetys vagina was higher than
that of cnidarians and ctenophores (4.35 to 10.17 kJ
g−1 DW) (Percy & Fife 1981) and other pelagic tuni-
cates such as Pyrosoma atlanticum (4.94 ± 1.55 kJ g−1

DW) (Davenport & Balazs 1991) and almost as high
as some crustacean species (14.77 ± 1.67 kJ g−1 DW)
(Wacasey & Atkinson 1987). Of all gelatinous zoo-
plankton studied to date, carbon content for T. va -
gina was second only to P. atlanticum (Davenport &
Balazs 1991, Lebrato & Jones 2009). The energetic
content and C:N ratios suggest that T. vagina car-
casses have higher food value than other gelatinous
zooplankton (cnidarians and ctenophores) (Fig. 4)
and nutritionally are more similar to the phytoplank-
ton blooms that normally sustain benthic communi-
ties (Rowe & Staresinic 1979, Smith et al. 2008) as
well as fish and copepods. As only the tunic of T.
vagina was analysed, nutritional quality has not been
elevated by gut contents. Compared to smaller salps,
the tunic of T. vagina is relatively thick and com-
posed of densely packed fibrous material (Hirose et
al. 1999), possibly resulting in elevated nutritional
values. Based on maximum salp biomass values of
100 t km−3 WW, these deposition events can poten-
tially export up to 616 GJ km−2 of energy, or 16 t km−2

of carbon, to the Tasman Sea benthos every year.
Several fish species feed exclusively on salps or

have salps as a major component of their diets. These
species tend to be opportunistic bentho-pelagic feed-
ers, such as the black oreo Allocyttus niger, smooth
oreo Pseudocyttus maculatus, spiky oreo Neocyttus
rhomboidalis, carinate rattail Macrourus carinatus
and small-scaled brown slickhead Alepocephalus
australis (Clark et al. 1989, Lyle & Smith 1997). Our
results suggest that the salp carasses often found in
these fish guts may result from scavenging at the
seafloor. Apart from fish, other benthic feeders

including sea stars (Domanski 1984), sea urchins
(Duggins 1981), octocorallians (Gili et al. 2006),
mushroom corals (Hoeksema & Waheed 2012) and,
from this study, the deep-water spider crab Platymaia
maora have been observed feeding on salps. Simi-
larly, pyrosome carcasses have provided food for a
range of megafauna including crustaceans, arthro-
pods, anemones and echinoderms (Roe et al. 1990,
Lebrato & Jones 2009), while anemones, shrimp,
crabs and molluscs have been observed near and
feeding on cnidarian carcasses (Yamamoto et al. 2008,
Sweetman & Chapman 2011). As salp carcasses can
sink at rates up to 1700 m d−1 (Lebrato et al. 2013),
they will be able to reach the seafloor in less than 2 to
3 d, before significant bacterial degradation can take
place. Preliminary experimental data suggest that at
seafloor temperatures (4°C), Thetys vagina indivi -
duals will retain 68% of their mass after 28 d (N.
Henschke unpubl. data). These results are slower
than a model-calculated decomposition time of
approximately 20 d for a gelatinous organism, which
in cludes more labile cnidarians (Lebrato et al. 2011).
As no bacterial mats or biofilms were observed on
any of the T. vagina individuals viewed or collected
in this study, slow decomposition rates of T. vagina
would allow carcasses to remain on the sea floor until
scavenged or eventually remineralised via the micro-
bial loop.

Potential carbon standing stock

Studies in the world’s oceans (Smith & Kaufmann
1999), including the Pacific Ocean near New Zealand
(Nodder et al. 2003), have identified that food de -
mand in the benthic community (sediment commu-
nity oxygen consumption) often exceeds food supply
(POM). Salp carcasses are not detected by traditional
methods of sampling water column nutrient fluxes,
such as sediment traps (Lebrato & Jones 2009), and
consequently are not included in current carbon
budget calculations, resulting in a considerable
under estimation of the total flux. Hence, salp car-
casses may be supplementing the smaller POM that
can be collected by sediment traps, providing an
extra source of nutrition for the benthic community.
Since particles that generally make up the majority of
measured carbon flux in the Tasman Sea are <1 mm
(Kawahata & Ohta 2000), these salp deposition
events provide a substantial contribution of much
larger carbon parcels to the benthos. As swarms of
Thetys vagina were still in surface waters during
sampling on the Challenger Plateau, by the time the
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entire population had collapsed, the input from both
faecal pellets and carcasses would have been consid-
erably higher than values estimated here.

Depositions of Thetys vagina on the Challenger
Plateau in this study only represented 0.19% of the
regional annual carbon flux, whereas carbon pro-
vided from the Bass Canyon deposition was 10-fold
greater, representing 1.5% of the annual flux (Kawa-
hata & Ohta 2000). Although gelatinous zooplankton
depositions can occur across all bottom topographies,
studies have identified much greater biomasses and
carbon inputs when organisms are in environments
that promote concentration, such as canyons or struc-
tures like pipelines (Cacchione et al. 1978, Lebrato &
Jones 2009). Carbon standing stocks for cnidarian
carcasses in the Arabian Sea have been reported as
high as 78 g C m−2 in some areas, an order of magni-
tude higher than mean annual flux (Billett et al.
2006), and 22 g C m−2 has been reported for Pyro-
soma atlanticum carcasses off the Ivory Coast, 13
times greater than the annual flux (Lebrato & Jones
2009). Future studies may benefit from incorporating
bottom topographies when calculating the potential
for gelatinous organisms to accumulate on the sea
floor and their eventual contribution to carbon fluxes
in the area.

Concluding remarks

Mass depositions of salp carcasses represent a sig-
nificant pathway for the export of organic production
from surface waters to the deep sea. Salp biomass in
the Tasman Sea regularly exceeds 100 t km−3 WW,
with deposition events likely to export at least 16 t
km−2 of carbon, or 616 GJ km−2 of energy, to the ben-
thos every year. With higher organic content than
depositions of other gelatinous organisms, the input
of large salp carcasses (salp-fall) is likely to be im -
portant to the nutritional ecology of the deep-sea
benthos.
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