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Abstract

■ Animacy is a robust organizing principle among object cate-
gory representations in the human brain. Using multivariate
pattern analysis methods, it has been shown that distance to
the decision boundary of a classifier trained to discriminate
neural activation patterns for animate and inanimate objects
correlates with observer RTs for the same animacy categoriza-
tion task [Ritchie, J. B., Tovar, D. A., & Carlson, T. A. Emerging
object representations in the visual system predict reaction
times for categorization. PLoS Computational Biology, 11,
e1004316, 2015; Carlson, T. A., Ritchie, J. B., Kriegeskorte, N.,
Durvasula, S., & Ma, J. Reaction time for object categorization is
predicted by representational distance. Journal of Cognitive
Neuroscience, 26, 132–142, 2014]. Using MEG decoding, we
tested if the same relationship holds when a stimulus manipu-
lation (degradation) increases task difficulty, which we predicted
would systematically decrease the distance of activation patterns

from the decision boundary and increase RTs. In addition, we
tested whether distance to the classifier boundary correlates
with drift rates in the linear ballistic accumulator [Brown, S. D.,
& Heathcote, A. The simplest completemodel of choice response
time: Linear ballistic accumulation. Cognitive Psychology, 57,
153–178, 2008]. We found that distance to the classifier boundary
correlated with RT, accuracy, and drift rates in an animacy cate-
gorization task. Split by animacy, the correlations between brain
and behavior were sustained longer over the time course for
animate than for inanimate stimuli. Interestingly, when examining
the distance to the classifier boundary during the peak correlation
between brain and behavior, we found that only degraded ver-
sions of animate, but not inanimate, objects had systematically
shifted toward the classifier decision boundary as predicted.
Our results support an asymmetry in the representation of ani-
mate and inanimate object categories in the human brain. ■

INTRODUCTION

Object recognition is a fast, reliable, and effortless pro-
cess for humans. Early visual areas in the brain respond
to simple visual features (e.g., edges, luminance contrast,
or orientation), and further along the ventral stream, sen-
sitivity to objects and object categories (e.g., faces, ani-
mals, or tools) emerges (Grill-Spector & Weiner, 2014;
DiCarlo & Cox, 2007). Using multivariate pattern analysis
(MVPA), several studies have analyzed pattern similarities
between the neural representation of objects in inferior
temporal cortex (ITC) to study its representational struc-
ture, with both fMRI (Haxby, Connolly, & Guntupalli,
2014; Kriegeskorte & Kievit, 2013; Kriegeskorte et al.,
2008; Edelman, Grill-Spector, Kushnir, & Malach, 1998)
and MEG (Contini, Wardle, & Carlson, in press; Cichy,
Pantazis, & Oliva, 2014, 2016; Carlson, Tovar, Alink, &
Kriegeskorte, 2013). These studies have provided evi-

dence of a categorical organization in ITC, after the ob-
servation that objects belonging to the same category
tend to evoke similar patterns of neural activation (Sha
et al., 2015; Connolly et al., 2012; Kriegeskorte et al.,
2008; Haxby et al., 2001). Time series decoding studies
have shown that such abstract object representations
emerge later than simple visual features in the time course
of object processing (Cichy et al., 2014, 2016; Kaneshiro,
Guimaraes, Kim, Norcia, & Suppes, 2015; Carlson et al.,
2013), consistent with a hierarchical organization of the
visual stream. One robust categorical structure is the
animate/inanimate distinction in human and primate ITC
(Mahon & Caramazza, 2011; Kriegeskorte et al., 2008; Kiani,
Esteky, Mirpour, & Tanaka, 2007; Caramazza & Shelton,
1998; Spelke, Phillips, & Woodward, 1995). Animate stimuli
(e.g., humans or animals) evoke brain activation patterns
that are more similar to other animate exemplars than to
inanimate stimuli (e.g., plants, tools, vehicles; Cichy et al.,
2014; Carlson et al., 2013; Kriegeskorte et al., 2008; Kiani
et al., 2007; Downing, Jiang, Shuman, & Kanwisher, 2001).

A current topic of debate is whether categorical infor-
mation in the brain, as revealed using MVPA decoding,
is read out in behavior (cf. de-Wit, Alexander, Ekroll,
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& Wagemans, 2016; Williams, Dang, & Kanwisher, 2007).
The presence of decodable information in neuroimaging
activation patterns related to a stimulus or task does not
necessarily entail that this information underlies related
behavior. One recent approach to linking activation
spaces to behavior (Ritchie & Carlson, 2016) is inspired
by distance-to-bound models of RT (Ashby & Maddox,
1994; Pike, 1973). According to distance-to-bound models,
evidence close to a decision boundary is more ambig-
uous, reflecting greater difficulty in categorization, whereas
evidence far from the decision boundary is less ambiguous
with regard to category membership. Assuming that RT is
a function of stimulus discriminability and that a classifier
decision boundary (which is used in MVPA decoding) re-
flects an observer’s decision boundary, then RTs should
negatively correlate with distance from the boundary; for
example, stimuli that are faster to categorize should be
neurally represented as further from the classifier decision
boundary (Ritchie & Carlson, 2016).

In a previous application of the RT–distance approach
to MEG (Ritchie, Tovar, & Carlson, 2015), a linear dis-
criminant classifier was trained to discriminate the MEG
channel activation for animate stimuli from that for in-
animate stimuli. Next, the distance of each stimulus pattern
to the classifier boundary in high-dimensional space was
rank-order correlated to human RTs for categorizing the
same stimuli as animate/inanimate. As predicted, the dis-
tance to boundary negatively correlated with RT. Moreover,
the correlation over time tracked the MEG decoding time
series (Ritchie et al., 2015). Interestingly, when analyzing
the animate and inanimate stimuli separately, an asym-
metry was observed: The correlation between distance to
boundary and RT was driven by animate stimuli (Ritchie
et al., 2015; Carlson, Ritchie, Kriegeskorte, Durvasula, &
Ma, 2014).

A useful test of the RT–distance hypothesis would be
to manipulate task difficulty experimentally and observe
the effects of this behavioral manipulation on repre-
sentational space. Note that, here, we use the term “rep-
resentational space” under the assumption that neural
representations are to some extent reflected in neuro-
imaging activation patterns (see, e.g., Kriegeskorte &
Bandettini, 2007; Carlson, Schrater, & He, 2003; Haxby
et al., 2001). The RT–distance hypothesis has so far been
tested on the differences between objects. For example,
in Carlson et al. (2014), an ostrich was closer to the ani-
macy decision boundary than a human face, and partici-
pants were slower to categorize the ostrich as “animate.”
The effect of increasing categorization difficulty of single-
object images on the distance to the classifier boundary
in activation space has not yet been tested. According to
the RT–distance hypothesis, a change in behavior result-
ing from manipulating categorization task difficulty should
be matched by a corresponding shift of the stimulus set
in representational space. Numerous studies have shown
that degrading object stimuli reduces categorization per-
formance, such as by scrambling the image phase (e.g.,
Philiastides, Ratcliff, & Sajda, 2006; Philiastides & Sajda,
2006; Wichmann, Braun, & Gegenfurtner, 2006), scram-
bling image amplitude (e.g., Gaspar & Rousselet, 2009), re-
ducing luminance contrast (e.g., Macé, Delorme, Richard,
& Fabre-Thorpe, 2009; Macé, Thorpe, & Fabre-Thorpe,
2005), or blurring the image (e.g., Párraga, Troscianko, &
Tolhurst, 2000, 2005; Bruner & Potter, 1964; Wyatt &
Campbell, 1951). For degraded stimuli with longer cate-
gorization RTs, the RT–distance hypothesis predicts that
these stimuli will be located closer to the animacy deci-
sion boundary, producing a “compression” of representa-
tional space compared with that for the original versions
of the stimuli (Figure 1A). This predicts a correlation

Figure 1. The predicted effect
of degrading stimuli on their
location in representational
space. (A) Stimuli of two
categories are illustrated as
circles (animate objects) and
squares (inanimate objects) in
representational space (only
two dimensions are plotted
here for visualization). The blue
shapes represent the stimuli in a
clear state, and the orange are
their degraded counterparts. If
distance to a classifier boundary
is taken as representing
evidence for a decision, this
predicts that the degraded
(orange) versions of the stimuli
will be located closer to the
classifier decision boundary
(dashed line) that separates the stimulus categories than the clear (blue) versions. (B) Stimuli from one category (animate objects) and their
distance to the classifier boundary versus their rate of evidence accumulation for an animacy categorization decision. The RT–distance hypothesis
predicts that the degraded stimuli, which have moved closer to the decision boundary, also have slower evidence accumulation rates (and therefore
longer RTs). Note that the same prediction holds for the other category (inanimate objects).
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between the shorter distance to boundary and slower
accumulation rates (Figure 1B). Note that, even in the
case of inanimate stimuli where there was no correlation
(Ritchie et al., 2015), one would still expect a correlation
when including both clear and degraded versions because
of the compression of the general representational space
(Figure 1B).
The dominant models of RT appeal to some form of

evidence accumulation process (Ashby, 2000; Ratcliff,
1985); that is, evidence for a decision (e.g., animate or
inanimate) accumulates over time, and the response is
made when the amount of evidence reaches a certain
threshold (Brown & Heathcote, 2008; Gold & Shadlen,
2007; Ratcliff & Rouder, 1998). Distance to the classifier
boundary can be linked to evidence accumulation. Carlson
et al. (2014) simulated evidence accumulation with a
sequential analysis model, using the distance to the
boundary for each object exemplar as a proxy for evidence
strength. They found that accumulation rate correlated
with categorization RTs, providing support for the theo-
retical link between distance to boundary and evidence
accumulation (Ritchie et al., 2015; Carlson et al., 2014).
One way to build on this would be to more closely relate
distance to evidence accumulation; beyond correlating
distance with median RTs, an existing model of evidence
accumulation can be fit to participants’ behavioral data,
yielding independent model parameter estimates that
can be correlated with distance to the boundary. As an
accumulator model provides a more complete charac-
terization of categorization behavior than average RTs, it
may provide a better measure to correlate to represen-
tational distances.
The aim of this study was twofold. First, using MEG

decoding, we sought to test the prediction that de-
grading object exemplar would compress the repre-
sentational space (which we assume is reflected in the
high-dimensional MEG activation space). This would
in turn correlate with slower animacy RTs compared
with undegraded or clear versions of the same stimuli
(Figure 1). Second, we aimed to test the RT–distance
hypothesis in the context of an existing model of RT dis-
tributions and choice accuracy, the linear ballistic accu-
mulator (LBA; Brown & Heathcote, 2008), to evaluate
whether distance to boundary can be related more di-
rectly to evidence accumulation model parameters.

METHODS

Participants

All participants gave informed consent in writing before
the experiment. The study was conducted with the
approval of the Macquarie University human research
ethics committee. One hundred participants were recruit-
ed on Amazon’s Mechanical Turk (MTurk) to determine
the level of stimulus degradation needed for equal object
recognition performance across all stimuli. Another group

of 40 new MTurk participants were asked to rate the stim-
uli on a 7-point scale from typical animate to typical inan-
imate. For the second part of the study, 20 healthy
volunteers (four men; mean age = 29.3 years) with normal
or corrected-to-normal vision participated in the MEG ex-
periment. Participants in both experiments were financially
compensated for their time. All analysis procedures were
performed in MATLAB (The MathWorks, Natick, MA) using
the statistics and machine learning toolbox. For reference
purposes, the code is freely available at github.com/Tijl/
Grootswagers_etal_degraded_objects.

Stimuli

We constructed a set of 48 visual object stimuli including
24 animals and 24 inanimate objects (natural and man-
made) on a phase-scrambled natural image background
in both a clear condition and a degraded condition. First,
high-resolution images (>512 × 512 pixels) of various
objects were collected via an Internet search. We only
selected images that included prototypical viewpoints of
objects. To test the RT–distance hypothesis more gener-
ally, no human or human face images were included in
the stimulus set as they are generally outliers both behav-
iorally and in the brain’s response compared with other
object exemplars. That is, face stimuli tend to have fast
categorization RTs and produce pronounced responses
in neuroimaging data. It is therefore possible that the in-
clusion of face stimuli could disproportionately explain
any observed correlations between RT and neural dis-
tance. All exemplar images used in the study are shown
in Figure 2A. As color can be a salient cue for image rec-
ognition (Joseph & Proffitt, 1996; Wurm, Legge, Isenberg,
& Luebker, 1993; Biederman & Ju, 1988; Ostergaard &
Davidoff, 1985) and would make the degrading process
(described in the next section) less effective, gray-scaled
versions of the object images were used in the experi-
ment. A different random noise background was created
for each exemplar by phase scrambling a natural image
of a forest scene (see Figure 2B). The object images were
overlaid on the noise background, producing the stimuli
for the clear condition (Figure 2C).

We created a degraded condition by blurring the same
set of images (including their background). As different
objects require different levels of blur to equate recogni-
tion performance, we first measured the amount of blur
required to impair recognition for each image. Our aim
was for participants to be able to perform the task given
unlimited exposure time (i.e., correctly recognize the ob-
ject) but to reduce their categorization performance under
brief presentation duration (i.e., by reducing speed and/or
accuracy). We simulated defocused blur using an image
filter (Figure 3) that convolved the amplitude spectrum
of the image in the Fourier domain (Figure 3A and B) with
a Fourier-transformed cylinder function (a sombrero func-
tion; Figure 3C and D), where increasing the radius of the

Grootswagers et al. 1997



cylinder function results in a greater magnitude (Figure 3E)
of defocus blur (Sonka, Hlavác, & Boyle, 1993). Images
were then gradually degraded by increasing the radius in
steps of 2 pixels, from a radius of 1 pixel (no degrading)
to 59 pixels (very degraded). The sequence of the image
coming into focus was presented to the MTurk partici-
pants. Each participant saw all 48 stimuli from both animate
and inanimate categories once starting from the most de-
graded state, while its level of focus was gradually increased
(in steps of 2-pixel radius). Participants were instructed to
press the spacebar as soon as they recognized the object
in the picture. The stimulus was then removed from the
screen, and participants entered a name for the stimulus.
To check for correct recognition, the responses on the
naming task were assessed manually for validity, to allow
for variations in spelling or for synonymous names. For
each exemplar, the amount of focus needed for 25% of
the MTurk participants to correctly recognize (i.e., name)
the object (see Figure 2F) was used as the blur filter
parameters for that exemplar in the degraded condition.
On average, a radius of 17 pixels (SD = 4.68 pixels) was
used for the animate exemplars and 20.5 pixels (SD =
10.12 pixels) for the inanimate exemplars.

MEG Experiment Design

Before the MEG experiment, we confirmed that each par-
ticipant could recognize all exemplars given unlimited
presentation time, even in the degraded state, as the
intention of the design was to decrease categorization
speed and accuracy without making the stimuli unrecog-
nizable. Stimuli in the degraded state were shown, and
participants were asked to name the object in each pic-
ture. If the participant failed to correctly recognize the
stimulus, it was shown in the clear state to ensure that
all objects were correctly recognized. Next, the partici-
pant was trained on the task (outside the MEG), as the
brief presentation duration and fast pace of the categori-
zation task required practice to master. If performance
(animacy categorization accuracy) in the first block was
lower than 80%, the participant was shown all the stimuli
again in both states to identify degraded exemplars they
were unable to recognize and then practiced again on
a second training block. All 20 participants performed
above 80% correct after the familiarization step.
After the practice task, participants completed the MEG

experiment. On each trial within a block, stimuli were

Figure 2. Stimuli and experiment design. (A) Stimuli consisted of 24 animate and 24 inanimate objects. (B) Stimuli were placed on a phase-scrambled
natural image background. (C) All stimuli in the clear condition. (D) In the MEG experiment, participants saw clear and degraded stimuli for 66 msec
in randomized order with a varying ISI and were asked to report the stimulus category (animate or inanimate) with a button press. (E) To create the
degraded condition, stimuli were gradually blurred by simulating defocus to a level where they were equally recognizable. (F) All stimuli in the degraded
condition.
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projected (at 9° × 9° visual angle) on a black background
for 66 msec, followed by a fixation cross for a random
duration between 1000 and 1200 msec. Participants were
asked to categorize the stimulus as animate or inani-
mate as fast and accurate as possible using a button
press (see also Figure 2D). To avoid possible motor re-
sponse confounds, the mapping of the response but-
tons alternated between blocks (Grootswagers, Wardle,
& Carlson, 2017; Ritchie et al., 2015), and participants
received feedback for the first 10 trials of a block (red
or green cross) to ensure accurate mapping of the but-
tons. Within each block, four repetitions of each exem-
plar in both conditions were presented in randomized
order. Block duration was ∼7 min. After each block, par-
ticipants received feedback on performance (mean accu-
racy and number of missed trials). Each participant
completed eight blocks, resulting in 32 trials per exem-
plar, 768 trials per category and condition (animate/
inanimate, clear/degraded), and 3072 total trials per par-
ticipant. The total time in the scanner was about 1 hr,
including breaks between blocks.

MEG Acquisition and Preprocessing

Participants were fitted with a cap with five marker coils to
track head movement during the session. The MEG signal
was continuously sampled at 1000 Hz from 160 axial
gradiometers using a whole-head MEG system (model
PQ1160R-N2; KIT, Kanazawa, Japan) while participants lay
in a supine position inside a magnetically shielded room
(Fujihara Co. Ltd., Tokyo, Japan). Recordings were filtered
online between 0.03 and 200 Hz. We examined the delay
in stimulus onsets (Ramkumar, Jas, Pannasch, Hari, &
Parkkonen, 2013) by comparing the photodiode responses
with the stimulus onset triggers (sent by the experiment
script) and found a highly consistent delay of 56.26 msec,
for which we conservatively corrected by shifting the
onset triggers back by 56 msec. Recordings were sliced
into 700-msec epochs (−100 to 600 msec poststimulus
onset). The trials were downsampled to 200 Hz (5-msec
resolution) and transformed using principal component
analysis, where the components that accounted for 99%
of the variance were retained to reduce the dimension-
ality of the data (mean = 62.25 components, SD = 12.33
components). Finally, to increase signal-to-noise, four
trials of each exemplar (with balanced response map-
pings) were averaged into pseudotrials (Grootswagers
et al., 2017; Isik, Meyers, Leibo, & Poggio, 2014), leaving eight
pseudotrials per exemplar in both conditions.

Sliding Time Window Decoding

To investigate the decoding performance of animacy over
time, sliding window Naïve Bayes classifiers were used on
the pseudotrials. To assess the difference in decoding per-
formance between the clear and degraded conditions,
three separate classifiers were used for decoding, one for
each condition and one for both conditions combined.
At each 5-msec interval t, the classifiers were trained and
tested on a 25-msec window (from t-25 msec to t). The
classifier performance was examined using leave-one-
exemplar-out cross-validation (Carlson et al., 2013). In this
method, the classifier is trained on the animacy of all but
one exemplar and tested on trials of the left-out exemplar.
This is repeated for each exemplar, and the mean decoding
accuracy on the left-out exemplars is used to assess gener-
alization accuracy. Using this cross-validation method, the
classifier has to generalize the concept of animacy and can-
not benefit from exploiting individual stimulus properties
because the test exemplar is not in the training set (Carlson
et al., 2013). We report the participant-averaged classifier
accuracy over time, with significant above-chance accura-
cies assessed using a nonparametric Wilcoxon signed rank
test. The false discovery rate (FDR) was used to control
for false positives resulting from multiple comparisons.

Fitting LBA on Individual Participant Behavior

One of the aims of this study was to use a more complex
model of evidence accumulation and then to correlate

Figure 3. Image filter used to blur the experimental stimuli. (A) The
original image and its amplitude spectrum, which shows the typical
energy pattern for natural images (high energy at low spatial frequencies
[center] and low energy at high spatial frequencies; Field, 1987).
(B) Cylinder functions with radii of 3, 9, and 17 pixels and their
Fourier-transformed versions (sombrero functions), which are used
as the image filters. (C) Convolving the amplitude spectrum of the
original image with the sombrero functions in the Fourier domain results
in images with different levels of defocus blur by removing a significant
proportion of energy at high spatial frequencies.
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distance to boundary with the drift rate parameters of
the model as well as RT and accuracy. The LBA is a math-
ematically tractable yet simple and complete model of
evidence accumulation (Brown & Heathcote, 2008).
LBA simultaneously takes into account both the full dis-
tribution of RTs (i.e., the mean, variability, and positive
skew of the RT distribution; see Luce, 1986) and task
accuracy. LBA differs from other well-known accumula-
tion models (e.g., the diffusion decision model [Ratcliff,
1978] or the leaky competitive accumulator [Usher
& McClelland, 2001]) by modeling the response alter-
natives (here, animate and inanimate) with separate
independent accumulators that accrue evidence accu-
mulation in a linear and ballistic manner. In particular,
the LBA model assumes that between-trial variability
in the amount of evidence required for a decision, and
the rate at which it accumulates, dominates over any
moment-to-moment variability in evidence during a trial,
whereas the latter source of noise plays a greater role in
alternative models. These properties make LBA analytically
simple and relatively easy to apply, which is ideal for this
study, where each stimulus is treated as a separate con-
dition, meaning that there are many parameters to esti-
mate, each based on relatively few data points. To
simplify the fitting procedure, the stimuli for both cate-
gories were separated into six bins based on accuracy.
Next, a set of progressively more complex parameteri-
zations were fit stepwise using maximum likelihood esti-
mation (Rae, Heathcote, Donkin, Averell, & Brown, 2014;
Donkin, Brown, & Heathcote, 2011). The most complex
model parameterization, which was used here for further
analysis, included clear/degraded, animate/inanimate,
and stimulus as factors. Hence, each stimulus in both
clear and degraded conditions had a separate drift rate,
which is important to note, as the goal was to correlate
stimulus-specific distances with drift rates. Figure 4
shows that the LBA model provided a very accurate model
of the effect of stimulus degradation and of differences
between animate and inanimate images, both in terms of
accuracy (Figure 4A) and the entire distribution of RTs
(Figure 4B), and so provides a useful characterization of
the participants’ behavior.

Predicting Behavior from
Representational Distance

Individual exemplars can be represented as points in
representational space (i.e., a multidimensional feature
space). To decode animacy, we applied a discriminant
classifier (Gaussian Naïve Bayes) to optimize a decision
boundary in multidimensional space, separating the neural
patterns for animate and inanimate exemplars. According
to the RT–distance hypothesis, the neural representations
of the exemplars that are close (in multidimensional
space) to this boundary are predicted to be more difficult
to discriminate, as there is less evidence for the decision.
This forms a prediction for behavior, where less evidence
for a decision would result in slower RTs or lower accura-
cies (Ritchie & Carlson, 2016; Ritchie et al., 2015; Carlson
et al., 2014) and, in the case of the LBA decision model,
slower drift rates. For the current study, we predicted that
degraded stimuli would be closer to the decision boundary
in representational space and therefore correlate with
lower accuracy, slower RTs, and slower drift rates.
We tested this prediction by repeating the following

process at each time window: First, all the trials for each
exemplar were averaged to create an average representa-
tion in multidimensional space for each exemplar (one
for the exemplar in clear state and one for degraded state).
In this space, a decision boundary for animacy was fitted
(i.e., training a Naïve Bayes classifier), and the repre-
sentational distance to this boundary for each exemplar
was computed. This resulted in a distance value for each
exemplar in both clear and degraded states (24 animate
and 24 inanimate exemplars in 2 states = 92 distance
values). Next, the exemplar distances were rank-order
correlated (using Spearman’s ρ) to the two behavioral
measures (median RT and mean accuracy) and the mean
drift rate for the exemplars.
Repeating this process over time and participants re-

sulted in three time-varying correlations (two for each
behavioral measure and one for drift rate) for each par-
ticipant. We then report the participant-averaged time-
varying correlations and used a nonparametric Wilcoxon
signed rank test at each time window to test for signifi-
cant above-zero correlations at the group level. Note that

Figure 4. Fits of the LBA model
to (A) accuracy and (B) the
distribution of RT, with 95%
confidence intervals. The RT
distribution is illustrated by
plotting the 90th percentile
(upper lines, representing
the slowest RTs), the median
(50th percentile, middle lines),
and the 10th percentile (lower
lines, representing the fastest
RTs).
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this approach differs from Ritchie et al. (2015), where dis-
tances and RTs were averaged over participants first and
the correlations were performed at the group level. FDR
adjustment was used to control for false positives result-
ing from multiple comparisons. This process allowed us
to compare the distance to boundary correlations with
the three variables. We also sought to assess the pos-
sibility of modulating effects of animacy, for example,
whether the animate–inanimate asymmetry reported in
Carlson et al. (2014) and Ritchie et al. (2015) was repli-
cated and whether it was affected by degrading the stim-
uli. For this, we computed the time-varying correlations
separately for animate and inanimate exemplars.

RESULTS

Behavioral Results

Overall, participants performed well on the categoriza-
tion task (mean accuracy = 87.9%, SD = 12.7%) with a
median RT of 457.5 msec (SD = 64.6 msec). Figure 5
shows the median RT (Figure 5A) and mean accuracy
(Figure 5B) separate for category (animate vs. inanimate)
and stimulus condition (clear vs. degraded). ANOVA
showed that animate exemplars were easier to categorize
than inanimate exemplars (compare left vs. right groups
in each plot), with significantly faster median RTs (F(1,
19) = 32.09, p < .0001) and higher accuracies (F(1, 19) =
6.27, p < .0001). As predicted, degrading the stimuli
made the animacy categorization task more difficult
(compare blue and yellow lines), significantly lowering
accuracy (F(1, 19) = 41.81, p < .0001) and increasing
median RT (F(1, 19) = 85.06, p < .0001) for both animate
and inanimate exemplars. There was no significant inter-
action between animacy and degrading for either median
RT (F(1, 19) = 0.04, p = .84) or accuracy (F(1, 19) = 0.01,
p = .92).
To test whether distance is related to evidence accu-

mulation, we obtained drift rates for each exemplar and
participant from the LBA fits. The LBA produces a sepa-
rate drift rate parameter for the correct accumulator

(i.e., the animate accumulator for animate stimuli and the
inanimate accumulator for inanimate stimuli) and the
incorrect accumulator (i.e., the inanimate accumulator
for animate stimuli and vice versa); however, only the drift
rates for the correct response accumulators were included
in our analysis. The resulting drift rate parameters are
summarized in Figure 5C, split by animacy and degra-
dation. Degrading the stimuli resulted in significantly
slower drift rates (F(1, 19) = 41.20, p < .0001). There
was a main effect of animacy on drift rate (F(1, 19) =
4.44, p < .05) and a significant interaction between ani-
macy and stimulus clarity on drift rate (F(1, 19) = 18.52,
p < .0001), as degrading reduced the drift rate for ani-
mate exemplars more than inanimate exemplars (see
Figure 5C). In summary, we confirmed that the degraded
exemplars were generally harder to categorize (in terms
of longer RT, lower accuracy, and slower drift rate), dem-
onstrating that our stimulus categorization difficulty
manipulation (blur) was successful.

MEG Decoding

A prediction of degrading the stimuli is that decoding
performance will be lower relative to that for clear stim-
uli. To evaluate the effect of blurring the stimuli on de-
coding performance over time, sliding time window
classifiers were trained on predicting stimulus animacy at
each time point. The results are presented in Figure 6A
as mean cross-validated decoding accuracy over partici-
pants, separately for clear and degraded stimuli. The de-
coding onset in the clear condition is at 75 msec, which
is consistent with previous findings showing an animacy
decoding onset of approximately 60–80 msec (Ritchie
et al., 2015; Carlson et al., 2013). In the degraded condi-
tion, decoding onset was 170 msec, and decoding perfor-
mance was significantly lower than that in the clear
condition over the entire time course (black marks above
the x axis). Peak decoding performance for degraded
objects was also later, 380 msec compared with 345 msec
for clear stimuli. Initially, decoding performance for the

Figure 5. Behavioral results.
The distributions of (A) the
median RT, (B) accuracy,
and (C) drift rate for the
correct response accumulator,
split up by exemplar category
(animate/inanimate) and
condition (clear/degraded,
blue and orange lines).
Error bars represent ±SEM.
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combined data for clear and degraded conditions closely
matched that for the degraded condition but then raised
to a level closer to the performance in the clear condition.
In summary, the neural patterns for blurred stimuli were
more difficult to decode from the whole-brain MEG acti-
vation patterns than those for the clear versions of the
same stimuli.

Predicting Behavior from
Representational Distance

To investigate the relationship between decodability and
behavior, we computed the time-varying distance to the
classifier decision boundary for all the exemplars for each
participant. These participant-specific distances were
then rank-order correlated to the participant’s behavioral
measures for each exemplar: RT, accuracy, and the drift
rate as fitted by LBA. Note that, for accuracy and drift
rate, the RT–distance hypothesis predicts a positive cor-
relation (closer to the boundary corresponds to lower
accuracy and slower drift rate); however, a negative cor-
relation is predicted between RT and distance (closer to
the boundary corresponds to longer RTs). For ease of com-
parison, the sign of the correlation for RT was inverted in
Figure 7.

Figure 7A shows the mean time-varying correlations
over participants for drift rate (green line), RT (red line),
and accuracy (purple line). The peaks of the time-varying
correlations are shown in the inset bar graphs. Although
drift rate appears to have an earlier and higher peak cor-
relation than RT and accuracy, this difference was not
statistically significant. The similarity between these time-
varying correlations is likely due to correlations among
the different behavioral measures (e.g., exemplars with fast
RTs are likely to have high accuracies). These results fur-
ther show that accuracy and drift rate can be predicted
equally well using distance to boundary. Although the
LBA model has been used before to fit nonhuman primate
neural activations (Cassey, Heathcote, & Brown, 2014), this
is the first time it has been related to neuroimaging
data measured with MEG. Thus, our results are promising
considering that drift rate more closely represents the
accumulation of evidence for a decision, compared with
RT or accuracy. In summary, distance to boundary cor-
relates with the behavioral measures as well as the fitted
drift rate parameters, and these follow similar trajectories.
Having established that distance to boundary predicts

RT, accuracy, and drift rate for animacy categorization, we
next investigated the relative contributions of animate
and inanimate exemplars. In Ritchie et al. (2015), time-
varying correlations for the inanimate exemplars were

Figure 6. Decoding animacy
from the MEG signal.
(A) Decoding was performed
using leave-one-exemplar-out
cross-validation with 25-msec
sliding time window classifiers.
At each time point t, the graph
shows the mean classifier
accuracy over participants at the
window [t-25 msec, t]. Shaded
areas show standard error
between participants. Colored
marks above the x axis indicate
significant above-chance (50%)
decoding. Black marks indicate
significant (FDR-adjusted
p < .05) differences in classifier
accuracy between the clear and
degraded conditions. The gray
bar on the x axis indicates the
time that the stimulus was
on the screen (0–66 msec).
(B) The mean classifier weights
at 100-msec intervals over
cross-validation folds and
over participants for the
combined condition. Weights
were transformed into
activation patterns before
projection onto the sensors
(Haufe et al., 2014).
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not significant. Thus, the effect was specific to animate
exemplars, and the same asymmetry was also reported
in Carlson et al. (2014). In this study, however, because
of the degrading of stimuli, we also predicted a correla-
tion for inanimate exemplars (when using both clear and
degraded exemplars), as we predicted that the repre-
sentations of degraded inanimate exemplars would still
shift toward the classifier decision boundary (Figure 1).
Figure 7 shows the result of computing the time-varying
correlation separately for animates (Figure 7B) and inan-
imates (Figure 7C). Animate exemplars reach higher cor-
relations on all behavioral measures and follow the same
trends as seen in Figure 7A for the combined stimulus
set. In contrast, inanimate exemplars have lower correla-
tions overall and were less sustained over time. However,
significant above-chance correlations between distance
and RT, accuracy, and drift rate were still present for
the inanimate exemplars. In addition, more sustained
correlations (more significant time points) are present
for drift rate and accuracy than for RT, for the inanimate
exemplars (which is of interest, as previous studies only
used RT).

Comparing the Decoding Time Courses with the
Time Course of Predicting Behavior

Ritchie et al. (2015) found that the time-varying cor-
relation with behavior matched the time-varying classifier
decoding performance. To examine whether this relation-
ship was present in the current study, the time-varying
correlations with behavior (RT, accuracy, and drift rate)
were rank-order correlated to the time-varying decoding

result. The results are presented in Figure 8 and show
significant correlations between the results from Figure 7
and the decoding trajectory (Figure 6A), rising and falling
at approximately the same time. When comparing the
animate and inanimate trajectories separately (Figure 7B
and C), only the animate time-varying correlation matches
decoding performance. These results are consistent with
the findings fromRitchie et al. (2015)who also foundhigher
correlations between RT correlation and decoding trajec-
tories for the animate exemplars. In addition, the decoding
trajectory also correlates significantly with the accuracy
results from Figure 7 and is significant for both animate
and inanimate exemplars. Correlations with the drift rate
parameter are also significant but appear lower in magni-
tude. This is evident when comparing Figures 6 and 7,
where drift rate has a dual-peak structure, which differs
from the trajectories for the RT and accuracy correlations.

Figure 7. The correlation
between distance to boundary,
behavioral variables, and drift
rate. (A) The distance model
applied to all the exemplars.
(B) Results for animate
exemplars only. (C) Results
for inanimate exemplars.
Three measures (RT, accuracy,
and drift rate parameter) were
correlated with distance to
boundary over time. RT refers
to inverted normalized RT.
Accuracy is the mean accuracy
for exemplars, and drift rate
was estimated by fitting LBA.
Shaded areas refer to the
standard error over participants,
and colored marks above the
x axis indicate significant
above-zero correlations. The
peak correlations with their
standard errors are compared
in the inset (bars, top left).
The gray bar on the x axis
indicates the time the stimulus
was on the screen (0–66 msec).

Figure 8. Similarity (Spearman’s ρ) between the decoding trajectories
(Figure 6A) and correlation trajectories from Figure 7. The time-varying
decoding performance (for all clear and degraded stimuli combined)
and time-varying correlations were rank-order correlated. High values
indicate similar trajectories (e.g., matching rises, falls, and peaks).
Asterisks indicate significant correlations (*p < .01, **p < .001).
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Compression of Degraded Objects in
Representational Space

The RT–distance hypothesis predicts that the neural pat-
terns for degraded objects (which have slower RTs and
lower accuracies; see Figure 5) will be closer to the cate-
gory boundary in representational space, as the distance
to the boundary represents the degree of evidence for
category membership (Figure 1). The results above show
that classifier accuracy is lower for degraded objects, in-
dicating that degraded items are harder to separate in
representational space (Figure 6A). Next, we showed that
distance to boundary correlates with all three behavioral
measures (Figure 7A), and this correlation is mostly driven
by animate exemplars where it is sustained over time
(Figure 7B), with some significant correlations for inani-
mates across a more limited portion of the time course
(Figure 7C). Together, these results seem to favor our pre-
diction based on the RT–distance hypothesis: Degraded
objects (both animate and, to some extent, inanimate)
are closer to the boundary than their clear counterparts,
and this shift in representational space correlates with
RT, accuracy, and drift rate.

To visually compare our results with the predictions as
shown in Figure 1A, we plotted all exemplars in both
clear and degraded states relative to the decision bound-
ary in representational space (at the time of peak cor-
relation between drift rate and distance to boundary
[210 msec]; Figure 7A) in Figure 9. On the y axis, the
stimuli are ordered by their typicality ratings. Comparing
Figures 1A and 9 suggests that the prediction that de-
graded stimuli are located closer to the category bound-
ary than clear stimuli holds only for animate, but not
inanimate, exemplars. This result is consistent with pre-
vious results from Ritchie et al. (2015) and Carlson et al.
(2014), which showed no clear relationship between dis-
tance to boundary and RT for inanimate stimuli. Although
even if the basic relationship between behavior and
distance to the classifier boundary does not hold for
inanimate exemplars, it is still surprising that there is
also no relationship between degrading inanimate stim-
uli and where they are located relative to the category
boundary. This asymmetric compression of representa-
tional space is however consistent with the interaction
between animacy and degrading on the fitted drift rates
(Figure 5C), which suggests that there is little or no

Figure 9. Reconstruction of
the representational space
for animacy decoding. The
locations of exemplars in their
clear state are plotted in blue
circles; and their degraded
counterparts, in yellow circles.
The x axis represents distance
from an object to the boundary
and is the mean distance to the
boundary over all participants
at 210 msec. The exemplars are
ordered on the y axis according
to their typicality rating obtained
from 40 participants on MTurk.
Note that some objects (e.g.,
the degraded starfish) have a
negative mean distance and
are thus placed on the opposite
side of the boundary. Note
that degraded animate exemplar
representations are in general
closer to the linear decision
boundary than the clear
versions, demonstrating
compression of representational
space for animate but not
inanimate objects.
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effect of degrading on the representation of inanimate
exemplars.
The compression of exemplar distances toward the

animacy boundary is also predicted to match slower
drift rates (as shown in Figure 1B). To compare our re-
sults with this second prediction, we plotted the mean
drift rates over participants against the mean distance to
boundary over participants for each exemplar in both
states in Figure 10 separately for animate (Figure 10A)
and inanimate (Figure 10B) exemplars. The result is
shown at the time of peak correlation between drift rate
and distance to boundary (210 msec; Figure 7A). The
exemplars are plotted as a function of their mean dis-
tance to boundary (x axis) and mean drift rate ( y axis).
The RT–distance hypothesis predicts that exemplars
with a higher drift rate are located further away from
the boundary. Lines in Figure 10 connect the two states
of each exemplar and are colored green if this predic-
tion is true for each exemplar. This is the case for most
of the animate exemplars (Figure 10A), but (not surpris-
ingly, considering the asymmetry in Figure 9) for only a
few of the inanimate exemplars (Figure 10B).

DISCUSSION

Our aim was to test the RT–distance hypothesis in the
context of a specific prediction, namely, that degrading
objects will result in a compression of representational
space and that the shift in representational space for de-
graded objects will match impaired categorization behav-
ior. The results showed that degraded object images
produced slower RTs, lower accuracies, and slower evi-
dence accumulation rates in an animacy categorization
task (Figure 5). When examining the distances of indi-
vidual objects, we observed an asymmetric compression:
Only the degraded animate objects had moved closer
toward the classifier boundary. Unexpectedly, there was
not a corresponding consistent shift toward the bound-
ary for degraded inanimate exemplars. In addition, we
found that distance to boundary correlates with drift
rate, which is a measure that is more closely related to
the decision process than descriptive statistics (mean RT
or accuracy).

In this study, all MEG channels were included for train-
ing and testing the classifier, as is the standard for many

Figure 10. The effect of degrading on the relationship between drift rate and distance to boundary for animate (A) and inanimate (B) exemplars.
Items were rank-ordered for mean drift rate over participants and mean distance to boundary at the peak LBA prediction time (210 msec; see
Figure 7A). Here, the y axis represents the decision boundary. Blue circles are the exemplars in their clear versions; and yellow circles, degraded
versions. Lines connect the two versions of each exemplar and are colored green if the RT–distance hypothesis correctly predicts the direction of
the relationship (i.e., the degraded versions of the objects are closer to the boundary and have a slower drift rate) and red if not. The distributions of
the exemplars on the variables are shown on the axes.
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MEG decoding studies (e.g., Grootswagers et al., 2017;
Kaiser, Azzalini, & Peelen, 2016; Cichy et al., 2014;
Carlson et al., 2013). A limitation of this approach is that
the spatial source of the decodable signal is unknown.
Because participants were performing an animacy task,
it is not possible to entirely exclude a contribution from
the decision process (e.g., originating in frontal executive
areas) as a possible source of the decodable signal. How-
ever, previous research has found no difference in decod-
ing performance between active animacy categorization
versus a distractor task (Ritchie et al., 2015). In addition,
the representational structure in the MEG response to
visual objects has been found to correspond best to fMRI
representations in the ventral visual stream, showing that
the early and late MEG responses after stimulus onset
match the fMRI responses in V1 and IT, respectively (Cichy
et al., 2014, 2016). Moreover, examining the classifier
weights (Figure 6B) suggests that the decodable signal
originates from occipital sensors at 200 msec and more
temporal at 300 msec. This suggests that the most likely
sources of the decodable signal in our study originate
from areas in the ventral visual stream.

Asymmetric Effects of Stimulus Degradation on the
Neural Representation of Animacy

We found asymmetrical effects for animate and inanimate
objects. Correlations between distance and behavior (RT/
accuracy/drift rate) in this study were driven by animate
stimuli. Inanimate stimuli had smaller and less sustained
correlations between distance and behavior and did not
show compression toward the classifier boundary in rep-
resentational space for degraded versions of the stimuli.
Previous studies also found that correlations between dis-
tance and RT were almost exclusively driven by animate
stimuli (Ritchie et al., 2015; Carlson et al., 2014), which is
consistent with our results. Our study differed in many
aspects from earlier studies, for example, by using gray-
scale stimuli on a controlled background and excluding
human or human face stimuli. Human faces/bodies have
faster RTs (Crouzet, Kirchner, & Thorpe, 2010) and highly
decodable neural responses (Kaneshiro et al., 2015;
Carlson et al., 2013; Kriegeskorte et al., 2008) and could
therefore potentially significantly drive the RT–distance
correlations in previous studies. However, we have shown
that these findings are robust when human faces/bodies
are omitted (also note that correlations were calculated
within participants, rather than on the pooled group
means as in previous work). Carlson et al. (2014) argue
for a conceptual difference between the two animacy
categories, suggesting that “inanimate” is not an equiva-
lent category to animate, for example, because inanimate
is negatively defined (i.e., as “not animate”) and is less re-
stricted than the animate category. Furthermore, a clear
hierarchical subdivision (e.g., vertebrate–invertebrate)
has been reported only within the animate category (Kiani
et al., 2007).

We observed that degraded versions of animate objects
had compressed toward the boundary, consistent with
the RT–distance hypothesis. The lack of compression for
the inanimate side of the boundary, and the absence of
strong correlations between inanimate categorization be-
havior and distance to boundary, suggests that, although
the animate–inanimate distinction is highly decodable,
it does not sufficiently capture the structure of brain rep-
resentations linked to responding “inanimate.” Future
work could explore this issue using a different categoriza-
tion task where both categories are similarly constrained
(e.g., faces vs. tools) or use a different model of the ani-
macy task (e.g., model it as an animal detection task,
instead of animacy categorization). However, it is still
possible that responses to other category dichotomies will
be based on one category versus “not” that category. For
example, a processing bias for faces means that they are
easier to recognize than tools (cf. Wu, Crouzet, Thorpe,
& Fabre-Thorpe, 2015) and an effective face/tool catego-
rization strategy would be to simply try to detect whether
or not a stimulus is a face. In addition, outside the labo-
ratory, objects are categorized effectively without having
to exhaustively test all two-way categorization combina-
tions. Thus, instead of using dichotomous categorization,
applying a different task to examine the RT–distance rela-
tionship might yield new insights, for example, by using
go/no-go tasks (Crouzet et al., 2010; Kirchner & Thorpe,
2006; Thorpe, Fize, & Marlot, 1996).
The amount of compression toward the decision bound-

ary was different between individual exemplars (Figure 9).
Although the degraded stimuli were equated for recog-
nizability in an object-naming task, some showed a larger
displacement toward the boundary than others (e.g.,
compare difference between clear and degraded versions
of the fish and the sheep in Figure 9). The naming task
may be more difficult than the categorization task, and
although they likely rely on the same underlying repre-
sentation (Riesenhuber & Poggio, 2000), different amounts
of evidence may be required for naming versus categoriza-
tion. For example, some animals might be equally easy to
name, but when making an animacy decision, some ani-
mals are more typically animate than others, which likely
makes them easier to categorize than less typical animals.
Typicality ratings for our stimuli indeed increased with dis-
tance to boundary, but again only for the animate stimuli
(Figure 9). Animacy categorization is known to be influ-
enced by typicality (Rosch & Mervis, 1975; Rosch, 1973;
Posner & Keele, 1968). Typical exemplars have also been
found to be more decodable (Iordan, Greene, Beck, &
Fei-Fei, 2016). For example, mammals such as cat, tiger,
and squirrel are all far from the boundary and have
matching fast RTs and high drift rates. Conversely, the fish
is closer to the boundary and is possibly less typically con-
ceived of as “animate,” for example, because fish moves
and behaves differently than mammals. An extreme exam-
ple is the starfish, which is the animal closest to the bound-
ary in the clear condition and is on the wrong side of the
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boundary (i.e., consistently predicted “inanimate” by the
classifier) in the degraded condition, suggesting that it is
hard to categorize it as animate (see Figure 9). We found
that participants mostly categorized the starfish as inani-
mate and that, when asked, some reported that they do
not consider it an animate object. Note that, to observe a
correlation between distance to the boundary and RTs,
distances and RTs have to systematically differ between
exemplars in the same category. Our results thus provide
some support for the presence of a more continuous
than dichotomous neural representation of animacy in
the brain (cf. Sha et al., 2015; Connolly et al., 2012).
Further evidence in support of an animacy asymmetry

comes from our observation that inanimate stimuli in
general needed to be blurred more to equate their rec-
ognizability to animate exemplars (see Methods section).
This suggests that animate objects are more homoge-
nous than inanimate objects; thus, there is greater vari-
ance in the “inanimate” than “animate” category (which
could be caused by the lack of categorical structure in
inanimates). This is consistent with animate objects in
general sharing more features than inanimate objects
(Garrard, Ralph, Hodges, & Patterson, 2001; McRae, de Sa,
& Seidenberg, 1997). The blur filter removes details
from the stimuli, but object shape is preserved. It could
be the case that the general shape within the broad
category of animate objects is more similar and provides
more alternatives (cf. Bracci & Op de Beeck, 2016).
Although some higher-level animal subdivisions might be
visually dissimilar (e.g., compare fish with birds), sub-
groups often share similar shapes. For example, outside
the laboratory, to recognize a blurry zebra (e.g., without
glasses), likely alternatives that have similar shapes (e.g.,
horse, deer, moose) need to be eliminated. In contrast,
viewing a blurry piano provides less alternatives, which
share the same shape. Together, this supports the notion
that inanimate and animate are not equivalent categories,
which is consistent with patient studies that found selec-
tive deficits in recognition of animate or inanimate objects
(Caramazza & Mahon, 2003; Caramazza & Shelton, 1998).
Future research could explore whether homogeneity of
the category determines the effect of degrading stimuli,
by using the distance-to-bound approach with more
homogenous groups of inanimate objects, such as tools
or fruits, or restricting the animate category to only do-
mestic animals.

Drift Rate Is Predicted by Distance to Boundary

The drift rate parameter from the LBA model more di-
rectly reflects the speed of evidence accumulation and
builds on previous work that used RT as a proxy for
the decision process (Ritchie et al., 2015; Carlson et al.,
2014). We found that correlations with LBA drift rate
were on par with those for RT and that there were some
qualitative differences in the trajectories. The correlation
between LBA drift rate and distance peaked earlier than

RT and had an earlier onset—although this should be in-
terpreted with caution as earlier onsets can be caused by
stronger signal-to-noise rather than true underlying dif-
ferences (Grootswagers et al., 2017). Moreover, drift rate
followed a different trajectory than the category decoding
trace (as seen in Figure 8), which suggests that it may
capture a different part of the (neural) decision process.
It is interesting that the drift rate trajectory does have a
dual-peak structure, which resembles previous results of
MEG animacy decoding (Ritchie et al., 2015; Cichy et al.,
2014; Carlson et al., 2013) but was not present in our
MEG decoding results. This dual-peak structure may sug-
gest that, at some point (in the period between the
peaks), distance to boundary is used to a lesser extent
for forming the categorization decision. Alternatively,
the decision could have already been made after the first
peak, as categorization happens very fast (Crouzet et al.,
2010; Kirchner & Thorpe, 2006; Thorpe et al., 1996), and
the second peak reflects, for example, a feedback process
that has the same representational structure (i.e., the
same distances). Taken together, it is sensible to relate
distance directly to evidence accumulation using drift
rate as it is more closely related to decision processes
and therefore may successfully relate to a wider range
of behavior than RT alone. Future research could explore
this further by using tasks that allow for more variance
in RT and accuracy (e.g., incentivizing different speed–
accuracy trade-offs). Moreover, as we showed that it is
possible to link one decision model with neural distance
to boundary, this could be tested with other models of
decision-making, such as exemplar-based models of
choice (Nosofsky & Stanton, 2005) or their LBA-based
extension (Donkin & Nosofsky, 2012).

The Neural Dynamics of Visual
Object Categorization

We found that significant decoding performance of clear
stimuli started around 70 msec and peaked at 345 msec,
occurring later for degraded stimuli (165 and 380 msec,
respectively). Note that differences in decoding onsets
have to be interpreted with caution, as a later onset
can be a result of lower overall decoding performance
or differences in variance (Grootswagers et al., 2017; Isik
et al., 2014). Still, we observed that the first local maxi-
mum in the decoding trace for the clear objects was ab-
sent for the degraded objects (Figure 6A). This difference
suggests that some information in the early response is
predictive of animacy in the clear condition. As the tim-
ing of the early peak corresponds to early to midlevel
visual areas (Cichy et al., 2016; VanRullen & Thorpe,
2001; Thorpe et al., 1996), the predictive information in
the first local maximum in the clear decoding condition
could reflect low-level visual information (e.g., high spa-
tial frequencies) that is removed by degrading the stimuli
(Kirchner & Thorpe, 2006).
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We found that the peak correlation between distance
and drift rate occurred at 210 msec and the onset of
significant correlations with drift rate was at 100 msec
(Figure 7). These values did not match the onset or
peak of decoding, suggesting that the optimal time for
readout does not necessarily correspond with the time
that the information can be best decoded from the sig-
nal. In contrast, Ritchie et al. (2015) found correlations
during the whole period of significant decoding. A pos-
sible explanation for this difference is that the fast-paced
task and short stimulus duration (66 msec compared
with 500 msec in Ritchie et al., 2015) in the current study
may have promoted a faster readout of animacy by
exploiting low-level visual cues (Hong, Yamins, Majaj, &
DiCarlo, 2016; Kirchner & Thorpe, 2006; Thorpe et al.,
1996). This would, in addition, explain why exemplars
such as banana and helicopter, which have more rounded
shapes than other inanimate objects, are closer to the
boundary (Figure 9).

Conclusions

In this study, we tested whether representational space is
compressed when degrading stimuli and whether this
matches behavior in a dichotomous categorization task.
We found that degrading stimuli made them harder to
categorize and that this was accompanied by a compres-
sion of representational space, as predicted by the RT–
distance hypothesis. This compression was only observed
for animate stimuli, suggesting an asymmetry in the neu-
ral representation of animacy. Moreover, we showed that
neural distance to boundary can be directly related to a
current model of evidence accumulation (LBA) as the
fitted drift rates from this model correlated with distance
to the boundary. Connecting linear classifiers to models of
the decision processes is a step toward relating brain imag-
ing to behavior, a fundamental and complex challenge
in cognitive neuroscience (de-Wit et al., 2016; Purcell &
Palmeri, 2016; Forstmann & Wagenmakers, 2015).
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