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ABSTRACT

Changes in the metastability of the Southern Hemisphere 500-hPa circulation are examined using both

cluster analysis techniques and split-flow blocking indices. The cluster methodology is a purely data-driven

approach for parameterization whereby a multiscale approximation to nonstationary dynamical processes is

achieved through optimal sequences of locally stationary fast vector autoregressive factor (VARX) processes

and some slow (or persistent) hidden process switching between them. Comparison is made with blocking

indices commonly used in weather forecasting and climate analysis to identify dynamically relevant meta-

stable regimes in the 500-hPa circulation in both reanalysis and Atmospheric Model Intercomparison Project

(AMIP) datasets. The analysis characterizes the metastable regime in both reanalysis and model datasets

prior to 1978 as positive and negative phases of a hemispheric midlatitude blocking state with the southern

annular mode (SAM) associated with a transition state. Post-1978, the SAM emerges as a true metastable

state replacing the negative phase of the hemispheric blocking pattern. The hidden state frequency of oc-

currences exhibits strong trends. The blocking pattern dominates in the early 1980s, and then gradually de-

creases. There is a corresponding increase in the SAM frequency of occurrence. This trend is largely evident in

the reanalysis summer and spring but was not evident in theAMIP dataset. Further comparison with the split-

flow blocking indices reveals a superficial correspondence between the cluster hidden state frequency of

occurrences and split-flow indices. Examination of composite states shows that the blocking indices capture

splitting of the zonal flow whereas the cluster composites reflect coherent block formation. Differences in

blocking climatologies from the respective methods are discussed.

1. Introduction

The formation of quasi-stationary high pressure sys-

tems in the atmospheric midlatitudes is often referred to

as ‘‘blocking.’’ The formation of a coherent blocking

structure is necessarily associated with a reduction in the

strength of the zonal circulation and a corresponding

enhancement of the meridional motion. In the Southern

Hemisphere (SH), midlatitude blocks may persist on

a time scale on the order of a week or longer. Charney

andDeVore (1979) first proposed thatmultiple equilibria

may be a possible mechanism for blocking events. Their

hypothesis states that the observed multiple weather re-

gimes are quasi-stationary or metastable states and that

instability mechanisms are responsible for initiating
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transitions between said states. In this regard the

blocked and unblocked weather patterns are examples

of such regimes. The physical mechanism that generates

multiple equilibria proposed by Charney and DeVore

can be summarized as follows: strong zonal (eastward)

jets in the midlatitudes and the Coriolis effect create

meridional temperature gradients, topography gener-

ates Rossby waves in turn, creating drag on the flow and

pushing it westward. Under suitable conditions and for

a particular value of the zonal wind the waves might

exhibit a resonant response, causing the large-scale flow

to become locked near the resonant wind value. Thus,

for particular values of zonal forcing, dissipation, or

topographic height, the flow will settle into either the

state with winds near the zonal forcing value or to one

with winds near the resonant wind value, depending on

the initial conditions.

Zidikheri et al. (2007) showed that a severely trun-

cated regional barotropic beta-plane model of the at-

mosphere with only topographically excited waves in

a background flow could possesses multiple equilibria

for a wide range of physically plausible parameters.

They further showed that multiple equilibria exist in

a hierarchy of models of increasing complexity by the

addition of extra modes, more realistic topographic

distribution, and zonal jet structures.1 By introducing

midlatitudinal jets into their (barotropic) model, they

found that the zonal jet structure in global baroclinic

models helps to confine topographicRossby waves within

a given latitudinal band and that this can lead to reso-

nance without the excessive winds needed in a simple

global barotropic scenario. They demonstrated that res-

onance is a crucial condition for the existence of multiple

equilibria. Frederiksen (1982, 1983) later disentangled

the respective roles of baroclinic and barotropic insta-

bility in block formation, maturation, and decay. He

demonstrated the crucial role of baroclinic instability in

the early stages of the development of patterns (growing

error structures) resembling those observed during block-

ing and that barotropic instabilities were more important

for the persistence of the mature blocking stage.

Branstator andBerner (2005) andBerner andBranstator

(2007) showed that, even after low-frequency time fil-

tering, the probability distribution functions (PDFs) of

the planetary waves in long integrations of numerical

general circulation models are nearly Gaussian and

without any multiple extrema. This is despite highly non-

Gaussian PDF and multiple extrema found in the low-

frequency planetary waves of the statistically processed

observational record (Cheng and Wallace 1993; Corti

et al. 1999).Majda et al. (2006) examined this controversy

using a simple 57-mode paradigm model for the angular

momentum of the atmosphere whose low-order trun-

cated model is exactly the 3D Charney–DeVore model

without dissipation and forcing. Through hiddenMarkov

model (HMM) analysis of the time series of suitable low-

frequency planetary waves they elucidated how sta-

tistically significant metastable regime transitions occur

between blocked and zonal statistical states despite

nearly Gaussian behavior through the critical role of

turbulent backscatter onto the three-dimensional sub-

space of low-frequency modes.

Using statistical dynamical closure methods O’Kane

and Frederiksen (2008) showed the importance of the

cumulative contribution of non-Gaussian terms to the

evolved error tendency as well as the role of the off-

diagonal covariances in the growth of errors during

a rapid regime transition associated with the formation

of a block over the Gulf of Alaska in November 1979.

Frederiksen et al. (2012) review the literature and recent

advances in stochastic subgrid modeling; Frederiksen

and O’Kane (2008) review recent developments in

nonequilibrium statistical dynamical closure theory, its

application to subgrid-scale modeling, and role in mid-

latitude regime transitions.

Tibaldi (1993) first proposed that the so-called split-

flow blocking indices might be used as diagnostic tools

for assessing global climate models. Using a modified

version of the Lejenas and Oakland objective block-

ing index (Tibaldi and Molteni 1990; Tibaldi et al.

1994) they assessed 7 years of analyses and forecasts

from the European Centre for Medium-Range

Weather Forecasting (ECMWF) operational archives.

They found only one preferred region for blocking in the

SH, around 1808 longitude, corresponding to the Aus-

tralian blocking region and that blocking in the SH was

considerably more difficult to characterize than in the

Northern Hemisphere (NH). Pook and Gibson (1999)

comprehensively review the development of blocking

indices specific to the SH as used in operational

weather prediction at the Australian Bureau of Mete-

orology. They note that there are three well-recognized

SH blocking regions located to the east or southeast of

the continents along latitude 458S and that the Aus-

tralian block (including the Tasman Sea and south-

western Pacific) is the most active. Development of

a SH blocking index by the Extended Forecast Section

of the Australian Bureau of Meteorology culminated in

the work of Wright (1994). As blocking plays a critical

role in determining precipitation in southern Australia,

correct identification of such events is of great impor-

tance (Risbey et al. 2009).

1 For a more complete discussion of the role of finite resolution

in influencing regime behavior, see Zidikheri et al. (2007).
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In the NH quasi-stationary blocking anticyclones split

the zonal flow, causing the usual east–west propagation

of migratory cyclones and anticyclones to be deflected

along either a more northward or southward path. As

blocks typically last for about a week or longer, this will

certainly influence regional weather over periods longer

than the typical life span of synoptic-scale cyclones. An

early attempt at explaining changes in the frequency of

occurrence of natural atmospheric circulation regimes in

the NH using stationary cluster analysis can be found in

Corti et al. (1999). More recently, Franzke et al. (2009)

applied a clustering method to systematically identify

metastable atmospheric regimes in high-dimensional

datasets generated by a barotropic model and an atmo-

spheric general circulationmodel (GCM). They employed

a finite element clustering approach that decomposes

the phase space into overlapping clusters while simulta-

neously estimating the most likely switching sequence

among the clusters. The parameters of the clustering

and switching are estimated by a finite element ap-

proach developed by Horenko (2009, 2010a, 2011). The

switching among the clusters can be described by a

Markov transition matrix (Majda et al. 2006; Franzke

et al. 2008, 2009), while metastable regime behavior

can be assessed by inspecting the eigenspectrum of the

associated transition probability matrix. In the current

paper we focus on the finite element, bounded variation,

vector autoregressive factor (FEM-BV-VARX) method

fromHorenko (2010b,c) in combination with the Akaike

information criterion (AIC) to decide the optimal cluster

state as described in section 2.

In an analysis of NH data from the National Center

for Atmospheric Research Community Climate Model

0 (CCM0), Franzke et al. (2009) identified spatial struc-

tures of seven metastable regimes corresponding to,

among others, both phases of the northern annular mode

and Pacific blocking. They showed that these regimes

were maintained predominantly by transient eddy fluxes

of low-pass filtered anomalies and demonstrated how the

dynamical description of the slow process switching be-

tween the regimes can be acquired from the analysis re-

sults. Horenko (2010c) recently compared a NH blocking

index to cluster affiliation sequences. He compared the

Lejenas–Oakland blocking index to cluster affiliations

for 40-yr ECMWF Re-Analysis (ERA-40) geopotential

data in Europe for the period 1958–2003, noting good

qualitative agreement. However, a detailed comparison

of the relative merits of split-flow blocking indices to

cluster analysis has not yet been performed and, in par-

ticular, for the SH.

The purpose of this article is to assess changes to

the metastability of the SH atmospheric circulation and

to assess the relative merits of operational split-flow

blocking indices (Tibaldi et al. 1994; Wright 1994) as

compared to one based on transition sequences from

the finite element clustering (Horenko 2009, 2010a,c).

We are also interested in comparing reanalysis data,

wherein systematic changes to the SH circulation over

the last 40 years are presumed due to changes in the

radiative forcing and to AMIP model data, which pre-

sume climatological radiative forcing. In section 2 we

outline the clustering method, including the information

criteria used to determine the optimal parameter values,

and the operational split-flow blocking indices. In sec-

tion 3 we describe the reanalysis and GCM model da-

tasets to be considered. Results and discussion and

summary and conclusions are presented in sections 4 and

5, respectively.

2. Methodology

In this section we describe the finite-element cluster-

ing method for the identification of regime states in

high-dimensional non-Gaussian and non-Markovian

geophysical datasets (Horenko 2009, 2010b). In an ear-

lier study of NH atmospheric regimes Franzke et al.

(2009) employed the FEM-H1-EOF clustering method

from Horenko (2010a), an H1-regularized FEM cluster-

ing based on EOF-distance metric kx(t)2 T(t)T(t)*x(t)k,
and homogenous (i.e., stationary) spectral Markov cri-

terion to decide the optimal number of clusters K. In

Franzke et al. (2009) it was for the first time demonstrated

that the FEM-H1-EOF methodology (Horenko 2010a)

can be successfully applied to the identification of rele-

vant persistent atmospheric circulation regimes. A char-

acteristic property of the FEM-H1-EOF is that it

considers the persistent dynamical regimes to be man-

ifested through the (slow) temporal change of the low-

dimensional linear EOF manifold T(t) of dimensionality

d. In the context of FEM-H1-EOF, this is achieved via

a minimization of a geometrical distance between the

data and the manifold, subject to the H1-regularization,

guaranteeing that the resulting manifold is slow.

In the current paper we employ the FEM-BV-VARX

method from Horenko (2010c): a BV-regularized

FEM clustering based on VARX-distance metric

kx(t)2m(t)2�m
i51Ai(t)*x(t2 it)2B(t)utk with the

Akaike information criterion (AIC) to decide the op-

timal cluster state(s) K. As was demonstrated in

Horenko (2010c), this method can be successfully ap-

plied to identify blocking events in the NH from the

slow temporal changes of the statisticalmodel parameters

describing the dynamical interactions of the geopotential

pressure values with some global atmospheric factors

[e.g., North Atlantic Oscillation (NAO), CO2 concen-

tration, and solar activity]. In this approach an empirical
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orthogonal function (EOF) decomposition is performed

prior to clustering to reduce the dimensionality but is not

formally a part of the procedure. Therefore, in contrast

with the FEM clustering based on the EOF metrics, one

cannot speak of a slow manifold here since the EOF

manifold and themanifold for which theVARXdynamics

is running are the same.

The FEM-BV-VARX algorithm does not simulta-

neously estimate a transition matrix for the cluster or

metastable state evolution. Thus, if one were to fit a

Markov matrix, assuming stationarity, the transition ma-

trix and Markovianity would have to be computed and

established a posteriori using a generator algorithm (see

Crommelin and Vanden-Eijnden 2006; Franzke et al.

2009). In general, rather than calculate the transition

matrix to determine the number of metastable states, we

use the AIC and make no assumption of stationarity.

The FEM-BV-VARX (Horenko 2010c) method used

simultaneously estimates the clusters (corresponding to

regimes) and the most likely metastable state transitions

between the clusters through the minimization of an

average clustering functional L of a given time series xt.

This approach assumes that the dynamics of the observed

variable of interest xt is influenced by the previous m

time-lagged values of the same variable (to describe the

memory effects), some set of explicitly observed external

factors ut, and an unobservable (hidden) impact variable

associatedwith regime transitions that strongly influences

the observed variable.

a. FEM-BV-VARX methodology

Implicit in the FEM-BV-VARX approach is to as-

sume that the dynamics may be approximated by a sto-

chastic model of the following general form:

xt5mt1Aq(t)f1(xt2t, . . . ,xt2mt)1B(t)f2(ut)1C(t)�t ,

(1)

whereQ(t)5 [m(t),A(t),B(t),C(t)] is the vector of time-

dependent model parameters, �t is a stochastic variable

describing how noisy the process is, f1(xt2t, . . . , xt2mt)

is some (in general, nonlinear function connecting the

previous observations xt2t, . . . , xt2mt), f2(ut) is an

external factor function, and C(t) couples the un-

observed scales (modeled as a statistically indepen-

dent and identically distributed noise process with

zero expectation) to the analyzed time series. As dem-

onstrated in Horenko (2010a, 2011), time dependence of

themodel parametersQ is induced by the influence of the

unresolved scales and leads to a nonstationary regime

transition behavior in many realistic systems.

The FEM-BV-VARX method then tries to identify

the time-dependent optimal parameters Q(t) as a con-

vex linear combination of time-independent parameters

ui, i5 1, . . . ,K with time-dependent linear combination

coefficients gi(t). In context of the FEM-BV-VARX,

functions gi(t) can be interpreted as probabilities that

the given observation xt at time t can be best explained

by a VARX model with constant model parameters ui.

Thus, for an a priori given number K of clusters, fixed

given time series xt and ut, and fixedmaximal time lagm,

the FEM-BV-VARX methodology minimizes the dis-

tance of the actual trajectory [in an appropriate metric

g(xt, ut, ui)] to one of the K model clusters at time t.

This means that we are looking simultaneously for the

cluster locations [defined by the cluster probabilities

gi(t), i 5 1, . . . , K] and the time evolution of the system

in the space spanned by the model clusters defined by

the parameters ui.

The method considers the clustering of possibly non-

stationary multidimensional data xt 2 Rd as a minimiza-

tion problem:

L(Q,G)5 �
T

t50
�
K

i51

gi(t)g(xt,ut, ui)/
min

G(t),Q
, (2)

subject to constraints

�
K

i51

gi(t)5 1, " t 2 [0,T] (3)

and

gi(t)$ 0, " t 2 [0,T], i5 1, . . . ,K , (4)

where we want to minimize the object L. The corre-

sponding cluster distance functional characterizes how

well a given observation xt at time t is described by

a givenmodel iwith parameters ui [see Horenko (2010a)

for more details]. As demonstrated in Horenko (2009,

2010a), one can incorporate additional information into

the optimization, such as some persistency assump-

tions of functions in space [G(�)], and then apply a finite

Galerkin time discretization of this infinite-dimensional

Hilbert space. For example, for a given observation time

series one can impose the constraint of the limited (i.e.,

bounded) temporal variation of the underlying statistical

parameters Q(t).

The optimization problem is now solved by a finite

element approach [see Horenko (2009, 2010a,b) for

more information and a detailed description of the al-

gorithm] using principal components of the EOFs as

described in Horenko (2008). The persistency constraint

C bounds the persistency of the function gi via the norm
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jgijBV(0,T)
5 �

T21

t50

jgi(t1 1)2 gi(t)j5 kDgyi1k#C,

D5

2
6666664

21 1 � � � 0

0 21 � � � 0

..

.
⋱ ..

.

0 � � � 21 1

3
7777775
, (5)

where i 5 l, . . . , K, the scalar persistency parameter

C measures the maximal number of transition between

the local model i and all other models in the time in-

terval (0, T), gi 5 [gi(1), . . . ,gi(T)] 2 RT, y is the trans-

position operation, and k�k1 is the 1-norm.

b. AIC

As was demonstrated in Horenko (2010c) in context

of nonstationary inference, it is appropriate to use the

AIC to determine the right-order parameters of the

VARXmodel, i.e., the memory depthm, the number of

cluster K, and the optimal BV persistency C. To select

the proper order parameters [and the optimal functional

for external factors f(ut) in Eq. (1)] for a given persis-

tency parameter value [Eq. (18) of Horenko (2010c)2],

the AIC is defined as

AIC522 logLmax1 2M , (6)

where Lmax is the maximum likelihood achievable by

the model andM is the number of free parameters. The

lowest AIC is preferred. The resulting optimal Viterbi

path provides a natural method for generating the cli-

matology of a particular cluster state sequence. Cluster

states are constructed by first assigning a model affilia-

tion to each data point in the time series of anomalies

according to the Viterbi path sequence G(t). Then all

anomalies for each given cluster state assignation are

averaged. The averaged state is the composite or cluster

state.

c. Blocking indices

We are interested in the utility of the FEM-BV-

VARX with regard to its ability to identify systematic

changes in the regime states of the climate system. The

dynamics of the midlatitude SH atmosphere are char-

acterized by the presence of regimes represented by the

southern annular mode (SAM) and high–low blocking

dipoles. To identify said regime states, the FEM-BV-

VARXmust be able to accurately identify SH blocking.

Meteorologists typically employ split-flow blocking in-

dices to identify midlatitude blocking. Moreover such

indices have been used to assess climate GCM perfor-

mances (Tibaldi 1993) and to develop blocking clima-

tologies (Pook and Gibson 1999). Pook and Gibson

(1999) discuss in some detail the respective definitions

of SH blocking and the development of the modern

blocking index used at the Australian Bureau of Mete-

orology (BoM) as developed by Wright (1994) [see

Shakina and Ivanova (2010) for a more general review

of the literature on blocking indices]. This index is

defined as

0:5(U251U302U402 2U45 2U50 1U55 1U60). 0,

(7)

whereUy represents the zonal component of the mean

500-hPa wind (5-day averaged) at latitude y. The

BoM index detects blocking whenever the index is

positive. Large values indicate strong high and low

latitude westerly winds or that the midlatitude west-

erly flow is weak. We will refer to Eq. (7) as the BoM

index.

A related measure of SH blocking was developed by

Tibaldi et al. (1994) in terms of mid- and high-latitude

geopotential height gradients (GHGN and GHGS, re-

spectively):

GHGN5

�
Z(u0)2Z(un)

u02 un

�
, (8a)

and

GHGS5

�
Z(us)2Z(u0)

us2 u0

�
, (8b)

evaluated at each longitude point of the grid where un5
358S 1 d, u0 5 508S 1 d, us 5 658S 1 d, and d 5 258, 08,
58.3 A given longitude is said to be blocked at time t if,

for at least one value of d,

GHGN. 0 (8c)

and

GHGS,
210m

y8
, (8d)

2 For a complete description of the persistency parameter for-

mulation, see section 2d of Horenko (2010c).

3 d5 2.58 in Tibaldi et al. (1994), but often operationally as 58 as
used here.
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where y8 is degrees latitude. Note that a 5-day running

mean is typically first applied to the 500-hPa data to

isolate potential episodes of sufficient duration. The

NOAA National Weather Service Climate Prediction

Center defines a SH blocking index (strength) to be

GHGN [m (y8)21] [Eq. (8a)] minus mean observations

at 500 hPa (annual cycle), which we will refer to as the

Tibaldi index. Equations (8) will be referred to as the

Tibaldi blocking criterion. In the results that follow we

examine both reanalysis andAMIP datasets comparing

the BoM and Tibaldi indices to the FEM-BV-VARX

analysis.

3. Data

In this study we compare and contrast results from

reanalysis and model datasets. Primarily we examine

the National Centers for Environmental Prediction

FIG. 1. (left to right), (top to bottom) Geographical distribution of first nine EOFs of the Southern Hemisphere 500-hPa geopotential

height from NCEP–NCAR reanalysis data for the period January 1979–December 2009. The data cover the whole year, and a smooth

annual cycle is subtracted: contour interval 1.
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(NCEP)–NCAR reanalysis dataset using 500-hPa ge-

opotential height fields in the Southern Hemisphere

covering the period January 1948–December 2009.

Owing to the dependence of SH observations on

satellite data, reanalyses are not considered very reli-

able before about 1979. However, we have chosen to

include an analysis of the complete dataset, as we are

considering only large-scale hemispheric features and

FIG. 2. Composites of 500-hPa geopotential height anomaly from NCEP

reanalysis data covering the period 1948–2009 based on the FEM-BV-VARX

Viterbi path and referred to as cluster (top left) state 1 and (top right) state 2

and (bottom) the transition state: averaged over all months of the year.

FIG. 3. As in Fig. 2, but for the period 1979–2009.
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consider reanalysis to be a reasonable ‘‘best guess.’’ The

FEM-BV-VARX algorithm requires continuous data, so

we use data from the whole year. This approach is dif-

ferent to almost all other clustering studies, which have

been focused on the NH winter season. We first subtract

a smooth annual cycle from the data by computing the

mean annual cycle by first taking the calendar average for

each day. We also find that smoothing the noisy annual

cycle via a running mean has little effect on the results.

We are also eager to consider the utility of the clus-

tering approach as a primary model evaluation tool. To

this end, we consider model data in the form of a 30-yr

model run from 1979 to 2008 using the Atmospheric

Model Intercomparison Project (AMIP) protocol (Gates

1992). TheAMIP run employs observed monthly varying

sea surface temperature (SST) and sea ice distributions.

Concentrations of greenhouse gases are fixed in the

model and ozone concentrations are set to climatological

monthly zonal mean values. As the concentrations of

these gases have changed over the period of the run,

impacting drivers such as the SAM (Polvani et al. 2011)

and blocking, the model run provides a baseline for

comparison to the reanalysis. The model used for the

simulation described here is a version of the atmospheric

general circulationmodel (AGCM)within theAustralian

Community Climate and Earth System Simulator (AC-

CESS). The AGCM is the U.K. Met Office Unified

Model (UM) (Martin et al. 2006). Themodel code used in

this experiment is the Met Office UM6.6 and the climate

configuration used is that of the Hadley Centre Global

Environmental Model, version 2 (HadGEM2), version

r1.0 (Collins et al. 2008; Rashid et al. 2009). The model

has a horizontal resolution of N96, equivalent to a 1.258
latitude 3 1.8758 longitude grid, and 38 vertical levels.

EOF analysis

To reduce the dimensionality of the reanalysis and

model data prior to applying the FEM-BV-VARX

method, we utilize standard EOF analysis. For the cal-

culation of the covariance matrix, the field is properly

area weighted by the cosine of the latitude.We use theL2

norm. The first EOF explains about 10% with a smooth

decay of the explained variance for the following EOFs.

The first 10 EOFs cumulatively explain 54%, the first 20

EOFs cumulatively explain 75%, and the first 60 EOFs

cumulatively explain 95% of the total variance. The first

130 are needed to explain 99% of the total variance.

The geographical distributions of the first nine EOFs

are displayed in Fig. 1. The first EOF represents the well-

known southern annular mode. EOFs 2–9 represent

synoptic-scale wave trains while EOFs 10–17 contain

more small-scale structures (not shown). As midlatitude

blocking in the SH is predominantly a wavenumber-3

process, we determine that reducing the dimension of the

data to the first nine EOFs should be sufficient. However,

for completeness, the role of the higher order EOFs is

quantified through sensitivity studies of the clustering

algorithm using 9 and 20 EOFs, respectively. It is found

that, while the basic structure of the composite cluster

states is relatively insensitive to the higher-order EOFs,

the relative amplitude of the cluster state structures to

some degree are. The cluster algorithm iterates over the

principal components calculated from the EOFs and

anomaly datasets. The identified trends in transition-

frequency, residence times, and persistency identified

in the datasets are insensitive to whether 9 or 20 prin-

cipal components are used in the dimension reduction.

4. Results and discussion

In this section, we consider cluster states, transition

frequency, time of residency, and regime occurrence

frequency in the NCEP reanalysis over the periods

January 1948–December 2009 and January 1979–

December 2009. We will compare Viterbi paths from

the FEM-BV-VARX analysis to the representation of

blocking derived from the BoM and Tibaldi indices and

contrast composite states for the Southern Hemisphere

and the Australian blocking region. A sensitivity

analysis of the FEM-BV-VARX method to number of

EOFs, domain, and smoothing parameter was first

conducted to provide a baseline for the subsequent

analysis.As noted, earlier results are very similar whether

9 or 20 EOFs were used to reduce the dimensionality of

FIG. 4. Five-year running mean of regime occurrence frequency

from FEM-BV-VARX calculation: blocking pattern (black) and

the southern annular mode (red). A Markov chain is fitted to the

hidden state sequence, which acts as a model of background vari-

ability. The dashed lines denote the 10th and 90th percentiles of a

1000-member ensemble generated from the correspondingMarkov

transition matrix.
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the data. Further, the optimal memory depth [lag m in

VARX model of Eq. (1)] determined by lowest Akaike

value is uniformly 4–5 days, consistent with blocking

predictability.

a. NCEP reanalysis

The FEM-BV-VARX analysis of the NCEP re-

analysis over the period 1948–2009 reveals two significant

metastable states (Fig. 2). The geographical structure

of these two states are computed by using the model

affiliation or Viterbi path sequence (or equivalently

hidden state sequence), while the number of significant

hidden states has been estimated by use of the AIC

criterion, Eq. (6). According to the hidden state sequence,

conditional composites are computed based on the full

500-hPa geopotential height field (annual cycle sub-

tracted). Both hidden states have a wavenumber-3-like

structure with positive/negative anomalies over South

America, south of Tasmania, and southwest of South

Africa. Neither of the hidden states project strongly on

any of the leading 20 EOFs used in the clustering analysis;

however, the anomaly structures are located in each of the

three SH blocking regions. As such, we will refer to the

top left (top right) panel of Fig. 2 as the negative (positive)

SH blocking pattern(s). Throughout this section the

persistency parameter is set to zero. Analogous to the

transition state used by Tibaldi et al. (1994), we also

define a transition state according to the following: an

anomaly at any particular time will be assigned to the

transition state if for any given 5-day period the model

affiliation sequence (Viterbi path) occupies no more than

3days in any given state.A composite of the transition state

is then constructed by averaging all anomalies assigned

to be in the transition state (Fig. 2, bottom). We refer to

FEM-BV-VARX where the persistency parameter has

been set to zero as being ‘‘nonsmoothed.’’

In Fig. 3 the clustering analysis over the period 1979–

2009 is shown. Figure 3 (left) closely resembles the pos-

itive SH blocking pattern; however, hidden state 2 (Fig. 2,

top right) has a strong resemblance to the positive phase

of the southern annularmode.Hidden state 2 has a strong

annular structure and projects strongly onto EOF1 (Fig.

1), whereas the transition state for the period 1948–2009

(Fig. 2, bottom) is weak and unstructured; apart from

some projection onto the 1508W negative anomaly be-

tweenNewZealand andChile, the transition state for the

period 1979–2009 (Fig. 3, bottom) is clearly SAM-like.4

FIG. 5. Percentage of resident time in blocked (black), SAM (blue), or transition states (red)

for NCEP 500-hPa reanalysis 1979–2009 5-day running average for each of the seasons autumn

(aut), winter (win), spring (spr), summer (sum), and the annual (ann) period. The dashed lines

are a LOESS fit to the time-averaged data. The solid lines are the values and averaging periods

of the data.

4 While the concept of a transition matrix has some utility here,

in later AMIP cases where C 6¼ 0 (smoothed) we will show that

a transition matrix is redundant.
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1) INTERANNUAL VARIABILITY

To investigate the interannual variability of the hid-

den state occurrences and to connect to the earlier NH

study of Franzke et al. (2009), we compute a 5-yr run-

ning mean of the hidden state sequence (Fig. 4) of the

FEM-BV-VARX. We also fit a Markov chain to the

hidden state sequence, which acts as a model of

FIG. 6. NCEP 500-hPa cluster (top left) negative and (top right) positive

blocking and (bottom) transition states 1948–2009 summer averaged.

FIG. 7. NCEP 500-hPa cluster (top left) positive blocking and (top right) zonal

and (bottom) transition states for the period 1979–2009.
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background variability. This calculation highlights that

the observed interannual variability is unlikely due

to intrinsic variability or non-Markovian processes. As

can be seen, the hidden state frequency of occurrences

exhibit strong trends. Hidden state 1 (hemispheric

blocking), which was dominating in the early 1980s,

shows a gradual decrease in its frequency of occurrence,

while hidden state 2 (SAM) shows a corresponding in-

crease in its frequency of occurrence. These results also

give the impression that the trend is leveling off in the

2000s. This interpretation is consistent with the nonlinear

trend analysis of the SAM in Franzke (2009), which also

reveals that the trend in the SAM is leveling off in the late

1990s and early 2000s.Overlaid on these long-term trends

are other fluctuations, which are likely genuine internal

variability. These fluctuations are of a magnitude one can

expect from sampling variability of a Markov chain.

Conditional means (calculated using the first nine EOFs)

of the hidden states for the period 1979–83 and 2005–09

(not shown) suggest that hidden state 1 corresponds to a

blocking-like state over the southern tip of South

America in the early period. In the latter period, there is

strengthened blocking south of Australia and a strength-

ened jet stream east of Victoria Land. In comparison to

the 1979–83 period the latter period hidden state 2 is

muchmore zonally symmetric and strongly resembles the

positive phase of the SAM.

To look at the seasonal trends, we calculated the an-

nual and seasonal mean regime occupancies (using the

FEM-BV-VARX method). These calculations (not

shown) reveal that the largest trend occurs in summer

[December–February (DJF)] and the spring post-2000

[September–November (SON)] with no trend during

winter [June–August (JJA)] and autumn (SON). Sub-

stantial interannual variability was also observed. In

Fig. 5 we consider the percentage of time resident in a

given state each year for the 1979–2009 period after

taking a 5-day running average. There is no visible trend

for the transition state in any season despite the significant

residence percentage (;50%). As with the 5-yr running

means, clear trends were observed in summer and spring.

Summer-averaged composite states calculated over the

1948–2009 period reveal a strong positive SH blocking

pattern (Fig. 6, top right) and a weak negative blocking

state (Fig. 6, top left), whereas the transition state (Fig. 6,

bottom) has significant amplitude and is unmistakably

SAM. The utility of the transition state is now clear. In

FIG. 8. Comparison of FEM-BV-VARX Viterbi paths (non-

smoothed) to the BoM and Tibaldi blocking indices (5-day

running mean) for NCEP 500 hPa over the period January 2004–

January 2008. Note that FEM-BV-VARX Viterbi paths have

been scaled for comparison here such that 110 is the positive

blocking state, 0 is the transition state, and 210 is the negative

blocking state.

FIG. 9. Composite states using the BoM index for NCEP 500 hPa 1948–2010: Southern

Hemisphere averaged over all seasons.
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Fig. 6 we see that, over the summer periods during 1948–

2009, the negative SH blocking regime state weakens and

SAM begins to replace it as a true metastable state. The

increasing dominance of SAM is more clearly observed

during the 1979–2009 summer periods with an almost

totally degraded negative SH blocking pattern replaced

by a very strongly emerging SAM (Fig. 7, top right) and

in the transition state (Fig. 7, bottom). The positive block-

ing phase remains robust but weakened (Fig. 7, top left).

2) COMPARISON OF BLOCKING INDICES

As noted in section 3a the FEM-BV-VARX analysis

is relatively insensitive to dimension reduction as long as

nine or more principal components are used. Through-

out this analysis, we set the persistency parameter to

zero in the FEM-BV-VARX. Figure 8 compares the

BoM blocking index to the FEM-BV-VARX Viterbi

paths over the period January 2004–January 2008. This

period was arbitrarily chosen, but is a representative

snapshot. The Viterbi paths are either in the positive

(11) SH blocking state, negative (21) blocking state, or

SAM and the transition state (0). The BoM index is

considered to be in a blocking state whenever positive.

We first note the qualitative agreement between the

BoM index and FEM-BV-VARX Viterbi paths over

this period with both indices reflecting the seasonal cycle

in blocking activity.

We now calculate composites from the BoM blocking

index by considering all instances where the BoM index

is greater than one standard deviation above themean to

be in the (11) state and all instances where the BoM

index is less than one standard deviation below themean

to be in the (21) state. This is carried out for both the

Southern Hemisphere (Fig. 9) and the Australian

blocking region, defined here as the longitude sector

1108–2108E (Fig. 10).

FIG. 10. As in Fig. 9, but for the Australian region (longitude sector 1108–2108E) averaged over

all seasons.

FIG. 11. As in Fig. 9, but using the FEM-BV-VARXViterbi paths: Australian region (longitude

sector 1108–2108E) averaged over all seasons.
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Despite the clear similarities between the global BoM

index and the Viterbi paths in Fig. 8, there are manifest

differences between the BoM and FEM-BV-VARX

composite states. Ideally blocking composites from any

method should resemble the ‘‘canonical’’ block. For the

Australian region this would typically consist of anticy-

clones in the latitude band 358–608S most commonly in

the Tasman Sea but also occurring in the western Pacific,

Great Australian Bight, and eastern Indian Ocean

(Baines 1983; Trenberth and Mo 1985). While splitting

of the basic westerly flow implies a high–low dipole,

blocking in the Australian region is typified by a larger

and more conspicuous high (Wright 1974) or sequence

of highs (Baines 1983).

As the FEM-BV-VARX method is not descriptive

andmakes no assumptions about the structure of blocks,

there is no a priori guarantee that the cluster composites

will resemble structures that look like blocks. However

for the Australian region the FEM-BV-VARX produces

composites with coherent structures that are confined to

the midlatitude jet with maxima in the locality of the

Tasman Sea (Fig. 11). More generally the global FEM-

BV-VARX composites (Figs. 2 and 3) show structures

immediately recognizable as coherent blocked states

and do, in fact, match fairly precisely the features of

blocking in the Southern Hemisphere (Noar 1983;

Trenberth and Mo 1985; Jones and Simmonds 1994;

Sinclair 1996). That is, the global FEM-BV-VARX

composites show metastable states with the classic

three-wave blocking structure in the Southern Hemi-

sphere with nodes in the dominant blocking regions,

consistent with theory (Frederiksen 1982, 1983;

Zidikheri et al. 2007; O’Kane and Frederiksen 2008),

observational (Trenberth and Mo 1985; Jones and

FIG. 12. Composite states for NCEP 500 hPa 1948–2009: cases where (top left) BoM (bom)

and FEM-BV-VARX (vit) are both in the negative blocking state (as in state 1, Fig. 2) and (top

right) FEM-BV-VARX is in positive blocking state 2, BoM is in negative blocking state 1.

(bottom left) FEM-BV-VARX is in state 1, BoM is in state 2. (bottom right) Both FEM-BV-

VARX and BoM are in the positive blocking state (as in state 2, Fig. 2). The numbers above

each plot refer to the number of days in each composite case.
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Simmonds 1994; Sinclair 1996), and numerical weather

prediction (Noar 1983) studies.

By contrast, for the Australian region the BoM split-

flow index generates blocking composite states with

anomalies across a large latitudinal band that straddles

both subtropical and polar jets, consistent with a split-

ting of the flow (Fig. 10). For the global BoM index

composites (Fig. 9) the three-wave structure is weak and

the nodes are displaced from the regions usually asso-

ciated with persistent height anomalies in the literature

(Jones and Simmonds 1994; Sinclair 1996) and observed

in individual case studies (Noar 1983; Trenberth andMo

1985). Near-identical structures (not shown) to Figs. 9

and 10 were found using the Tibaldi index, Eq. (8a) of

section 2c.

In Fig. 12 we further consider the relative correspon-

dence between the BoM index and the FEM-BV-VARX

composites for the entire hemisphere over 1948–2009.

Here we generate composite height anomalies for the

combinations of days in which the FEM-BV-VARX and

BoM indices do and do not indicate blocking. The top-

left plot in Fig. 12 shows composites for cases in which

both indices are in the negative blocking state and

the bottom-right plot shows the composite where both

indices are in the positive blocking state. These com-

posites show the three-wave blocking structure charac-

teristic of the FEM-BV-VARXmetastable states (Fig. 2).

The indices are in agreement on the blocking and nega-

tive blocking state for about two-thirds of the total

number of days compared. The top-right and bottom-left

FIG. 13. Comparison of Tibaldi index (GHGN) vs criteria for the

period January 2005–January 2006 over the Australian region.

Note that the annual cycle has been removed from the Tibaldi

index.

FIG. 14. Comparison of FEM-BV-VARX Viterbi path vs BoM

index for the period September 2004–April 2006 over the Austra-

lian region.

FIG. 15. Anomaly composites for the Tibaldi criteria for the period 1948–2009 for all winters

over the Australian region corresponding to (left) all nonblocked times and (right) all blocked

states.
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plots correspond to composites over days in which the

two blocking indices are not in agreement because one

index is in the positive blocking state and one index is in

the negative blocking state. These cases account for

about a one-third of the total number of days.

Comparison of the Tibaldi index and criteria in Fig. 13

contrasts blocking strength against blocking state as

defined by Eq. (8a) and Eqs. (8), respectively, demon-

strating that the Tibaldi index is an incomplete ap-

proximation to the full blocking criterion. Similarly, Fig.

14 compares FEM-BV-VARX Viterbi paths and BoM

index over the Australian region with clearly evident

differences. Comparison of the relative frequency of

blocking as defined by FEM-BV-VARX Viterbi paths

and the Tibaldi criteria shows much reduced blocking

occurrence in the Tibaldi criteria. The Tibaldi index is

observed to be largely in phase with the BoM index.

In Fig. 15, we show anomaly composites using the

Tibaldi criteria for the Australian region for all winters

over the period 1948–2009. The composites are for both

blocked and nonblocked states. The blocked state (Fig.

15, right) is a very close match to Fig. 21a of Tibaldi et al.

(1994) and closely resembles observed trends in geo-

potential height toward the high index polarity of the

SAM as reported in Fig. 3b of Thompson and Solomon

(2002). While the mean nonblocked state (not shown)

is zonal, the composite of perturbations about the av-

erage nonblocked zonal flow (Fig. 15, left) is largely

unstructured. Tibaldi et al. (1994) assumed that the non-

blocked mean state, averaged over 7 years of weather

forecast data, is zonal (not shown), which is in general

agreement with the results of our analysis of the NCEP

reanalysis.

b. AMIP model data

In this section we consider the AMIP model run de-

scribed in section 3 over the period January 1979–

December 2008. As noted theAMIP run uses prescribed

sea surface temperature, sea ice concentrations, clima-

tological greenhouse gas (GHG), and ozone concen-

trations. The interest here is to contrast the results from

the NCEP dataset with the AMIP run in order to in-

dicate differences in the behavior of the SAM and

blocking to GHG and ozone forcing. We will also con-

sider cases in which the persistency parameter is non-

zero to ascertain the impact of smoothing on the results.

COMPARISON OF BLOCKING INDICES

In Figs. 16 and 17 we compare BoM and Tibaldi in-

dices and FEM-BV-VARX Viterbi paths over a 4-yr

subset of themodel run. Figure 16 has the persistency set

to zero, while Fig. 17 has a persistency parameter value

of 100 that was determined to be the optimal parameter

setting with the lowest AIC.5 We again note the close

correspondence between BoM and Viterbi paths

throughout the entire period. BoM and Tibaldi indices

are seemingly in phase, although the Tibaldi index always

remains in the same state. The role of the persistency

parameter as a smoother (Fig. 17) is now obvious, dem-

onstrating that the AMIP model has a strong seasonal

cycle locking into a positive blocking state 1 (110) in

FIG. 16. Comparison of VAR-FEM Viterbi paths (no smooth-

ing) to the BoM blocking index (5-day running mean) for AMIP

500 hPa: the period January 2004–January 2008 is depicted.

FIG. 17. As in Fig. 16, but with the Tibaldi index included and

a nonzero smoothing (persistency parameter set to 100) set in the

FEM-BV-VARX. This figure clearly displays the tendency of the

AMIP simulation to lock into one state for long periods.

5 The results using NCEP data were qualitatively unchanged by

smoothing.
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winter (JJA) and spring (SON) and a negative blocking

state 2 (210) during summer (DJF).

The metastable states in the AMIP run correspond to

positive and negative phases of blocking (Fig. 18). Cal-

culating a transition state (Fig. 18, bottom) from the

FEM-BV-VARXViterbi paths in Fig. 16 reveals almost

no structure despite a residence percentage time of about

50% (Fig. 19). An examination of the seasonally aver-

aged residence time (Fig. 19) shows significant trends in

autumn and winter with little or no trend in summer and

spring such that the annual trend is entirely due to an

increased autumn–winter residence time. The transi-

tion state exhibits no trend, as expected. Results from

the smoothed FEM-BV-VARX (Figs. 20 and 21) are en-

tirely consistent with the unsmoothed case with positive/

negative hemispheric blocking states (Fig. 20). The resi-

dence periods (lengths) are shown in Fig. 21, where we

clearly see an increasing preference to remain in state 1

over the last decade of the model run for winter and

a similar but weaker trend in autumn. The model system

locks almost exclusively into the positive blocking state

in spring and into the negative blocking state in summer.

5. Summary and conclusions

We have applied a nonstationary clustering method

(FEM-BV-VARX) to calculate the metastable states of

the SH over the NCEP reanalysis period. We find that

post-1978 there has been a significant decline in blocking

over the summer months and during spring. Post-2000,

however, there is little evidence of trends in autumn and

winter. Similar trends, consistent with the satellite pe-

riod, are also observed over the full reanalysis period

and, while most significant in summer and spring, are

also observable in winter and autumn. For the satellite

period, the FEM-BV-VARX metastable states are

clearly SAM and a hemispheric blocking state with

positive anomalies in the three SH blocking regions.

Taken over the entire reanalysis period the FEM-BV-

VARX cluster states are positive and negative blocking

phases. Summer-averaged transition states for both pe-

riods resemble the southern annular mode. Taken as a

whole, these results indicate that there has been a funda-

mental change in the regime states of the SH atmospheric

circulation whereby the negative blocking pattern has

FIG. 18. Composites using the Viterbi paths, shown in Fig. 16, for AMIP 500 hPa 1979–2008:

persistency parameter set to 0.
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been progressively over time replaced by the SAM as

a metastable state and that the SAM is intensifying while

blocking is in decline, both in terms of occurrence and

persistency.

Comparison of cluster affiliation sequences (Viterbi

paths) to split-flow blocking indices, commonly used in

operational meteorology and to construct blocking cli-

matologies, was found to show qualitative agreement.

Closer inspection revealed significant differences between

the BoM index and FEM-BV-VARX composite states,

both hemispheric and for theAustralian region. TheBoM

index composite states were found to be representative of

split flow, while the FEM-BV-VARX composites capture

localized coherent anomalies associated with blocking.

For the Australian region, the Tibaldi index and criteria

states were found to be closely matched to those using

the BoM index with positive anomalies to the southeast

of New Zealand and at higher latitudes. FEM-BV-VARX

FIG. 19. FEM-BV-VARX percentage of time resident in each given state corresponding to

Figs. 16 and 18 for AMIP 500 hPa 1979–2008: positive blocking state 1 (blue; see Fig. 18, top

left), negative blocking state 2 (black; see Fig. 18, top right), and the transition state (red; see

Fig. 18, bottom). Persistency parameter set to 0. The dashed lines are a LOESS fit to the time-

averaged data. The solid lines are the values and averaging periods of the data.

FIG. 20. Composites using the Viterbi paths shown in Figs. 17 and 19 for AMIP 500 hPa

1979–2008: persistency parameter set to 100.
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composites were found to have positive anomalies in the

midlatitudes between Australia and New Zealand in

regions where blocks are on average most typically

found to occur.

Analysis of AMIP model data shows little evidence of

a strong SAM-like metastable state but that the system

transitions between positive and negative blocking

states, with almost no evidence of a transition state, and

that this holds regardless of choices of smoothing pa-

rameter. The model also reveals a strong tendency to

lock into either state for extended periods (several

months) at a time, preferring the positive blocking phase

in winter and spring and the negative blocking phase in

summer. The model has an observable trend toward

longer residence periods in the positive blocking state,

particularly post-1994. The conclusion is that SST

changes alone are not capable of inducing a transition to

the SAM as a metastable state.

It seems tempting to infer through comparison of the

NCEP and climatologically forced AMIP datasets that

changes in greenhouse gas and ozone forcing over the

latter half of this century (present in the NCEP data but

not in the AMIP model) act to modify the existing ten-

dency for declining blocking via a transition of the nega-

tive blocking state toward the SAM. Presumably the

seasonal nature of ozone forcing is responsible for im-

posing the strong seasonality toward spring/summer as the

trending months (Polvani et al. 2011). The role of intrinsic

processes (ENSO, MJO, etc.) and external factors such as

radiative forcing is clearly central to understanding the

drivers of the observed changes in the SH circulation.

In a companion study, we apply the full VARX-FEM to

identify and quantify the dominant external factors

driving changes to the metastability of the Southern

Hemisphere.
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