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Abstract: The results of a pilot study into the application of an unsupervised clustering approach to the analysis of catchment-
based National Geochemical Survey of Australia (NGSA) geochemical data combined with geophysical and geological data
across northern Australia are documented. NGSAMobileMetal Ion® (MMI) element concentrations and first and second order
statistical summaries across catchments of geophysical data and geological data are integrated and analysed using
Self-OrganizingMaps (SOM). Input features that contribute significantly to the separation of catchment clusters are objectively
identified and assessed.

A case study of the application of SOM for assessing the spatial relationships between Au mines and mineral occurrences in
catchment clusters is presented. Catchments with high mean Au code-vector concentrations are found downstream of areas
known to host Au mineralization. This knowledge is used to identify upstream catchments exhibiting geophysical and
geological features that indicate likely Au mineralization. The approach documented here suggests that catchment-based
geochemical data and summaries of geophysical and geological data can be combined to highlight areas that potentially host
previously unrecognised Au mineralization.

Keywords: Regolith; Geochemistry; Geophysics; Geology; Self-Organizing Maps; National Geochemical Survey of
Australia

Received 10 October 2016; revised 7 March 2017; accepted 8 March 2017

Regolith cover

Unweathered rock outcrop is rare across the Australian continent
with more than 85% of its surface being covered by regolith
(Wilford 2012). Although the majority of the continent is classified
as having an arid to semi-arid climate, the wide range of regolith
types found across Australia is a result of contrasting parent
materials, long-term landscape evolution, diverse vegetation
communities, and (palaeo-)climate extremes (Taylor & Butt
1998; Mann et al. 2012; Pain et al. 2012). The ubiquity of the
regolith and its highly diverse characteristics present significant
challenges to developing a clear understanding of the nature of these
surface materials. In light of this challenge, a key theme of the
UNCOVER initiative is to characterise regolith geochemical and
geophysical properties (UNCOVER 2012). Information on regolith
properties and formative (consistent with L1334) processes is
crucial for developing new mineral exploration models in areas
where prospective bedrock is concealed by surface material.

The National Geochemical Survey of Australia

Recently, Geoscience Australia with its State/NT partners
embarked on a systematic continental-scale geochemical sampling
program, the National Geochemical Survey of Australia (NGSA;
Caritat & Cooper 2011a). The aim of the NGSA project was to
provide ultra-low (spatial) density compositional data and infor-
mation regarding the near-surface regolith to advance exploration
for energy and mineral resources. The results of NGSA analyses are
being used to improve our understanding of the concentration

levels, spatial distribution, associations and their genesis and
significance, transport processes, and sources and sinks of
geochemical elements in the near-surface environment (e.g. see
Caritat & Cooper 2016).

One of the key challenges to analysing the NGSA dataset is that it
contains a large number of variables or features collected across
nearly all the geological and biological regions of Australia. Recent
research has explored the use of robust multivariate statistical
analysis to identify and understand the distribution of geochemical
elements analysed in the NGSA data (e.g. Caritat & Grunsky 2013;
Scealy et al. 2015). Caritat & Cooper (2016) provide an up-to-date
summary of studies using NGSA data for investigating geochemical
processes for mineral exploration, agriculture and understanding
contamination sources at continental and regional scales. Some of
the studies that specifically relate to mineral exploration and employ
methods for multivariate analysis are briefly summarized below as
context to the present work.

Caritat et al. (2011) identified geochemical patterns in theMobile
Metal Ions® (MMI) analyses related to the spatial distribution of
generalised lithological types by comparing geochemical patterns in
the NGSA data to surface geology polygons. For example, samples
taken from within the Great Artesian Basin and Murray-Darling
Basin sedimentary provinces were found to exhibit elevated Ba, Ga
and Sr concentrations. Conversely, elevated La, Ce and other rare
earth elements (REEs) were found to be spatially coincident with
areas where felsic intrusive rocks dominate, such as eastern
Australia and SW Western Australia (WA). High-grade meta-
morphic terrains were spatially correlated with moderate concentra-
tions of MMI Cs, K, Mo, Rb and W.
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Mann et al. (2013) analysed the relationship between mineral
deposits and MMI element concentrations by identifying catch-
ments with elevated commodity element concentrations and also
containing mineral deposits. They found a reasonable spatial
correlation with elevated Au concentrations and provinces known
to host major Au mineralization. This observation was used to
suggest that elevated Au concentrations in areas that do not
contain known Au mineralization potentially form a useful
exploration lead into areas such as the western Albany-Fraser
belt in WA.

Caritat & Grunsky (2013) used principal component analysis to
summarize and interpret NGSA geochemical data (total concentra-
tions). They found that the first four principal components (PCs)
accounted for 59% of the variance in the dataset. The element
associations represented by these PCs relate to geological processes
such as lithological controls, weathering, transport and secondary
mineral precipitation. Based on these findings, Caritat & Grunsky
(2013) identified lithological prediction (e.g. Grunsky et al. 2017)
and mineral prospectivity analysis (e.g. this study) as potential uses
of the NGSA dataset.

Spatial support

The interpolation of NGSA point data, which represent the overall
sediment geochemical characteristics of catchments, into 2D maps
via linear kriging of for instance the top ranked PCs generates
continuously varying surfaces (rasters). The resulting surfaces do
not conform to the discretised areal summary (watersheds or
catchments) of geochemical characteristics that the NGSA data
represent. While this may be a valid approach for defining broad
continental-scale spatial trends in geochemical concentrations, it
assumes a different spatial support, e.g. point locations, to that
represented by catchment outlet sediments, which are transported
sediments derived from upstream sources. Thus, NGSA data
provide a representative indication of the overall geochemical
characteristics of rocks and soils within a catchment (Caritat &
Cooper 2011a) and potentially a catchment’s entire upstream
watershed.

In this study, we use an approach that does not assume the
processes under consideration to be continuously varying in
geographic space, that is, we generate spatial models using a
multivariate statistical approach that not only preserves the
catchment-based spatial support but also maintains the direct
contribution of input features to quantifying the similarities and
dissimilarities between catchments. Furthermore, we integrate
geophysical and geological data, widely available across the
Australian continent, with geochemical analyses to provide a
deeper understanding of bedrock and regolith characteristics within
NGSA catchments across much of northern Australia. This is to our
knowledge only the second time such an approach has been applied
to interrogating cross-disciplinary datasets with the aim of
elucidating geological processes (see below).

Self-Organizing Maps

Self-Organizing Maps (SOM; Kohonen 1982, 2001) is an
unsupervised clustering method useful for finding natural groups
within complex multivariate data. SOM aids visualization and
interpretation by reducing n-dimensional (nD) multivariate data to a
two-dimensional ‘map’ where the spatial arrangement of neigh-
bouring groups is representative of their similarities in nD space
(Penn 2005; Bierlein et al. 2008). SOMuses vector quantization and
measures of vector similarity, typically Euclidean distances, as a
means of grouping input samples. The resultant groups or nodes are
represented by a vector (code-vector) that summarises the properties
of the associated input samples. Visualization of SOM component

planes assists the interpretation of patterns and structures within the
input data (Penn 2005; Bierlein et al. 2008; Löhr et al. 2010). For
more detailed descriptions of SOM implementation and theory see
Sun et al. (2009) and Cracknell et al. (2015).

Unlike other statistical clustering methods, such as factor
analysis or k-means, SOM does not assume Gaussian distributions
(Löhr et al. 2010; Žibret & Šajn, 2010). This is an important
consideration for the analysis of geochemical data as these data are
rarely normally or even log-normally distributed (Reimann &
Filzmoser 2000). Previous research demonstrating the application
of SOM for the analysis of geological and environmental patterns in
geochemical data include Lacassie et al. (2004), Lacassie & Ruiz
Del Solar (2006), Tsakovski et al. (2009), Sun et al. (2009), Löhr
et al. (2010) and Žibret & Šajn (2010). In contrast to the research
cited above that only analysed geochemical data, Cracknell et al.
(2014) used SOM to combine interpolated soil geochemical and
geophysical data. The resulting SOM clusters identified spatially
consistent domains representing subtle geochemical contrasts
related to changes in primary magmatic composition and
hydrothermal alteration.

Study area

The study region covers c. 1.3 million km2 across the Northern
Territory and western Queensland in northern Australia (Fig. 1).
This area was chosen primarily for the development of analysis
methods documented in this pilot study as it is large enough to cover
a substantial number of NGSA catchments but small enough to
rapidly generate results. Furthermore, the study area contains a
range of mineralization styles and includes geological materials
from a wide variety of ages ranging from Proterozoic to Cenozoic
(including Quaternary sediments; Fig. 2) and lithological types
(Fig. 3). Finally, northern Australia is currently the subject of
attention and investment (e.g. the 2016 – 2020 ‘Exploring for the
Future’ Programme of the Australian Government) and is thus both
a topical and timely focus for the demonstration of the cross-
disciplinary SOM approach developed here.

The oldest rocks in the study area are Palaeoproterozoic to
Mesoproterozoic in age and are found in the Arunta, Tanami,
Davenport, Tennant Creek, Isa, McArthur and Georgetown
geological regions (see Fig. 2). Their dominant rock types are
granulite facies metamorphosed felsic and mafic volcanics, fine
grained clastic and carbonate metasediments, amphibolite facies
turbidites and carbonaceous metasediments, folded greywackes and
siltstones, clastic sedimentary rocks and metamorphosed volcanic
rocks intruded by mafic and felsic (Blake et al. 1987; Ferenczi &
Ahmad 1998; Wygralak & Bajwah 1998). The economically
significant Isa and McArthur geological regions, as well as the
Georgetown geological region, are hosts to a range of mineralization
and deposit types, e.g. Au, base metals, Sn, W and Ta (Blake et al.
1987; Ahmad 1998; Ferenczi & Ahmad 1998; Wygralak & Bajwah
1998; Budd 2001; Withnall & Hutton 2013). The main Palaeozoic
geological regions in the study area are the Georgina and Wiso
geological regions (see Fig. 2). Their dominant rock types are clastic
and carbonate sedimentary rocks, and regolith (Smith 1972; Kruse
& Munson 2013). Known resources include phosphate and U, as
well as groundwater, oil and gas (Smart et al. 1972; Radke 2009;
Kruse & Munson 2013).

Aims

This study integrates catchment-based MMI geochemical data with
geophysical imagery and geological information using SOM with
the aim of objectively identifying groups of catchments with similar
geochemical, geophysical and geological properties. Once identi-
fied, these catchment clusters are visually analysed in both data
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space and geographic space. The integrated interrogation of
catchment clusters –with respect to other geoscience data, including
lithology, mineral deposits and mineral occurrences – are then used
to formulate a Au mineral exploration model.

Materials and methods

All data used are publicly available from Geoscience Australia and
were transformed to the Lambert Conformal Conical (Geoscience
Australia) projection prior to analysis.

Geochemical data

Catchment-based geochemical data were sourced from the NGSA
(Caritat & Cooper 2011a). A total of 225 NGSA catchments, c. 1/6
of the total number of NGSA catchments, were selected for the
present SOM analysis. Analysis was performed on bulk properties
(e.g. pH, electrical conductivity) and theMMI geochemical element
assay data, the latter being determined on the coarse fraction
(<2 mm) of top outlet sediment (TOS) samples (0 – 10 cm depth). A
comprehensive quality assessment of the NGSA data describing

Fig. 2. Generalised geological regions (Blake & Kilgour 1998) across the study area, colour coded by age. For interpretation of the references to colour in
this figure, the reader is referred to the online version of this article.

Fig. 1. Map of Australia showing selected
National Geochemical Survey of Australia
(NGSA; Caritat & Cooper 2011a) sample
locations (red points) and the 225
catchments selected for this study (grey
polygons) overlain with the Australian
river network (blue polylines)
(Geoscience Australia 2003). For
interpretation of the references to colour in
this figure, the reader is referred to the
online version of this article.
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precision, bias, and censoring proportion is in the public domain
(Caritat & Cooper 2011b). The scope of the present study was
limited to the MMI data because this method extracts loosely
adsorbed ions from the surfaces of minerals, organic matter and
Fe-oxyhydroxides; thus, MMI results can be indicative of elements
that have moved relatively recently through the regolith, which can
reflect unusual element concentrations at depth potentially
indicative of lithology or mineralization (Mann 2010).
Consequently, these data are well suited to potentially identifying
buried mineral deposits.

Bulk sediment properties data used included pH, electrical
conductivity (EC), and percent fractions of clay, silt and sand. EC
values were log transformed to approximate a normal distribution as
these data are typically log-normally distributed (McKenzie et al.
2008). One catchment within the study area was excluded from
analysis due to missing bulk properties data.

MMI element data that contained half or more samples with
censored results (below the detection limit) were excluded from
analysis. For the remaining 42 elements (Ag, Al, Au, Ba, Ca, Cd,
Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, K, La, Li, Mg, Mn, Mo,
Nd, Ni, P, Pb, Pr, Rb, Sc, Se, Sm, Sr, Tb, Th, Ti, U, V, Y, Yb, Zn and
Zr), censored values were replaced by half the appropriate detection
limit, a common practice in geochemistry (e.g. Botnick & White

1998; Helsel 2005; Antweiler & Taylor 2008; Carranza 2011). The
data were then centred log-ratio (clr) transformed as described by
Aitchison (1986) and in-line with other studies investigating the
spatial variability of NGSA geochemical data (e.g. Caritat &
Grunsky 2013; Mueller et al. 2014; Furman et al. 2016).

Geophysical data

The latest versions of total magnetic intensity (MAG; Percival
2014) with variable reduction-to-pole corrections applied (Version
6), filtered total count (dose) radiometrics Version 3 (TC; Minty
et al. 2009) and spherical cap Bouguer gravity anomaly (GRAV;
Tracey et al. 2007) raster data were clipped to the study area extent
and resampled from their original resolutions to a 1000 m cell
resolution using bilinear interpolation. Geophysical data resampling
was carried out to avoid memory usage errors when processing the
grey level co-occurrence matrix (GLCM; see below) textures and to
enhance regional-scale geological features.

From the cells intersecting a given catchment, first order spatial
statistics (mean and standard deviation) and second order spatial
statistics (e.g. GLCM) for each geophysical input were calculated.
The resulting first and second order spatial statistics were appended
to the geochemical data acquired from each catchment. First order

Fig. 3. Generalised lithologies (Raymond & Gallagher 2012) across the study area, colour coded by type. For interpretation of the references to colour in
this figure, the reader is referred to the online version of this article.

Table 1. Quantization and topological errors for 10 different combinations of X and Y dimensions with c. 200 node

X dim Y dim Nodes Quantization error Topological error

* 6 33 198 1.13 7.49
8 25 200 1.14 7.81
10 20 200 1.13 8.00
12 17 204 1.13 8.20
14 14 196 1.15 8.48
16 12 192 1.14 8.28
18 11 198 1.14 8.20
20 10 200 1.14 7.96
22 9 198 1.14 7.93
24 8 192 1.14 8.00

Optimal SOM map dimensions (6 by 33) indicated by *.
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spatial statistics were obtained by summarizing all cell values across
a given catchment. Second order spatial statistics (texture) were
obtained by assessing the spatial variability of all cell values at a
particular scale (offset) within a given neighbourhood (Gonzalez &
Woods 2008) usingGLCM (Haralick et al. 1973). ThemeanGLCM
contrast index averaged across the four principal directions (north–
south, NE–SW, east–west and SE–NW) was used to represent
spatial texture across a given catchment for 10 offsets with
increments of c. 2 km (i.e. 2, 4, …, 20 km).

GLCM contrast is defined as (Baraldi & Parmiggiani 1995):

GLCMcon ¼
XNg�1

i¼0

XNg�1

j¼0

(i� j)2g(i, j)

where Ng is the number of grey levels in an image, i and j represent
the ith and jth grey levels respectively and g(i, j) is defined as the
(i, j)th entry in the GLCM such that:

g(i, j) ¼ p(i, j)
PNg�1

i¼0

PNg�1
j¼0 p(i, j)

where p(i,j) is the occurrence of unique pairwise combinations of
grey levels i and jmeasured at two pixels separated by a given offset.
GLCM contrast is correlated with spatial frequencies such that a
high value of GLCMcon for a given offset and measured value
indicates a large relative difference at that offset distance (Baraldi &
Parmiggiani 1995).

Ancillary data

The OZMIN database (Ewers et al. 2002) of mines and mineral
deposits and occurrences was used to assess the type and frequency
of mineral occurrences within individual catchment clusters. Terrain
slope was derived from GEODATA 9 second (c. 250 m resolution)
digital elevation model (DEM) version 3 (Geoscience Australia
2008) using the slope function in QGIS version 2.12.1. The
1:2 500 000 scale Surface Geology of Australia (Raymond &
Gallagher 2012) was used to summarize the dominant generalized
lithological units intersecting a given catchment cluster.

SOM implementation

A total of 83 input variables representing geochemical, geophysical
and geological properties were range normalised to 0–1 using a
linear transformation. SOMwas implemented using the R statistical
programming language package som (Yan 2010), which is based on
SOM-PAK (Kohonen et al. 1996). Multiple trials of different X and
Y SOM map dimensions for c. 200 randomly seeded nodes with
hexagonal topologies were initiated and run for over 10 000
iterations with a Gaussian neighbourhood function and inverse
learning function (Kohonen et al. 1996). Optimal SOM map
dimensions were identified by minimizing quantization and
topological errors. For more information on the theory and
derivation of SOM quantization and topological errors used here
see Cracknell et al. (2015).

Cluster selection and properties

Once an optimal SOM model was selected for c. 200 nodes, a
hierarchical dendrogram agglomerative clustering method was
employed to merge SOM nodes based on their code-vectors
(Vesanto & Alhoniemi 2000; Cracknell et al. 2015). The Davies-
Bouldin Index (DBI; Davies & Bouldin 1979), which estimates
cluster similarity using the maximum mean ratio of cluster
dispersion and pairwise centroid distances, was used to identify
an optimal number of clusters (i.e. merged SOM nodes).

Input variables that contributed significantly high or low SOM
code-vector values, with respect to other cluster code-vector values,
were identified using the following formula, modified from
Siponen et al. (2001):

ri ¼ s(i, k)
1

c� 1

X
j=i

s(j, k)
� 1

where s(i,k) is the mean cluster i code-vector for input variable k and
s( j,k) is the mean cluster j code-vector for input variable k. This
ratio provides an indication of the relative difference of k in cluster i
as compared to the mean code-vector values of all other clusters j
(Siponen et al. 2001). For example, values >>0 indicate clusters
with substantially higher mean code-vector values compared to the
mean values of all other clusters. Conversely, values <<0 indicate
clusters with substantially lower mean code-vector values compared
to the mean values of all other clusters. Variables contributing
significantly higher (or lower) values to a given cluster are identified
as those with code-vector ratios greater (or lower) than one standard
deviation from the mean code-vector ratio.

Results

A 6 by 33 (X by Y) SOMmap with 198 nodes was found to result in
the minimum mean quantization and topological errors (Table 1).
The DBI as a function of merged SOM nodes (up to 25 merged
nodes) identified 19 as the optimal minimum number of clusters
(Fig. 4), although other local minimum DBI values were observed
for 4 and 8 clusters. A plot of the spatial distribution of resulting
catchment clusters is shown in Figure 5.

The relative positions of catchment clusters on the Au component
plane plot are presented in Figure 6a. The catchment clusters with
significantly high mean Au code-vector ratios (warm colours) plot
together near the top of the SOM map (refer to the online version of
this article). Figure 6b plots cluster mean code-vector ratios of Au
concentration as compared to all other clusters. Clusters 15, 14, 17, 16
and 12 are identified as exhibiting mean Au code-vector ratios greater
than one standard deviation above the mean Au code-vector ratio.

Figure 7a maps the locations of clusters identified in Figure 6b
that display mean Au code-vector ratios greater than one standard
deviation above the mean (bold outlines), as well as the clr
transformed values of MMI Au concentrations (colour scale),
overlain with Au mines and mineral occurrences (red stars).
Figure 7b plots catchment clusters with high Au mean code-vector
overlain with terrain slope as greyscale pixels. At first glance there
does not appear to be any spatial relationship between Aumines and
high catchment Au concentrations or catchment clusters with high
mean Au code-vector ratios, however, catchments with high mean
Au code-vector ratios are positioned at the transition from relatively
high slope to low slope (i.e. break in slope) downstream from Au
mine and mineral occurrence locations. Visual comparison of
catchment clusters 15, 14, 17, 16 or 12 indicates that 41 out of these

Fig. 4. Davies-Bouldin Index (DBI: Davies & Bouldin 1979) as a function
of the number of merged SOM nodes for the 6 by 33 SOM model.
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54 catchments (76%) have a portion of their extent intersecting a
break in slope.

Figure 8 shows catchments with high mean Au code-vectors
(clusters 15, 14, 17, 16 or 12) and upstream catchment clusters 4,

6 and 9 identified by visually interrogating mapped relationships.
Catchment clusters 4, 6 and 9 were selected by manually querying
regions upstream of catchment clusters 15, 14, 17, 16 and 12 and
taking note of regularly occurring cluster indices. These upstream

Fig. 5. Spatial distribution of the 19 catchment clusters for SOM map dimensions 6 by 33 and 198 nodes. For interpretation of the references to colour in
this figure, the reader is referred to the online version of this article.

Fig. 6. (a) 2D SOM map and Au component plane with division of final catchment clusters and (b) mean code-vector ratios for cluster Au concentration.
Five clusters display higher that one standard deviation from the mean (dashed line) code-vector ratio. For interpretation of the references to colour in this
figure, the reader is referred to the online version of this article.
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catchment clusters are found to have a close spatial association
with catchments hosting Au mines and mineral occurrences and
plot as immediate neighbours to each other on the SOM 2D map
(Fig. 6a). By combining stream network information the proportion
of catchments containing Au mines that are directly upstream of one
or more NGSA catchment clusters 15, 14, 17, 16 or 12 was
calculated. Of the 31 NGSA catchments in the study area that
contain Au mineralization, 28 have flow paths that are not internally
draining, i.e. we have omitted three catchments (located in the
southern region of the Northern Territory) with confused flow paths.
Of these 28 catchments (13% of the total number of catchments), 21
are linked downstream to NGSA catchment clusters with high mean
Au code-vector (24% of the total number of catchments). This
indicates that 75% of the catchments with Au mineralization are
upstream of NGSA catchment clusters 15, 14, 17, 16 or 12. If
catchment clusters 4, 6 and 9 (a further 18% of the total number of
catchments) are included, 27 (96%) of the 28 Au mineralised
catchments are upstream of catchment clusters identified in this
study. In contrast, of the 63 catchments (28% of the total number of

catchments) within the study area that display high Au concentra-
tions (i.e. Au clr values between −2.00 to −1.50 and −1.50 to
−1.29, see Fig. 7a) only 10 (16%) are located downstream of
catchments with known Au mines and mineral occurrences.

Table 2 summarizes the significantly high and low code-vector
values for all catchment clusters with the frequency of mines and
mineral occurrences for a given (dominant) commodity that
intersects these clusters. The upstream catchment clusters 4 and 6
are characterized by low concentrations in fine clastic components
(i.e. clay and silt). Cluster 4 displays high contrast in magnetics for
distances less than 10 km and low contrast in magnetics for greater
than 10 km. Cluster 9 exhibits a high contrast in gravity for
wavelengths less than 10 km and low contrast for wavelengths of
12 – 14 km. All upstream catchment clusters (4, 6 and 9) contain a
high frequency of Au mines and mineral occurrences with cluster 4
also containing many Agmines, cluster 6 Cumines and cluster 9 Cu
and U mines.

Table 3 ranks generalized lithological units within clusters 4, 6
and 9 based on differences in the proportion of area for a given unit

Fig. 7. (a) Spatial distribution of clusters with mean Au concentration code-vector ratios greater than one standard deviation from the mean, and Au mines
and mineral occurrences locations overlain on colour coded NGSA catchment centred log-ratio transformed Au concentration. (b) NGSA catchment clusters
with high Au mean code-vectors overlain on terrain slope. Note that clusters with high Au code-vector ratios are found immediately downstream of most Au
mines at the break in slope. For interpretation of the references to colour in this figure, the reader is referred to the online version of this article.
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compared to their overall proportion across the entire study area.
Hence, positive values highlight lithological units that cover a larger
proportion of the cluster area with respect to the mean of all
catchments. Clusters 4 and 9 contain large proportions of felsic
intrusive rocks and low proportions of surficial or regolith units.
Clusters 4 and 6 contain high proportions of medium-graded
metamorphic rocks, while clusters 6 and 9 show high proportions of
sedimentary rocks and low proportions of high-grade metamorphic
rocks.

Discussion

Present work

NGSA samples were collected as catchment outlet (overbank or
floodplain) sediments. Overbank sediments have been shown to be
more representative of the geochemical composition of the
catchment than stream sediments (Ottesen et al. 1989). This is
because the suspended sediment load in a flood event, from which
the overbank or floodplain sediments are primarily derived, is
sourced from a greater area than the sediments within the stream
channel, which are typically derived from local point sources. Thus,
catchment outlet sediments are assumed to represent an integrated
sample of the entire catchment area (Ottesen et al. 1989; Bølviken
et al. 2004). Furthermore, outlet sediments are ubiquitous across a
diverse range of geomorphological and climatological regions. The
results presented in this study indicate that the geochemical
characteristics of outlet sediments sampled from large river
systems are likely to be representative of both the immediate
catchment watershed and the upstream drainage basin from which
these sediments are potentially derived.

TheMMI extraction, however, was developed to mainly mobilise
the labile fraction of chemical elements, presumably from the outer
surfaces of soil particles (Mann 2010). Accordingly the MMI
response can be subdued after significant rain and flooding, but can
also reform relatively quickly (Mann et al. 2005). Thus the system

investigated geochemically here is a fairly dynamic one, especially
in the region of interest where rainfall is seasonal (typical dry and
wet seasons in winter and summer respectively). The reasonwhy the
MMI geochemical characteristics of outlet sediments sampled from
large river systems are likely to be representative of both the
immediate catchment watershed and the upstream drainage basin is
through a combination of mechanical transport of sediment grains
and hydromorphic dispersion of geochemical signatures through
groundwater flow systems. Whilst the sediment matrix is physically
inherited from both the catchment where the outlet sediment is
sampled and potentially that upstream, the surface adsorbed, labile
chemical (MMI) signature may form as groundwater rises to the
surface at topographic breaks in slope. If groundwater is in direct or
indirect contact with mineralised basement in the upstream (part of
a) catchment it can acquire and transport downstream a geochemical
signature diagnostic of this (e.g. Leybourne & Cameron 2010). In
the case of Au, the MMI response in sediments likely arises from a
combination of the etching of clastic gold grains (placer pathway)
and the extraction of labile, adsorbed fine secondary Au on particle
surfaces (hydromorphic pathway) (A. Mann, pers. comm. 2017).

The information in Table 2 summarizes catchment cluster
characteristics that contribute significantly to their dissimilarities
(or similarities) to other clusters. This information provides a
tentative indication of the lithological origins of the outlet sediments
analysed. For example, clusters 1, 2, and 4 have high Ce, La and
REEs suggesting felsic igneous dominant sources (Caritat et al.
2011), while also exhibiting a high total count first order mean.
Clusters 1, 3 and 4 display high sand content, high Th and Zr.
Clusters 1 to 4 display significantly low pH, EC, Au, Cu, Ca, Ba,
Co, Mg, Ni and Sr. Many of these elements are typically associated
with mafic igneous lithological sources. These observations suggest
felsic igneous sources for clusters 1–4. Clusters 1 and 3 display low
contrast in gravity at wavelengths of less than or equal to 10 km and
clusters 2 and 4 display low contrast in magnetism at wavelengths
greater than 10 km. The geophysical characteristics of these clusters
potentially provide an indication of the maximum ‘size’ of felsic

Fig. 8. Spatial distribution of catchments with high Au concentration (colour intensity indicates Au concentration rank, see Fig. 6) and neighbouring
upstream catchment clusters 4, 6 and 9. For interpretation of the references to colour in this figure, the reader is referred to the online version of this article.
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igneous features, e.g. low gravity contrasts within plutons and high
magnetic ‘alteration’ in contact zones. Furthermore, the majority of
clusters 1–4 either intersect Proterozoic geological regions such as

the Arunta, Isa or Georgetown regions, or are immediately
downstream of one, e.g. north and NE of the Tennant Creek, and
east of the South Nicholson geological regions. These clusters also

Table 2. Summary of upstream catchment cluster high and low code-vector values and the frequency of intersecting mines and mineral occurrences based on the
OZMIN database (Ewers et al. 2002) for a given mineral commodity

High code to vector ratio Low code to vector ratio Commodity (frequency)

Cluster 1 Sand, Ce, Cs, Eu, Fe, Gd, La, Nd, Pr, Rb,
Sc, Sm, Tb, Th, Ti, Zr
TC-mean, TC-14con to TC-20con,
GRAV-std, GRAV-12con to
GRAV-20con

pH, EC, Silt, Clay, Ag, Au, Ba, Ca, Cd, Co, Cu,
Ga, K, Li, Mg, Mo, Ni, Sr
MAG-mean, TC-8con to TC-10con,
GRAV-2con to GRAV-10con

U3O8 (4), Fe (1)

Cluster 2 Ce, Cr, Cs, Dy, Er, Eu, Fe, Gd, La, Nd, Pb,
Pr, Sc, Sm, Tb, Th, Ti, Y, Yb, Zr
MAG-2con to MAG-8con, TC-mean,
TC-std

pH, EC, Clay, Al, Au, Ba, Ca, Cd, Co, Cu, Ga,
K, Li, Mg, Mn, Mo, Ni, Sr, U, Zn
MAG-mean, MAG-std, MAG-12con to
MAG-18con

Au (1), U3O8 (1)

Cluster 3 Sand, Eu, La, Nd, P, Pr, Rb, Sc, Th, Zr
GRAV-std, GRAV-12con to GRAV-
18con

pH, EC, Silt, Clay, Ag, Au, Ba, Ca, Co, Cu, Ga,
Mg, Ni, Pb, Sr
MAG-mean, MAG-8con to MAG-10con,
TC-2con to TC-10con, GRAV-6con to
GRAV-10con

P2O5 (3), Mo (1)

Cluster 4 Sand, Ce, Cr, Cs, Dy, Eu, Fe, Gd, La, Nd,
Pr, Sc, Sm, Tb, Th, Ti, Zr
MAG-2con to MAG-10con, TC-mean,
TC-std

pH, EC, Silt, Clay, Al, Au, Ba, Ca, Cd, Co, Cu,
Ga, K, Mg, Mn, Ni, Sr, V
MAG-12con to MAG-20con

Ag (5), Au (4) Co (1), Cu (1), P2O5 (1)

Cluster 5 Sand, P, Rb Silt, Clay, Co, Pb Au (2), Ag (1)
Cluster 6 Nd, Zn

MAG-10con
Clay, Co, Cs, Pb, Se, V
TC-mean

Au (5), Cu (3), Mn (1), P2O5 (1), U3O8 (1)

Cluster 7 TC-2con to TC-6con Cr, Cs, Pb
MAG-std, TC-18con to TC-20con

Au (2), Cu (1)

Cluster 8 MnMAG-12con to MAG-20con,
TC-2con to TC-10con

Cr, Cs, Rb, U
MAG-std, MAG-2con to MAG-10con,
TC-12con to TC-16con

P2O5 (4), Ag (1), Fe (1), Pb (1)

Cluster 9 Dy, Er, Gd, Tb, Y, Yb
TC-4con to TC-10con, GRAV-2con to
GRAV-10con

Cr, Cs, Mo, Rb, Se to Ti, V
GRAV-12con to GRAV-14con

Au (4), Cu (7), Fe (1), P2O5 (1), U3O8 (4)

Cluster 10 MAG-mean, MAG-std, MAG-8con to
MAG-10con, GRAV-mean,
GRAV-2con to GRAV-10con

Fe, Rb, Zn
GRAV-12con to GRAV-20con

Cu (20), U3O8 (7), Au (12), Co (3), Fe (3),
Mn (3), Ag (2), P2O5 (2), Pb (1)

Cluster 11 MAG-12con to MAG-20con, TC-2con to
TC-10con

Rb, UMAG-2con to MAG-4con, TC-std,
TC-12con, GRAV-std

Ag (1), Dmd (1)

Cluster 12 Silt, Clay, Ag, Au, Co, Ga, Pb
TC-2con to TC-10con, GRAV-10con

Sand, La, P, Pr, Zr
TC-mean, TC-std, TC-12con to TC-16con

Au (10), Cu (1), Mn (1), Y2O3 (1)

Cluster 13 MAG-mean, MAG-std, MAG-4con to
MAG-10con, GRAV-2con to GRAV-
10con

Fe, P, Ti
MAG-12con to MAG-16con, GRAV-12con
to GRAV-20con

Cu (6), Au (4), REO (1)

Cluster 14 pH, Silt, Clay, Ag, Al, Au, Cd, Co, Cu, Li,
Mo, Pb, Se, Sr, U, V, Yb
MAG-2con to MAG-10con

Sand, Ce, Eu, Fe, La, Nd, P, Pr, Sm, Th, Ti,
ZrMAG-12con to MAG-20con

Au (3), Ag (2),Cu (2), P2O5 (2),
Mo (1), U3O8 (1), WO3 (1), Zn (1)

Cluster 15 pH, EC, Silt, Clay, Ag, Au, Ba, Cd, Co,
Cu, Ga, Li, Mg, Mo, Pb, Sr, V

Sand, Ce, Dy, Eu, Gd, La, Nd, P, Pr, Sm, Tb,
Th, Y, ZrTC-mean, TC-std

P2O5 (2), Cu (1)

Cluster 16 pH, EC, Clay, Au, Ca, Cd, Cu, K, Li, Mg,
Mo, Rb, Se, Sr, U, V, Zn

Ce, Dy, Eu, Fe, Gd, La, Nd, Pr, Sm, Tb, Th,
YMAG-20con

P2O5 (5), Ag (3), Au (2),
Pb (1), U3O8 (1), Zn (1)

Cluster 17 pH, Clay, Ag, Al, Au, Ba, Ca, Cd, Cu, Ga,
K, Li, Mg, Mn, Mo, Ni, Sr, U, V, Zn
MAG-12con toMAG-20con, TC-16con
to TC-18con to TC-20con, GRAV-
20con

Ce, Dy, Er, Eu, Gd, La, Nd, Pr, Sm, Tb, Th, Y,
YbMAG-2con to MAG-10con, TC-mean,
TC-2con, GRAV-mean

–

Cluster 18 EC, K, U
TC-mean, TC-std, TC-12con to TC-
20con, GRAV-std, GRAV-12con to
GRAV-20con

TC-2con to TC-10con, GRAV-mean,
GRAV-2con to GRAV-10con

Au (8), U3O8 (3), Cu (2), Fe (1), Ni (1), P2O5 (1)

Cluster 19 Al, K, Mn, Mo, P, Zn
MAG-12con toMAG-20con, TC-12con
to TC-20con, GRAV-12con to GRAV-
20con

Dy, Er, Eu, Gd, Tb, Y, Yb
MAG-2con to MAG-10con, TC-2con to
TC-8con, GRAV-mean, GRAV-2con to
GRAV-8con

–

Abbreviations for geophysical code-vectors: MAG, total magnetic intensity; GRAV, spherical cap Bouguer anomaly; TC, total count radiometrics; mean, first order mean across
catchment; std, first order standard deviation across catchment; -Xcon, second order GLCM contrast at a given offset (X) in km. Abbreviations for commodities: Ag, silver; Au, gold;
Co, cobalt; Cu, copper; Dmd, diamond; Fe, iron; Mn, manganese; Mo, molybdenum; Ni, nickel; Pb, lead; P2O5, phosphate; REO, rare earth oxides; U3O8, uranium; WO3, tungsten;
Y2O3, yttrium; Zn, zinc.
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occur together in the lower half of the SOM map (Fig. 6a) with
clusters 1 and 3 on the left hand side and clusters 2 and 4 on
the right.

The high-grade metamorphic terrain of the Arunta geological
region in the SE of the study area is predominantly intersected by
clusters 1 and 18 (Fig. 9). These two clusters are at opposite ends of
the SOM map in Figure 6a and appear to be linked based on their
low contrast in gravity for wavelengths less than 10 km, high
contrast in total count radiometrics for wavelengths greater than
10 km and high total count mean (Table 2). Some of these
geophysical characteristics are coincident with those identified for
catchment clusters 4, 6 and 9, i.e. high contrast in gravity at
wavelengths less than 10 km and high variability in total count
radiometrics. This suggests that a high proportion of metamorphic
rocks within catchment clusters corresponds to unique geophysical
signals.

Clusters 15 and 17 display high Ba, Ga and Sr suggesting regions
with source rocks dominated by sedimentary basins (Caritat et al.
2011), while also displaying high pH and silt and clay materials
further supporting this observation. However, these two clusters
exhibit high Ag, Cd, Cu, Li, Mg, and V and low concentrations of
REEs, Ce and Th. Given that these clusters have been identified as
potential Au mineralized catchments they share similarities with
other clusters displaying high Au concentration: high values for pH,
clay-silt material and EC; low sand concentration; and highly
variable magnetics and gravity, i.e. a mixture of low contrast at long
and short wavelengths. These cluster similarities suggest that the
bulk of the separation is based on the geochemical data for these
clusters.

Future work

In future studies the implementation of additional processing of the
geochemical, geophysical and geological data prior to input into
SOM and more sophisticated analysis of stream networks will
greatly improve the interpretability of catchment cluster character-
istics and aid positive mineral exploration outcomes. In the data pre-
processing phase we suggest imputing censored values, i.e. those
below detection limits, based on the methods described in Caritat &
Grunsky (2013) or similar. This will provide additional geochem-
ical features to analyse. We then believe that the removal of regional
trends in geophysical signals, effectively calculating residual fields,

Table 3. Ranked order of difference in average area proportion of
generalised lithological groups with respect to the proportion covering
catchment clusters 4, 6, and 9

Rank Generalised lithologies
Difference to

average

Cluster
4

1 Felsic intrusive rocks 0.112
2 Medium-grade metamorphic rocks 0.088
3 Felsic volcanic rocks 0.042
4 Dolerite 0.011
5 Mixture of mafic and felsic volcanic

rocks
0.000

6 Basaltic rocks −0.005
7 High-grade metamorphic rocks −0.026
8 Sedimentary rocks −0.044
9 Surficial or regolith units −0.176

Cluster
6

1 Sedimentary rocks 0.082
2 Mixture of mafic and felsic volcanic

rocks
0.005

3 Medium-grade metamorphic rocks 0.002
4 Dolerite −0.002
5 Surficial or regolith units −0.004
6 Felsic volcanic rocks −0.010
7 Felsic intrusive rocks −0.019
8 Basaltic rocks −0.023
9 High-grade metamorphic rocks −0.030

Cluster
9

1 Felsic intrusive rocks 0.087
2 Sedimentary rocks 0.080
3 Basaltic rocks 0.066
4 Volcanoclastic sedimentary rocks 0.004
5 Felsic volcanic rocks 0.003
6 Mixture of mafic and felsic volcanic

rocks
−0.003

7 Medium-grade metamorphic rocks −0.015
8 High-grade metamorphic rocks −0.028
9 Surficial or regolith units −0.191

Fig. 9. Map of the spatial distribution of felsic intrusive rocks and medium- and high-grade metamorphic rocks. Map overlain with catchment clusters
1 and 18. For interpretation of the references to colour in this figure, the reader is referred to the online version of this article.
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will reduce the potential for unreasonable textural outputs.
However, a change in the input features will likely lead to variations
in the optimal number of clusters (Dy & Brodley 2004). Moreover,
an increase in the number of input features in an already high-
dimensional data space will exacerbate the effect of the curse of
dimensionality (Bellman 1961).

The curse of dimensionality describes the increase in the
distance between samples as the number of features increases.
Hence, a focus of further research should investigate dimension-
ality reduction approaches such as the removal of correlated
features and unsupervised feature selection, which identifies
features that contribute most to the separation of clusters (e.g.
Dash et al. 2002a,b; Dy & Brodley 2004; Alelyani et al. 2013).
For example, a simple filter search method proposed by Dash
et al. (2002a) uses an information entropy metric based on sample
distances in data space to identify the overall disorder of a system
given the iterative exclusion of individual input features. This
metric is then used to rank the input features that contribute most
to the separation of samples. Subsequently a wrapper method
(Alelyani et al. 2013) can be used to iteratively obtain cluster
separation metrics, e.g. based on the DBI, for a number of
different SOM map dimensions which are used to identify the
optimal number of ranked features for a given dataset.
Alternatively, weights of evidence (WofE) analysis could be
used to determine the relative importance of input features based
on mineral occurrence information (Bonham-Carter et al. 1989;
Carranza 2009) and may offer a means of identifying relevant
input features.

Due to the spatially restricted nature of stream networks, the
analysis of a subset of catchments located within a regional drainage
basin will aid the development and interpretation of models of
geochemical, geophysical and geological catchment characteristics.
The analysis of catchments located within regional drainage basins
will simplify the construction stream network geometry models.
Carranza (2010a,b) demonstrated the crucial influence that stream
network geometries have on the analysis of stream sediment
geochemical samples. The resulting regional drainage basin models
of catchment clusters across Australia may then be compared in
order to identify similarities and dissimilarities between catchments.

A further refinement in future work would be to incorporate
interpretations of the potential influence of climate, vegetation and
topography on geochemical data across large areas. A number of
national datasets exist that capture such information and could be
integrated into the next generation of SOM based prospectivity
analysis research.

Conclusions

The search for undiscovered mineral deposits across Australia is
shifting to regolith dominated terrains. As a result, today’s mineral
explorers require knowledge of regolith sources and formative
processes in order to develop appropriate prospectivity models. The
ever increasing volume and variety of digital geoscience data
available in the public domain, such as catchment-based geochem-
ical analyses collected for the National Geochemical Survey of
Australia (NGSA), provide an opportunity to formulate new
prospectivity models where bedrock is covered. However, the
challenge is to integrate these multivariate data in a meaningful and
interpretable way.

Unsupervised clustering methods, such as Self-Organising Maps
(SOM), provide an opportunity to identify and visualise patterns in
diverse multivariate data that are not apparent in a low-dimensional
data space. In this study, SOM was used to integrate NGSA
geochemical datawith first and second order summaries of geophysical
data and geological information across regional-scale catchments.
Groups of catchment clusters identified from the analyses of SOM

code-vectors can be linked to regional lithological trends and Au
mineralization potential, however, these catchment clusters must be
interpreted with consideration of the contributing upstream area both
throughmechanical transport of sediment grains and via hydromorphic
dispersion of chemical elements that can bind to particle surfaceswhere
groundwater intersects the land surface. This finding is demonstrated
by analysing and visualizing catchment clusters that exhibit substan-
tially high mean Au MMI code-vector values.

The identification of a high percentage of catchments with high
mean Au code-vector ratios being located downstream from Au
mines and mineral occurrences is a significant result as it suggests Au
is being liberated from areas of Au mineralization and transported
downstream potentially both mechanically and hydromorphically.
Au is subsequently detected by MMI extraction in sediments at or
below the break in slope where hydrological energy decreases
(mechanical transport pathway) and aquifers potentially intersect the
land surface (hydromorphic transport pathway). This information has
been used to define catchments upstream of thosewith highmean Au
MMI code-vector ratios in outlet sediments as potential hosts of Au
mineralization. Three upstream catchment clusters that have a close
spatial relationship with high mean Au code-vector ratios clusters are
identified. These three clusters intersect a high frequency ofAumines
in areas that contain a mixture of felsic intrusive, sedimentary and
medium-grade metamorphic rocks. The geophysical characteristics
of these prospective catchment clusters, and others with high
proportions of metamorphic rocks, indicate high contrast in either
magnetic and gravity signals at wavelengths of less than 10 km, or
elevated and highly variable total count radiometrics signals.

Further investigation into the role that geochemical element
mobility plays in governing the relative contribution of catchment
characteristics is required. In addition, understanding the signifi-
cance of the spatial frequency characteristics of geophysical data is
needed to clarify the relationship between code-vector ratios and
mineralization.
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