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The GODAE OceanView systems use various data assimilation algorithms, including 3DVar, EnOl, EnKF and the SEEK
filter with a fixed basis, using different time windows. The main outputs of the operational data assimilation systems, the
increments, have been compared for February 2014 in various regions. The eddy permitting systems’ increments are
similar in a number of the regions, indicating similar forecast errors are being corrected, while the eddy resolving systems
represent smaller scale structures in the mid latitude regions investigated and appear to have smaller biases. Monthly
average temperature increments show significant SST biases, particularly in the systems which assimilate swath satellite
SST data, indicating systematic errors in the surface heat fluxes and the way in which they are propagated vertically by
the ocean models. On going developments to the data assimilation systems include improvements to the specification of
error covariances, improving assimilation of data near the equator, and understanding the effect of assimilation on the
Atlantic Meridional Overturning Circulation. Longer term developments are expected to include the implementation of
more advanced algorithms to make use of flow dependent error covariance information. Assimilation of new data sources
over the coming years, such as wide swath altimetry, is also expected to improve the accuracy of ocean state estimates

and forecasts provided by the GODAE OceanView systems.

Introduction

The combination of observational data with model fields
through data assimilation techniques is a crucial step in
the production of accurate operational ocean forecasts
and reanalyses. These state estimates rely on the robust
and timely delivery of observational information from
in situ and remote platforms (Clarke et al. 2015; Le
Traon et al. 2015).

Accurate initial estimates of the mesoscale ocean state
provide the basis from which forecasts of the ocean temp-
erature, salinity and current structure, as well as sea-ice
variables, can be made using the eddy-permitting and
eddyresolving GODAE OceanView (GOV) modelling
systems (Tonani et al. 2015).

The data-assimilation derived state estimates provided
by GOV systems are used in a wide range of applications.
Their primary uses in near-real time are the initialisation of
short-range ocean forecasts (out to a few days), and to initi-
alise forecasts for longer time-ranges out to a few seasons
using coupled ocean-atmosphere models. The same data
assimilation systems are also used to produce reanalyses
covering many years for various purposes including the
calibration of coupled seasonal forecasts, and for under-
standing how the ocean has changed over the past
decades (Balmaseda et al. 2015).

Data assimilation techniques are described in detail in
the literature (Daley 1991; Evensen 2009; Zaron 2011)
and the aim of this paper is not to describe all the various
methods. Rather, we aim to give an overview of the data
assimilation systems used in current state-of-the-art oper-
ational ocean forecasting systems. This builds on the
description of the status of the GODAE data assimilation
systems as of 2009 (Cummings et al. 2009).

The current status of operational data assimilation
systems is described in the next section, including the
observations assimilated, the types of algorithms used,
the estimation and modelling of the error covariances, the
initialisation methods, and other operational aspects. Fol-
lowing sections provide examples of the outputs of the
data assimilation systems, describe some of the outstanding
issues which are currently being worked on with the oper-
ational systems, and provide some indications as to the
longer-term developments expected. A summary and con-
clusions are provided at the end.

Current operational ocean data assimilation systems

Implementing data assimilative forecasting systems opera-
tionally imposes a number of constraints on the system
design: the system must be robust and able to produce
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analysis and forecast products within a set time using the
computing resources available. The focus of this paper is
on the schemes which have been implemented operation-
ally, with these operational constraints, for basin-scale
and global applications. A discussion of the coastal and
shelf-seas systems is given in Kerafalou et al. 2015. The
research done outside the operational centres is often very
useful in determining future upgrades to the operational
systems, and some areas of on-going and future research
carried out in operational and research centres are discussed
in later sections. Here we give an overview of various
characteristics of existing operational data assimilation
systems. The main objectives of these systems and their
performance characteristics are described in other papers
in this special issue (Hernandez et al. 2015).

Assimilated observations

The observations assimilated into each of the GOV fore-
casting systems in near-real time are detailed in Table 1.
A variety of approaches is taken for use of sea surface temp-
erature (SST) data with some systems directly assimilating
swath data from the Group for High Resolution SST
(GHRSST; Bluelink, GOFS and FOAM) and other
systems assimilating or relaxing to objective analysis pro-
ducts from GHRSST. Most of the systems also assimilate
in situ SST data available over the Global Telecommunica-
tions System (GTS) from ships, moored and drifting buoys.
The GOFS system additionally assimilates Coastal-Marine
Automated Network (C-MAN) in situ data available
around the North American coast.

Along-track altimeter sea level anomaly (SLA) data are
obtained from Aviso/CLS by most systems (directly or
through MyOcean), Bluelink obtain the data from the
Radar Altimeter Database System (RADS) and GOFS
use data processed by the US Naval Oceanographic
Office NAVOCAENO). Almost all the systems assimilate
the Jason-2, Cryosat-2 and Altika data. In order to assimi-
late the SLA data, a mean dynamic topography (MDT) is
required, and various approaches are taken for this. Some
systems (Bluelink, GOFS and TOPAZ) use a mean sca
surface height field from a free model run as their MDT.
Others, such as ECMWEF, uses the MDT from a previous
ocean reanalysis that assimilates temperature and salinity
data. This approach means that the sea surface height obser-
vations (SLA+MDT) are not biased compared to the under-
lying model and the assimilation will only work to change
the location of mesoscale features rather than adjusting the
large-scale structure of the model dynamics. On the other
hand, some systems use an observation-based MDT (CON-
CEPTS, FOAM, Mercator, and MOVE) which means that
the large-scale dynamics will be brought into line with the
observations. This approach can however cause problems if
the modelled and observed MDT are significantly different
to each other as the assimilation will constantly adjust the
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model fields (including the subsurface density structure)
(Lea et al. 2008). Some systems mitigate against this by
applying a bias correction approach either off-line (Merca-
tor) or on-line as part of the data assimilation (FOAM).

Profile temperature and salinity data are obtained either
over the GTS or through an intermediate processing centre,
CORIOLIS (for Mercator and CONCEPTS), with the Blue-
link system accessing data through both these routes as well
as from the US GODAE server, and generating a combined
data-set. A similar set of platforms collecting profile temp-
erature and salinity data are used by all the systems includ-
ing Argo floats, XBTs (for temperature), moored buoys,
gliders and marine mammals, with the TOPAZ system
additionally assimilating ice-tethered profile data.

Sea-ice concentration data from satellites are assimi-
lated only in the CONCEPTS, GOFS, FOAM, North
Pacific (NP) MOVE and TOPAZ systems, with ECMWF
prescribing (rather than assimilating) the sea-ice concen-
tration based on observations. Most of these systems assim-
ilate data from the SSM/I and/or SSMIS satellite
instruments, with the CONCEPTS system also making
use of sea-ice concentration data from Canadian Ice
Service (CIS) charts, Radarsat and ship reports. TOPAZ
is the only system to assimilate sea-ice drift data (estimated
through cross-correlations of successive satellite images)
operationally.

Assimilation methods

A summary of the grid specifications, the algorithm and the
initialisation procedure used by each system is provided in
Table 2, together with a reference for each system. The
model resolution of the systems described here varies
between about 1/12° for GOFS and Mercator HR (the
higher resolution Mercator system), 1/8° for TOPAZ, 1/4°
for CONCEPTS, FOAM and Mercator LR (the lower res-
olution Mercator system), and about 1° for the ECMWF
and global MOVE systems. Bluelink runs on a 1/10° grid
in the Australian region, with much lower resolution else-
where. NP MOVE also runs on a 1/10° grid in the
western north Pacific region. Most of the systems use the
same grid to perform the data assimilation as the model
grid. However, Bluelink, CONCEPTS and Mercator use a
reduced resolution analysis grid to reduce the compu-
tational cost. GOFS uses the same horizontal grid for analy-
sis as the model, but the vertical grid used is based on depth
levels rather than the hybrid vertical coordinates of the
HYCOM model.

A range of algorithms is used by the different oper-
ational systems including variational (3DVar) and ensem-
ble schemes (Ensemble Optimal Interpolation, Ensemble
Kalman Filter and a fixed-basis implementation of the
SEEK filter). The variational schemes of GOFS
(Cummings & Smedstad 2013), FOAM (Waters et al.
2014), ECMWF (Balmaseda et al. 2013) and MOVE
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Table 1. Observation types assimilated into each GODAE OceanView system in near real time.
Bluelink CONCEPTS ECMWF FOAM GOFS Mercator MOVE TOPAZ
Institute Bureau of Environment ECMWEF (Europe) Met Office (UK) NAVOCEANO (USA) Mercator IMA/MRI MET Norway
(Country) Meteorology Canada (France) (Japan) (Norway)
(Australia) (Canada)
Satellite SST L2 GHRSST L4 analysis L4 analysis L2 GHRSST L2 GHRSST (NOAA L4 analysis L4 analysis L4 analysis
(AVHRR, (CMC) (OSTIA) (NOAA AVHRR, MetOp (NOAA (COBE SST (OSTIA)
Wind SAT) AVHRR, AVHRR, GOESE, AVHRR) for global,
MetOp GOES W, MSG, GHRSST L4
AVHRR) MTSAT 2, NPP for regional).
VIIRS) from NAVO
In situ SST Ships, drifting Ships, drifting Ships, drifting and Ships, drifting
buoys, moored buoys, moored moored buoys, buoys, moored
buoys, all from buoys, all from CMAN stations, all buoys, all
GTS GTS from GTS from GTS
Altimeter SLA  Jason 2, Cryosat  Jason 2, Cryosat  Jason 2 from Aviso Jason 2, Cryosat  Jason 2, Altika, Jason 2, Jason 2 IGDR/  Jason 2, Cryosat
data 2, Altika, from 2, Altika, from 2, Altika, from Cryosat 2, from Cryosat 2, GDR from 2, Altika, from
RADS Aviso MyOcean NAVO Altika, from Aviso MyOcean
MyOcean
MDT Model mean (18  Rio and Model mean froma CNES CLS09 Model mean CNES CLS09,  Monthly Model mean.
year average) Hernandez, run assimilating with on line with off line climatology
2004 only T/S data bias correction adjustments generated
using analysis
system
without
model.
In situ profiles  Argo, XBT, Argo, XBT, CTD, Argo, XBT, CTD, Argo, XBT, CTD, Argo, XBT, CTD, Argo, XBT, Argo, XBT, Argo, XBTs,
(T and S) moored buoys, moored buoys, moored buoys, moored buoys, moored buoys, CTD, moored CTD, moored moorings,
consolidated gliders, marine gliders, marine gliders, marine gliders, marine buoys, gliders,  buoys, marine icetethered
from GTS, US mammals from mammals, all mammals, all mammals, from GTS marine mammals, all profilers, all
GODAE, and CORIOLIS from GTS from GTS and US Navy sources ~ mammals from GTS from My
Coriolis from Ocean
CORIOLIS
Sea ice SSM/I, SSMIS, Prescribed sea ice  SSMIS, from SSM/I (F13, F14, F15), SSMIS (F16, SSM/I, from
concentration CIS charts, based on SSMIS, EUMETSAT SSMIS (F16, F17, F17, IMA EUMETSAT
Radarsat, ship from OSISAF F18) from FNMOC Product) for OSISAF
reports EUMETSAT NP system
OSISAF, via

OSTIA product.

Sea ice drift

OSI SAF at MET
Norway
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Table 2. Overview of characteristics of the data assimilation used in each GODAE OceanView system.

Bluelink® CONCEPTS" ECMWF* FOAM* GOFs® Mercator" MOVE® TOPAZ"
Model Near global 1/ Global 1/4°; 50 z  Global 1° (0.3° Global 1/4°; 75 z Global 1/12.5°;  Two global systems, Near Global 1° N. Atlantic &
configurations 10°; 51 z levels; NEMO. meridionally at levels; NEMO. 32 hybrid 1/4° and 1/12°; 50  (0.3° meridionally Arctic 1/8°;
run levels. equator); 42 z layers; z levels; NEMO. at equator); 50 z 28 hybrid
operationally (scheduled for levels; NEMO. HYCOM. levels; MRI. COM. layers;
2015); HYCOM.
MOMA4.
Australian N. Atlantic, Indian Atlantic (20°S 80°N) N. Pacific 1/2°
region 1/10°; Ocean, & Mediterranean (1/10° in Western
51 z levels; Mediterranean, all 1/12°; 50 z levels; N. Pacific), 54 z
MOM4. 1/12°; 50 z levels; NEMO. levels; MRI. COM.
NEMO.
Analysis grid Every second Every third model Same as model Same as model grid. 1/12.5° with 42 z Every fourth model =~ Same as model grid. Same as model
resolution model (horizontal) grid grid. levels (horizontal) grid grid.
(horizontal) point; more point; more points
grid point. points within within 150km of
150km of coast. coast.
Algorithm EnOI SEEK FGAT (with 3DVar FGAT +  3DVar FGAT + bias 3DVar FGAT SEEK FGAT (with ~ 3DVar (ocean) and a EnKF with 100
fixed basis) bias correction correction fixed basis); simple least square ~ members.
(ocean) and 3DVar bias method (ice)
3DVar FGAT correction
(ice)
Initialisation Adaptive Direct initialisation IAU with constant [AU with constant ~ IAU with IAU with a non Ocean: AU with Direct
technique nudging of weighting of weighting of SSH  constant constant constant weighting initialisation
3DT, S,u, v SSH and 3D T, and 3D T,S, u,v weighting of T, distribution of 3D T, S over 10
over one day. S, u,v over 10 over one day. S, U, V, layer function of SSH days (Global)/ 5
days. pressure (for and3D T, S, U,V  days (NP). Ice:
isopycnal over 7 days. nudging

layers) over 6
hours.

%0ke et al. 2013

°Smith et al. 2014

“Balmaseda et al. 2013

dWaters et al. 2014

°Cummings and Smedstad 2013
Lellouche et al. 2013

€Usui et al. 2006

"Sakov et al. 2012
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(Usui et al. 2006) produce global minimisations to a cost
function with efficient modelling of the background error
covariances. They rely on a priori specification of physical
relationships to transfer information between variables, and
to determine the length-scales and variances used to weight
and spread the information from the observations
(described in more detail in the next section). In contrast,
the ensemble schemes rely on statistical information from
model runs in order to determine how observational infor-
mation is spread by the assimilation. The Bluelink (Oke
et al. 2013), CONCEPTS (Smith et al. 2014) and Mercator
(Lellouche et al. 2013) ensemble systems use model data
from previous long model integrations, while the TOPAZ
(Sakov et al. 2012) system uses an up-to-date ensemble
of model runs from the current forecast cycle. Most of
the systems use a first-guess-at-appropriate-time (FGAT)
scheme whereby the model counterpart of the observation
is calculated close to the observation time.

All of the systems make updates to the full ocean state
(three-dimensional temperature, salinity and velocity fields
and SSH, or isopycnal layer pressure for GOFS) except for
MOVE where only temperature and salinity fields are
updated directly by the assimilation. For the other
systems, corrections to the velocity fields are calculated
using either dynamical or statistical relationships, rather
than assimilating velocity data directly. The corrections
(increments) produced by the data assimilation are used
to initialise the forecasting systems in a number of ways,
most of which are designed to reduce the generation of
fast transient model responses from unbalanced increments.
ECMWE, GOFS, FOAM, MOVE and Mercator use the
Incremental Analysis Update (IAU) method (Bloom et al.
1996) which adds in a fraction of the increments to the
model fields at each model time-step with the aim of redu-
cing the shock to the model. The period over which these
are added in varies from 6 hours in GOFS, to one day in
FOAM, out to 5-10 days for Mercator, ECMWF and
MOVE. All of these systems use a constant weighting for
the TAU except for Mercator (Benkiran & Greiner 2008;
Lellouche et al. 2013) who choose a distribution function
which crosses the increments of two consecutive cycles
in order to ensure continuity in the application of the incre-
ments from one cycle to the next. The Bluelink system uses
an adaptive nudging scheme (Sandery et al. 2011) in which
the model is nudged towards the analysis using a time-scale
which depends on the magnitude of the increments. CON-
CEPTS and TOPAZ apply increments directly to the initial
model state before the forecast is run.

Data assimilation methods generally assume that the
model does not exhibit significant systematic errors.
This is often not the case in practice, and some groups
attempt to correct for model biases by using various
schemes. For example, ECMWF employs a bias correc-
tion scheme which combines a correction to 3D tempera-
ture and salinity in the extra-tropics, with a correction to

the pressure gradient field in the tropics (Balmaseda
2007). This latter correction is also used in the FOAM
system (Bell et al. 2004), while Mercator applies a
general 3D temperature and salinity slowly-evolving
large-scale bias correction globally. These bias correction
fields are calculated by accumulating a running average
of the data assimilation increments in the ECMWF and
FOAM systems, with the Mercator biases calculated
using a 3DVar approach based on innovations over the
preceding months.

Error covariance estimation and modelling

In the EnOI of Bluelink and the SEEK scheme as
implemented at Mercator and CONCEPTS, a static ensem-
ble of anomalies for three-dimensional temperature, sal-
inity, currents and SSH is used to estimate the
background error covariance matrix. A long integration
of a free model is carried out and anomalies each day are
calculated with respect to a running mean in order to esti-
mate the 7-day scale error in the ocean state at a given
period of the year. The anomaly calculation filters out tem-
poral scales at low frequencies and retains the higher fre-
quency signals (e.g. the mesoscale ocean structures)
which are to be corrected by the data assimilation. A sig-
nificant number of anomalies are kept from one analysis
to the other, thus ensuring error covariance continuity.
The covariances calculated using this technique are used
to represent both the univariate and multivariate covariance
relationships.

The EnKF scheme as implemented in TOPAZ uses a
100-member ensemble to represent the background error
covariance of the current cycle. In order to maintain ensem-
ble spread, a perturbation system works indirectly using
dynamically consistent perturbations of the atmospheric
forcing fields (Sakov et al. 2012). Inflation is also applied
in the Deterministic EnKF by using a larger error variance
of observations for updating the anomalies than for updat-
ing the mean, in order to maintain ensemble spread (Sakov
etal. 2012). The Mercator system also inflates the error var-
iances: at each assimilation cycle, an adaptive scheme cal-
culates an optimal variance of the model forecast error
maintaining the statistical equilibrium between the inno-
vation, and the background and observation error
covariances.

All of these ensemble-based schemes require localis-
ation of the covariance information to prevent noisy
signals at larger separation distances contaminating the
increments, due to the relatively small size of the ensem-
bles. Localisation of the impact of observations in
TOPAZ is applied so that observations can only affect
model variables within a radius of 300 km. Mercator uses
a localisation technique which sets the covariances to
zero beyond a distance defined as twice the local spatial
correlation scales.



The 3DVar schemes used at ECMWEF, FOAM and
GOFS parameterise the background error covariance
matrix by splitting the problem into the specification of
error variances (the diagonal elements), and horizontal
and vertical lengthscales associated with a functional rep-
resentation for the correlations (the off-diagonal elements).
The 3DVar scheme in MOVE parameterises it by splitting
the problem into the specification of error variances, verti-
cal correlations and horizontal length-scales. GOFS speci-
fies the background error variances using an estimate
based on model variability computed from a time history
of differences between model forecasts separated by the
update cycle interval, which includes the influence of the
observations. ECMWF and FOAM use a parameterisation
of the background temperature variances which depends
on the vertical gradient of temperature in the background
field; FOAM includes seasonally varying estimates at the
surface based on output of previous assimilative runs.
Using these various techniques, these systems (other than
MOVE) account for some degree of flow-dependence in
their background error variance specification.

FOAM and GOFS use the Rossby radius to define the
horizontal length scales in order to represent the scales of
mesoscale phenomena, while ECMWF uses 2° length-
scales with equatorial refinement so that the ocean features
important for seasonal forecasting can be initialised, and
MOVE splits the global domain into multiple (about 50
for global MOVE) sub-domains and specifies length-
scales in each one. The vertical length-scales in GOFS
are specified based on the vertical density gradients, and
in FOAM are based on the mixed-layer depth of the back-
ground field. In ECMWF they are specified based on the
vertical grid-spacing of the model.

The univariate component of the background error cor-
relations is modelled using a diffusion operator in ECMWF
(Weaver & Courtier 2001) and FOAM (Mirouze & Weaver
2010) which approximates Gaussian correlation functions
whereas GOFS uses a Second-Order Auto-Regressive
(SOAR) function. The component is represented by the
univariate nature of vertical coupled temperature-salinity
(T-S) Empirical Orthogonal Functions (EOFs) from histori-
cal temperature and salinity profile data in MOVE (Fujii &
Kamachi 2003). The multivariate components of the back-
ground errors (i.e. those transferring information from one
variable to another) are specified in GOFS, ECMWF and
FOAM using pre-determined physical relationships. In
ECMWEF and FOAM these transfer information from temp-
erature to salinity using information from the model back-
ground water mass properties (Ricci et al. 2005), from
density to sea surface height using the dynamic height
relation, and from pressure to velocity using the geos-
trophic relation. GOFS transfers information from tempera-
ture and salinity to geopotential using the equation of state
and hydrostatic relation, and then to velocity using the
geostrophic  relation. MOVE transfers information
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between temperature and salinity through the coupled
nature of the coupled T-S EOFs.

All of the systems except for MOVE represent the
observation error covariances as a diagonal matrix, omit-
ting any representation of error correlations between obser-
vations. In most systems these are specified a priori as
either constant or seasonally varying estimates, and most
systems specify spatially varying representativity errors
(Oke & Sakov 2008). In GOFS they are specified based
on the current state using a look-up table with profile
adjustments based on vertical gradients. MOVE specifies
the matrix based on the historical profile data, and approxi-
mates it using the first two vertical modes.

Operational aspects

The delay in receiving an observation at the operational
centres, compared to its measurement time (called timeli-
ness here), depends on a number of factors including the
transmission time, and the time taken to process and
quality control the observation by the data producers. The
timeliness of different observing systems puts constraints
on the operational forecasting systems in terms of how
close to real-time they can be run. SST and sea-ice data
tend to be available relatively quickly (less than a day), alti-
meter SSH data are mostly available within two days, and
profile data can take up to a few days to arrive, depending
on the platform. Most of the systems therefore have two
streams of analyses: one near-real time (NRT) analysis
which provides up-to-date information in order to initialise
forecasts; and one delayed analysis which provides less
timely but more accurate information. The delayed ana-
lyses are used to initialise the next cycle of the NRT ana-
lyses so that information from late-receipt observations is
still able to affect the forecasts. The precise way in which
this set-up is implemented varies between the systems.
FOAM and GOFS are run on a daily basis assimilating
all available data. Late receipt observations are assimilated
in FOAM by going back two days each day with the ocean
state at T-24h being used to initialise the next day’s analysis
(Blockley et al. 2014). GOFS assimilates late data by com-
paring those data to the model fields at the correct time
(FGAT), and using those innovations in the current analy-
sis. Bluelink runs each day using a time window which
depends on the observation type: one day for SST; 7 days
for in situ temperature and salinity; and 11 days for alti-
meter data. A multi-cycle ensemble is used in Bluelink
whereby daily forecasts are made of four independent fore-
cast members, each staggered by a day (Brassington 2013).
Each forecast member is run on a different day, and an
analysis is performed on that member every four days.
CONCEPTS, Mercator and TOPAZ all run the full
assimilation system once a week with a 7-day time-
window, with an additional analysis of the previous
7-days (T-14 to T-7) to enable assimilation of late-receipt
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data carried out by CONCEPTS and Mercator. CON-
CEPTS additionally carries out a daily assimilation which
includes only SST and seaice data, and daily forecasts are
started from those analyses, while Mercator runs daily fore-
casts with fields updated from the last analysis by running
the model with analysed surface fluxes. The TOPAZ analy-
sis is carried out with a three day delay in order to allow
most data to be assimilated.

ECMWF and global MOVE both use a 10-day time-
window. ECMWF perform a full analysis in delayed
mode every 10 days with a 6 day delay. The near-real
time analyses are updated daily with a variable assimilation
window starting from the last delayed mode analysis avail-
able. Global MOVE runs every 5 days and produces ana-
lyses for the previous 40 days by running four 10-day
cycles for the near-real time mode, and running a ten-day
cycle every 5 days for the delayed mode.

The time taken to run each system is between 20
minutes for the ECMWF analysis (the 10-day cycle of
the delayed analysis, excluding the forecast, with the 5
ensemble members running in parallel), 30 minutes for
global MOVE (excluding the forecast), one hour for the
CONCEPTS analysis and forecast, approximately 2 hours
for FOAM and GOFS to run the analysis and forecast,
and 4.7 hours for the Mercator HR analysis and forecast.

Demonstration of operational data assimilation
schemes

In order to illustrate the outputs of the data assimilation
schemes - as opposed to the forecast systems as a whole
— the increments from each of the operational systems
described above are compared for February 2014. The
increments are useful to show as they illustrate the type
of structures which each analysis system produces. These
depend on the background model field and the observations
assimilated (which also depend on the time window and the
delay in running the operational system). They also depend
on the error covariance structures specified in the data
assimilation algorithm, and on the data assimilation algor-
ithm itself.

As described in the previous section, the different
systems run on different cycles, so it is impossible to
show increments for exactly equivalent periods. For the
plots in Figures 1-5 the ECMWF fields are for the 10-
day cycle 14th-23rd Feb, the global MOVE fields for the
10-day cycle 15th—24th Feb, the NP MOVE fields for the
5-day cycle 20—24th Feb, the Mercator and CONCEPTS
fields are for the 7 day cycle 19th-25th Feb, and the Blue-
link, FOAM and GOFS fields are the sum of the daily incre-
ments over the same 7 days as the Mercator/CONCEPTS
fields. Due to the different periods over which the incre-
ments are valid, their magnitudes are different. A simple
scaling of the fields based on the assimilation time
windows is not appropriate as the growth of forecast

error is not linear (accumulating 10-days of daily incre-
ments does not give the same result as running a 10-day
assimilation cycle, even with the same system). In order
to plot comparable fields on the same colour-scale, we
have normalised the spatial root-mean-square of each
field to be one (K for temperature and m/s for currents);
the factor multiplying the fields in order to achieve this is
shown in brackets in each plot title. This is done globally
for the level and variable plotted) except for the cross-
section plots in which the factor is calculated based on
the region plotted.

Regional comparison of 5-10 day increments

Four regions are focussed on for this inter-comparison. The
East Australian Current (EAC), Kuroshio and Gulf Stream
regions are shown to illustrate how the eddy-permitting and
eddy-resolving data assimilation systems represent changes
in these important boundary current regions. Some of the
systems are also used to initialise longer-range predictions
so the tropical Pacific region, an important area for initiali-
sation of seasonal forecasts, is also shown. In each region,
only those systems which resolve or permit the dominant
features in that region are shown. In particular, the
ECMWF and global MOVE increments are only shown
in the tropical Pacific region as they do not represent the
mesoscale structures in the boundary current regions, Blue-
link is only shown in the EAC region as it is much lower
resolution in the other regions, TOPAZ is only shown in
the Gulf Stream region, and NP MOVE is only shown in
the Kuroshio region.

Figure 1 shows spatial maps of the temperature incre-
ments in the EAC region. To investigate how these are
related to the vertical structure of changes made by the
assimilation systems, cross-sections are also shown at 35°
S down to 500m depth. Despite using different models
and assimilation schemes, there are some similarities in
the increments produced by Mercator, Bluelink, CON-
CEPTS and FOAM in the region 30—40°S, west of about
160°E. The magnitude of the increments is different in
each system but the location and scale of the increments
are similar. The positive-negative-positive temperature
increments tri-pole structure moving out from the east Aus-
tralian coast is reflected in almost all the systems, although
Mercator HR produces a negative anomaly close to the
coast. Very few in situ temperature data are in the vicinity
of these features during this period, so they must be due to
the projection of altimeter SLA data through the
multivariate aspects of the data assimilation systems.
The depth of the maximum temperature increment is
different in each system, with FOAM and GOFS
producing a maximum at about 100 m, with Mercator,
CONCEPTS and Bluelink having a broader vertical struc-
ture below the top 50 m with a maximum closer to 200 m
depth for Mercator/CONCEPTS and 300 m for Bluelink.
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These differences could be due to the different approaches
for projecting the altimeter data into the sub-surface density
field: GOFS and FOAM use flow-dependent parameterisa-
tions based on the current model background field as
opposed to the static ensemble estimates used by Bluelink,
Mercator and CONCEPTS.

The surface increments of speed (taking into account
the increments to both components of velocity) made by
each system are shown in Figure 2 for the equivalent
region and period as Figure 1. The horizontal scales of
the velocity increments in CONCEPTS, FOAM and Mer-
cator LR are similar although the reduced resolution analy-
sis grid used in Mercator LR results in less smooth
structures. The Bluelink and GOFS velocity increments
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appear to have smaller spatial scales than the other
systems illustrating the difference from having a higher res-
olution model able to resolve (rather than permit) mesos-
cale features at this latitude, and the ability of the
assimilation schemes to represent those scales. The
FOAM velocity increments are close to zero near the
coast due to a scheme that increases the observation
errors for all data types near coastlines.

Figure 3 shows temperature increments at about 100 m
depth in the Kuroshio region. The GOFS and Mercator HR
systems have smaller scale features than the other systems
as would be expected due to their higher resolution. The
systems have fewer common features in this region than
they do in the EAC region, indicating that the forecast
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Figure 2. Normalised increments of speed (taking into account increments of both components of velocity) in the EAC region for 19th
25th Feb 2014 for the top analysis level. The numbers in brackets indicate the normalisation applied in the plot below in order to make the

spatial root mean square of each field to be 1m/s.



errors during this period in this region are not the same in
any of the systems. However, there is a mesoscale feature
in the increments at about 154°E in the cross-section
plots which all the systems except for CONCEPTS
represent.

In the Gulf Stream region, shown in Figure 4, the CON-
CEPTS, FOAM, Mercator LR and TOPAZ systems all have
a dipole structure near the separation of the Gulf Stream
from the eastern US coast, indicating that the assimilation
is acting to correct a model bias which is introducing too
much lateral mixing. GOFS and, to a lesser extent Mercator
HR, appear to have less of a dipole structure in this region,
with GOFS having much less bias in the lateral mixing in
this region. This demonstrates the improvements which
might be expected from higher resolution models, and
could be due to improved representation of lateral mixing
in the GOFS implementation of the HY COM model.

Figure 5 shows the temperature increments produced
by each analysis system in the eastern tropical Pacific. At
the Equator, where planetary waves propagate fast, it can
be argued that the horizontal decorrelation scales depend
more on the length of the assimilation window than on
the ocean model resolution. From the horizontal plots it
is clear that the longer-window and lower resolution seaso-
nal forecasting systems of ECMWF and MOVE have much
larger east-west scales close to the equator than the other
analysis systems. CONCEPTS and Mercator have length-
scales which appear to reduce more quickly poleward of
the equator compared to FOAM and GOFS. The cross-
section plots show that each system produces the largest
increments in the region of the thermocline at around 180
m depth in the west of the region, and at about 20 m
depth in the east. The larger horizontal scales of the
ECMWF and MOVE systems are again clearly visible,
with the other systems’ increments containing more
small-scale structures. The FOAM system produces incre-
ments with larger vertical extent in the western part of
the domain than the other systems, probably due to the
error covariance specification in that region.

Global comparison of monthly average increments

The global monthly averaged temperature increments have
been calculated for each system and are plotted in Figure 6
for the surface and at about 100 m depth. These are a useful
diagnostic as they represent an estimate of forecast bias,
although this is only the case in regions where observations
are available to identify the bias, and observational bias can
contaminate the signal.

FOAM and GOFS have a clear pattern at the surface
with negative increments in the tropics and positive incre-
ments at mid-latitudes in the summer (southern) hemi-
sphere. These two systems assimilate swath satellite SST
data while the others relax to or assimilate objective SST
analyses, which could be why the model biases are more
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obvious in the increments from FOAM and GOFS. Sys-
tematic errors in the heat fluxes applied to the model
would consistently heat/cool the surface layers and there-
fore result in these large average increments. The heat
fluxes used in the GOFS system are adjusted to correct
for atmospheric model forcing errors by adding heat
across most of the tropical regions, scaled to minimise 5-
day SST forecast errors. The correction results in the
model being too warm at the update cycle interval (24
hours), which in turn causes the surface temperature incre-
ments to be negative on average. No such correction is
carried out in the FOAM system, but the underlying heat
fluxes presumably also exhibit this bias. Further investi-
gations into these biases, relating them to heat flux differ-
ences, could be an informative follow-up to this work.
For more information about the surface forcing used by
each system see Tonani et al. 2015.

Almost all the systems have a bias in the cold tongue
region of the eastern tropical Pacific which is much more
obvious in the monthly averages than the increments
from one week shown before. This period coincides with
a developing negative SST anomaly and it appears that
the assimilation is acting to increase the magnitude of the
colder SSTs. At about 100m depth a cold anomaly
centred at about 130°W on the equator is being put in by
the data assimilation in the ECMWE, FOAM, GOFS and
Mercator systems. The western boundary current regions
are clearly visible in almost all the systems, with the
eddy resolving and permitting systems correcting for per-
sistent errors in the position of mesoscale structures and
the lower resolution systems correcting for larger scale
forecast errors.

Some outstanding operational and research issues in
ocean data assimilation

A sample of outstanding operational and research questions
which are currently being worked on by various groups are
described in this section. This is not an exhaustive list due
to space limitations, but is meant to illustrate some impor-
tant developments.

Data timeliness issues

The requirement described earlier in this paper for the oper-
ational systems to be re-run in order to make use of late-
receipt data is due to the lack of timeliness in particular
observing systems. As an example of this issue, the timeli-
ness of receipt for in situ profile observation types received
at the US Naval Research Laboratory (NRL) in Monterey is
shown in Figure 7 for September-November 2012. These
timeliness estimates are likely to be similar for other oper-
ational centres who receive their data over the GTS. Some
data types are very timely while others arrive much later.
Some data types like the profiles from sensors on marine
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mammals have very significant data impacts (Oke et al.
2015) and so are very valuable. Anything that can be
done to speed up delivery of those data would enable
better use to be made of them; ongoing work at the Sea
Mammal Research Unit (SMRU) to investigate the possible
use of Iridium communications for the marine mammal
sensors may improve the situation in the future. It can
also be seen from Figure 7 that the Argo data are not as
timely as some of the other in situ platforms and, given
the importance of Argo for operational ocean forecasting,
anything which could be done to speed up the delivery of
these data would lead to more use being made of them.

Sensitivity of the Atlantic Meridional Overturning
Circulation to data assimilation parameters

One of the challenges for the systems which are used to
generate ocean reanalyses such as the ECMWF ocean
analysis system, ORAS4, is related to the assimilation of
observations close to the coast, in particular in regions of
strong western boundary currents (Stepanov et al. 2012).
Figure 8 shows the time evolution of the Atlantic Meridio-
nal Overturning Circulation (AMOC) at 26°N in two differ-
ent assimilation experiments, where the observation error
standard deviations (OESD) by the coast have been
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Figure 7.

increased within a different distance from the coast (300
km and 800 km). The resulting AMOC shows a large sen-
sitivity to this single parameter specifying the OESD of the
coastal observations. When the coastal OESD is inflated
within 800 km of the coast (DC 800 km, red line), the
AMOC is substantially stronger than when it is inflated
only within 300 km of the coast (DC 300 km). The spec-
trum of the inter-annual variability also changes in response
to this parameter. This extreme sensitivity of large-scale
climate indices highlights the importance of independent
transport-derived estimations such as those from RAPID,
which are essential to continue progress on data assimila-
tion development.

Improving assimilation near the equator

Near the equator the dominant balance is between the sub-
surface pressure gradient and the wind stress applied to the
model. Assimilation of profile and altimeter data causes
changes to the pressure gradient which results in imbalance
to the unchanged wind stress. This could lead to the gener-
ation of spurious equatorial waves and vertical velocities.
The pressure bias correction scheme used in FOAM (Bell
et al. 2004) is designed to reduce the imbalance where it
is consistent over the long term. However, we still see the
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Differences between the time of receipt of an observation at NRL and its measurement time for profile data types. The results are

presented in 12 hour bins out to 5 days behind the observed time, calculated over the period Sep Nov 2012.
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Figure 8.  Atlantic Meridional Overturning circulation from two sensitivity assimilation experiments conducted with the same system as
that of ORAS4, where the observation error is inflated for the observations within 800 Km (red) and 300 Km (black) of the coast.

impact of data assimilation on the equatorial currents and
vertical velocities from shorter time-scale imbalances. In
the pressure bias correction scheme the correction is calcu-
lated from accumulated temperature and salinity incre-
ments and can be considered a bias correction. The
application of an instantaneous pressure correction is
being investigated whereby the correction is calculated
from the temperature and salinity increments from the
current analysis step. In Figure 9 equatorial Atlantic sec-
tions of vertical velocity anomaly fields at the end of the
24 hour IAU step are presented. The anomalies are calcu-
lated as the IAU vertical velocities minus the vertical vel-
ocities from a free run starting from the same initial
conditions. In these experiments temperature, salinity,
SSH and SST observations are assimilated for one day.
Figure 9 shows the vertical velocity anomalies with and
without the instantaneous pressure correction. The vertical
velocity anomaly is significantly reduced in the case with
the instantaneous pressure correction. Work is ongoing to
investigate how this correction should be ramped down
away from the equator and how it should be applied with
cycling of the data assimilation system.

Improvement of high-frequency variability using

4DVar

The Japan Meteorological Agency (JMA) plans to start
operational use of a western North Pacific (WNP) four-
dimensional variational (4DVar) data-assimilative model
developed in the Meteorological Research Institute
(MRI), as a part of a coastal monitoring and forecasting
system in 2015. The grid spacing of the model is identical
to the WNP part of NP MOVE: the horizontal resolution is
0.1° around Japan. This model applies a data assimilation
scheme based on the 4DVar version of MOVE (Usui
et al. submitted), (MOVE-4DVar). The model fields are

exploited for monitoring and relatively short-term (~10
days) ocean forecasting, as well as to initialize a finer-res-
olution (2 km) coastal model covering the area around
the Seto Inland Sea (Kourafalou et al. 2015) using IAU.

The 4DVar scheme has the potential to improve repro-
ducibility of high-frequency phenomena as demonstrated in
Figure 10. Here, the assimilative model run with the
MOVE- 4DVar scheme is compared with the run with the
3DVar version of MOVE (MOVE-3DVar), the current
operational scheme. The length of each assimilation
period is set to 10 days in both runs. High frequency varia-
bility of the Kuroshio path is reproduced with MOVE-
4DVar, which induces a substantial improvement in the
sea level variation at Hachijo Island (HJ) as illustrated in
Figure 10(a). Figure 10(b) indicates that reproduction of
the development of the cold eddy at 138°E causes the
meandering of the Kuroshio path and the sea level rise
close to the tide gauge observation at HJ in the 4DVar
run. Improvements of high-frequency sea level variation
appear not only in the open ocean area but also in the
coastal areas, and increase the forecast accuracy (Usui
et al. submitted). It also improves SSH fields in the
coastal finer-resolution model initialized using the fields
of the WNP assimilative model through IAU. These
results indicate the need for further research into the use
of more sophisticated data assimilation techniques for initi-
alising high-frequency processes.

Assessing error covariance specifications

Differences between the observations and their model-esti-
mated counterparts before and after assimilation (the inno-
vations and analysis residuals, respectively) provide
valuable information for assessing the performance of the
data assimilation system. This information is also important
for estimating error covariances, and for evaluating the
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consistency of the error covariances prescribed in the
system (Desroziers et al. 2005). Figure 11 shows an
example of a consistency check based on ‘Desroziers diag-
nostics’ applied to the ECMWF ORAS4 reanalysis (Balma-
seda et al. 2013; Mogensen et al. 2012). Shown are 40-year
time series of the globally averaged observation-space rep-
resentations of the specified and expected temperature
background error standard deviations (BESD) in the
upper 50 m (blue and red curves, respectively).

The specified BESD are parameterized in terms of the
vertical density stratification of the background state. Dis-
crepancies between the specified and expected BESD are
an indication of sub-optimality in the error covariance spe-
cifications. Seasonal variations in the specified and
expected BESD are reasonably consistent. However,
there is a noticeable decreasing trend in the expected
BESD that is not present in the specified BESD. This
trend roughly mirrors the increasing trend in the number
of observations (black curve) and reflects the fact that the
background state is becoming steadily more accurate,
especially in the final decade as a result of the assimilation
of Argo data. This important influence of the observation
network on background error is not captured by the state-
dependent parameterization used in ORAS4 and suggests
that improved background error estimation methods are
necessary. Methods which capture flow dependence
in the background errors such as the EnKF or hybrid
ensemble-variational methods are promising in this
regard as discussed in the following section.

Longer term perspectives for ocean data assimilation

A number of the operational groups are investigating
improvements to the algorithms currently used. Some of
the GOV systems provide initial conditions for seasonal
forecasts for which purpose probabilistic forecasting is a
necessity; short-range probabilistic forecasts could also
improve the products for search and rescue, and oil spill
applications. NRL, ECMWF and FOAM are developing
the use of ensemble information within the variational fra-
mework using hybrid methods. The basic idea is to employ
a perturbed model and perturbed data assimilation system
to simulate the evolution of state errors in the system.
The ensemble of states provides a flow-dependent estimate
of analysis and forecast error, which can be used for initia-
lising probabilistic forecasts and for estimating background
error covariances on each data assimilation cycle. Due to
the high cost of running high-resolution ocean models,
only a small number of ensemble members will be afford-
able in practice. How to exploit limited ensemble infor-
mation effectively and efficiently in the background error
covariance formulation of variational assimilation is a par-
ticular challenge. One approach is to use the ensemble to
estimate parameters, such as variances and correlation
length scales, within existing error covariance models.
Another approach is to use the ensemble to compute a
sample estimate of the covariance matrix and to apply
localization and filtering techniques to remove spurious
covariances associated with sampling error. A third
(hybrid) approach involves a weighted linear combination
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(a) Times series of the sea level at Hachijo Island (HJ) in the WNP assimilative model with MOVE 3DVar (blue line) and
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MOVE 4DVar (red line) schems and observed by the tide gauge (gray line). The correlation (RMS difference) between the time series
from the simulation and the observation is 0.925 (14.05 cm) for MOVE 3D Var, and 0.968 (9.27 cm) for MOVE 4DVAR. (b) Horizontal
distribution of SSH at 23 August 2001 in the model with MOVE 3DVar (left) and MOVE 4D Var (right). The position of HJ is indicated in

the left panel.

of these two covariance formulations, with the aim of
improving robustness and flexibility.

In order to produce the perturbations required to gener-
ate ensemble information, the deterministic forecast models
can be transformed into stochastic models by including an
explicit representation of model uncertainties in the

discretized equations (Brankart 2013). These uncertainties
can be simulated using random processes representing
unresolved fluctuations of the state variables. A recent
version of the Nucleus for European Modelling of the
Ocean (NEMO) code already includes an option for sto-
chastic perturbations activated during the model
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integration. Following this idea, stochastic ensemble
models will be useful to propagate the relevant information
about the ocean state for both probabilistic prediction pur-
poses and data assimilation using “built-in” ensemble
model errors.

Another way to improve the specification of errors in
the variational framework is to use 4DVar whereby the
error covariances are implicitly evolved by the model
during the assimilation time window. JMA plans to start
operational use of a WNP 4DVar assimilative model in
2015, as described in the previous section. Estimation of
the tidal component in the system will be introduced in 5
years. JMA also aims to introduce the 4DVar scheme in
the global ocean assimilative model in the seasonal fore-
casting system around 2020.

Mercator and CONCEPTS, who currently use a fixed-
ensemble based approach, are planning to use ensemble
information from the current cycle in the SEEK filter in
order to make use of ‘errors of the day’. They also plan
to develop schemes to improve the use of variables charac-
terised by non-Gaussian distributions, which break the
assumptions of the linear analysis. It also limits the
quality of the multivariate extrapolation by introducing
spurious effects. To overcome this short-coming in the stat-
istical description, local anamorphic transformations restor-
ing the Gaussian properties are being explored. The
objective is to apply these methods to non-Gaussian vari-
ables such as sea-ice concentration (Brankart et al. 2012).

Keeping up with changes in the observing system
(Le Traon et al. 2015; Clarke et al. 2015) is essential to
maintain and improve the performance of operational
systems. It is expected that wide-swath satellite altimetry
data from Coastal and Ocean measurement Mission with
Precise and Innovative Radar Altimeter (COMPIRA), and
the Surface Water Ocean Topography (SWOT) missions,
will offer effective information to better constrain the
fine-scale ocean state in the GOV systems. Assimilating
sea surface salinity based on measurements from satellites
(e.g. Aquarius and SMOS) may also have the potential to
improve near-surface salinity fields of GOV systems.

In the near future, it is likely that new satellite missions
will deliver a mix of state variable measurements at pixel
level, and structure information about the flow by means
of images. Wide-swath altimetry such as SWOT, or ocean
colour imager missions placed on geostationary orbits
will deliver such information. A key challenge for ocean
and coastal prediction systems is therefore to develop
pattern assimilation methods that will provide additional
constraints on the flow at higher resolution, and produce
more accurate and physically consistent fields.

Summary and conclusions

A description of the various operational ocean data assim-
ilation systems contributing to GOV has been provided.

The components of the global ocean observing system
available in near-real time are assimilated by all the
systems with some differences in the way the data are
accessed, and some differences in observation types for
particular variables such as SST and sea-ice concentration.
A variety of techniques is used to perform the data assimi-
lation with different algorithms (3DVar, SEEK, EnOlI,
EnKF), different assimilation time-windows (from one
day out to 10 days), and different procedures for applying
the assimilation increments to the model.

An example of the outputs of the data assimilation has
been provided by showing the changes calculated by each
of the assimilation systems (increments) for February 2014.
This illustrates the types of structures that the assimilation
systems are correcting in the models, as well as the multi-
variate nature of the assimilation systems and their ability
to propagate information from sparse observations in
space and time. In the EAC and Gulf Stream regions, a
number of similar features are seen in the eddy-permitting
GOV systems’ increments, indicating similar forecast
errors are being corrected by each of the data assimilation
systems. In the Kurshio region the forecast errors appear
to be less systematic between the systems, although the
scales of the structures are similar. The eddy resolving
systems of GOFS and Mercator HR represent smaller-
scale structures in the mid-latitude regions investigated
and appear to have smaller biases, particularly in the Gulf
Stream separation region. The ECMWF and MOVE
systems, which have longer time-windows and lower resol-
ution, have larger-scale increments everywhere.

Monthly average temperature increments show signifi-
cant SST biases, particularly evident in GOFS and FOAM
which assimilate swath satellite SST data, indicating sys-
tematic errors in the surface heat fluxes and the way in
which they are propagated vertically by the ocean
models. They also indicate that the ocean models are not
fully representing a developing negative SST anomaly in
the tropical Pacific during the period investigated, and the
assimilation acts to correct this model bias.

The systems are continually being developed and some
of the on-going developments have been described. Oper-
ational issues with observation timeliness are being
addressed. Research issues currently being investigated
include the assimilation of data to improve representation
of the Atlantic Meridional Overturning Circulation, asses-
sing the suitability of the error covariance specifications,
and dealing with issues in the assimilation of data near
the equator.

Longer term developments to the systems are expected
to include the implementation of more advanced algorithms
(such as hybrid variational-ensemble schemes, or 4DVar
schemes), improvements to the error covariance represen-
tations and assimilation of higher resolution data such as
might become available from wide-swath altimetry mis-
sions. Many of these challenges are common to all the



systems, which highlights the importance of a forum to
discuss ideas and results, such as is provided by GODAE
OceanView.
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