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Under GODAE OceanView the operational ocean modelling community has developed a suite of global ocean forecast,
reanalysis and analysis systems. Each system has a critical dependence on ocean observations routinely assimilating
observations of in situ temperature and salinity, and satellite sea level anomaly and sea surface temperature. This paper
demonstrates the value and impact of ocean observations to three global eddy permitting forecast systems, one global
eddy permitting model independent analysis system, one eddy resolving reanalysis system, and two seasonal prediction
systems. All systems have been used to assess the impact of Argo profiles, including scenarios with no Argo data, and a
degraded Argo array unanimously concluding that Argo is a critical data set the most critical for seasonal prediction,
and as critical as satellite altimetry for eddy permitting applications. Most systems show that TAO data are as important
as Argo in the tropical Pacific, and that XBT data have an impact that is comparable to other data types in the vicinity of
XBT transects. It is clear that no currently available data type is redundant. On the contrary, the components of the global
ocean observing system complement each other remarkably well, providing sufficient information to monitor and forecast
the global ocean.

Introduction

Global ocean forecasting is important for a range of public-
good and commercial applications (Davidson et al. 2009).
Reliable ocean forecasting has the potential to positively
impact a broad range of these applications; providing
timely and accurate estimates of the current and future
state of the ocean. Maintenance of each component of the
Global Ocean Observing System [GOOS; www.ioc-goos.
org] depends, to some extent, on an ongoing demonstration
of the value of the collected observations for all the appli-
cations mentioned above. This paper provides an evidence-
based community perspective of the value of observations
from the GOOS to the ocean forecasting community. It pre-
sents a synthesis of the results obtained under the frame-
work of the GODAE OceanView Observing System
Evaluation (OSEval) Task Team. It includes results from
Observing System Experiments (OSEs), where different
components of the GOOS (e.g. satellite altimetry, Argo pro-
files) are systematically withheld from an assimilating
system. For each experiment, the degradation of each
system’s performance is quantified when different obser-
vation types are withheld.

Earlier studies conducted by the GODAE community
that involved OSEs, and related approaches, have been

documented in the published literature (Oke et al. 2009).
The most common method for quantifying the impact of
observations on a forecast/analysis system is the use of tra-
ditional OSEs (Balmaseda 2007; Oke & Schiller 2007;
Smith & Haines 2009). This paper includes several tra-
ditional OSEs, plus some novel implementations of
OSEs, including a series of near-real time (NRT) OSEs
(Lea 2012; Lea et al. 2013) and a ‘total-denial’ OSE. The
NRT OSEs were performed in parallel with an operational
ocean forecast system, where data were systematically
withheld from the NRT OSE, to provide an up-to-date dem-
onstration of the impact of each component of the current
GOOS on operational ocean forecasts. The ‘total-denial’
OSE, while not produced in NRT, demonstrates the
impact of a total loss of observations to a forecast
system, quantifying the degradation of the forecast
system over time. This paper also presents some results
related to the investigation of alternative methods that
allow a direct assessment of the relative impact of ocean
observations in a given system.

This paper provides an update on this community’s
contribution to this field, under the auspices of GODAE
OceanView. Many studies have previously quantified the
impact of each GOOS component. However, the GOOS
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is always changing, with the number, constellation, and
sampling of satellite altimeters varying every few years,
the number of Argo floats increasing (until recently) and
the distribution of Argo floats and XBT surveys rarely
replicating. It is, therefore, important for studies that evalu-
ate the GOOS for different applications, including ocean
forecasting, to be repeated regularly; so that published
results are up-to-date and relevant. Continuous efforts to
quantify the impact of observations, demonstrating their
importance to the society and institutes deploying obser-
vation platforms are also essential for sustaining the indis-
pensable ocean observation system in an efficient state.
This paper seeks to provide an update on the GODAE
OceanView community’s efforts to demonstrate the value
of observations to assimilating global ocean models.
Additionally, this study demonstrates the evolution, and
perhaps the coming of age, of observing system evaluation
studies. Such studies are becoming less focused on the
evaluation of historical observing systems, and more
focused on evaluation of the current observing system.
Several studies reported in this paper highlight this
change, which is in response to the growth and importance
of operational oceanography. A companion paper, focusing
on regional observing system evaluation studies, comp-
lements this review paper (Oke et al. 2015).

In this paper, details of the forecast systems are first
introduced, followed by results, a short discussion, and a
series of recommendations.

Models

The systems used in this study include the 1/4°-resolution
global ocean forecast systems developed by Mercator
Océan (Lellouche et al. 2013), the Met Office (Storkey
et al. 2010; Blockley et al. 2013) and the Canadian consor-
tium (Smith et al. 2014), a 1/10°-resolution reanalysis
system developed under Bluelink (Oke et al. 2013a; Oke
et al. 2013b), a 1/4°-resolution model-independent analysis
system developed at CLS (Guinehut et al. 2012), two oper-
ational seasonal prediction systems, currently operated at
JMA (Takaya et al. 2010; Fujii et al. 2012) and ECMWF
(Balmaseda et al. 2013). Several of these systems share a
common source code for the model (i.e. NEMO), similar
grids and topography; but in most cases, different data
assimilation systems and different surface forcing. Each
system is run independently, and assimilated observations
are prepared and processed differently.

In this paper, results using global eddy-permitting
systems are presented for a traditional set of OSEs using
the Mercator system; for a series of NRT OSEs – a novel
twist on the traditional OSEs – using the Met Office
system; for a single ‘total denial’ scenario, where it is
assumed that all observations are unavailable, using the
Canadian system; and analysing some alternative diagnos-
tics using the CLS system. These studies represent a cross-

section of approaches to demonstrate the value of obser-
vations on eddy-permitting forecast and analysis systems.
These studies are complemented by a series of traditional
OSEs using the Japanese and European seasonal prediction
systems.

It is important to note that the results from the types of
OSEs presented in this paper depend on the details of the
model and assimilation system used.

It is important to note that the results from the types of
experiments presented in this paper depend on the details of
the model and assimilation system used. This includes the
model resolution, model physics, assimilation method, esti-
mated background error covariance, observation error esti-
mate and method of initialisation. The results provide a
meaningful representation of the impact of assimilated
observations on each system, given their strengths, weak-
nesses, assumptions and limitations. Furthermore, it is
anticipated that although some of the studies presented
below focus on observation impacts in specific regions,
for specific times, the results are indicative of observation
impacts in other regions with similar dynamics and for
other systems using similar methods or approaches. To
avoid misleading conclusions resulting from these
deficiencies, results from a number of different, indepen-
dent systems are employed here; with the intention of iden-
tifying the most robust and reliable results from the
operational oceanography community.

Results

Several studies presented below include results showing
statistics computed from the difference between two OSE
simulations, where OSEX+Y assimilates observation types
X and Y, and OSEY that assimilates only observation type
Y. The difference between OSEX+Y and OSEY does not
necessarily quantify the ‘improvement’ attributable to
observation type X. However, it does faithfully quantify
the ‘impact’ of assimilating observation type X. It is prefer-
able to quantify the improvement, not just the impact, but
the availability of sufficient independent observations is a
common problem for systems that seek to assimilate all
available observations.

Mercator OSEs

Mercator Océan generates operational ocean and ice ana-
lyses and forecasts using a global 1/4° model, using
NEMO as the base code. This modelling system assimilates
SST, in situ temperature and salinity profiles, and
along-track SLA using an assimilation scheme called
SAM2 (Lellouche 2013); a multivariate reduced-order
extended Kalman filter, a variant of Ensemble Optimal
Interpolation (Oke et al. 2002; Evensen 2003).

To assess the impact of Argo observations on the global
ocean forecast system, the Mercator system is used to
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perform a series of OSEs that assimilate all available Argo
data, half of the available Argo data, and no Argo data – in
addition to SST and SLA. All OSEs are initialised with
identical initial conditions, forced with identical surface
forcing, and are run for one year, starting in January
2012. To evaluate each OSE, the Observation minus Back-
ground (OmB) values for temperature and salinity are ana-
lysed using all Argo data. The OmB statistics provide an
indication of the forecast error, quantifying the misfit to
observations immediately before assimilation.

Figure 1 shows the global root-mean-squared differ-
ence (RMSD) between the observations and the back-
ground temperature and salinity fields immediately
before assimilation for 2012 for all OSEs. When no
Argo data are assimilated the OmB values increase by
40–45% compared to the OSE that assimilates all Argo
data. The relative degradation is approximately uniform
down to 2000 m depth. When data from only half the
Argo floats are assimilated, the OmB values increase by
about 15% for temperature and salinity. The regional
impact of Argo floats is sometimes very large (not
shown). The neglect of Argo data degrades the properties
in the mixed layer and at depth in key regions, such as the
Mediterranean outflow and in the Labrador Sea during
periods of convection (not shown), which are known
model weaknesses. This shows the importance of Argo
data for initialising crucial aspects of the ocean circulation,
such as the depth of the Mediterranean outflow. In the Lab-
rador Sea, when no Argo data are assimilated, the warmer
water between 200 and 400 m depth beneath the thermo-
cline under the winter convection events (Yashayaev &
Loder 2009), are not generated or maintained (Figure 2).
The impact of Argo data on the upper ocean indicates
that Argo is critical for constraining the broad scale prop-
erties of the ocean, upon which the mesoscale circulation
depends.

FOAM NRT OSEs

A number of NRT OSE experiments were performed in
2011 with the UK Met Office’s operational ocean forecast-
ing system, FOAM (Storkey et al. 2010; Lea 2012, Lea
et al. 2013; Blockley et al. 2013). These experiments
adopt the same approach as that described above for the
Mercator system, except that they were performed by
running a parallel, identical version of the UK operational
system, with different data types systematically withheld.
Each month a single additional OSE is performed alongside
the operational system. The operational system assimilated
all available data. On average, each month, the operational
system assimilates 120K XBT, 900K TAO, 1.1M alti-
metric, 30M SST, and 1.3M Argo observations (where K
denotes thousands, and M denotes millions). For each
OSE, a different set of observations was excluded from
the assimilation. By comparing the results of the run
excluding a particular observation type with the operational
run, the impact of the withheld observations on the FOAM
system was assessed.

Each month an OSE was initialised with fields from the
operational system, and then a different observation type
was excluded from the assimilation for that month.
During the month the operational and OSE runs were run
independently. The observation types excluded in the
OSE runs were XBT in February, TAO/TRITON in
March, Jason-2 altimeter in April, all altimeter data in
May, AVHRR sea surface temperature (SST) in June
(AATSR, AMSRE, and in situ SST data were assimilated,
totally 17.8M assimilated SST observations, with 8.8M
with-held SST observations) and Argo data in July.

Results are summarised in Table 1, showing the number
of withheld observations, the 90th percentile, mean, and
maximum of the absolute differences between each OSE
and the control (operational) run for temperature at 100
m depth (T100), salinity at 100 m depth (S100), and sea-

Figure 1. Global mean root mean squared difference (RMSD;
OmB) profile for 2012 in temperature (left) and salinity (right):
in the Mercator run assimilating all Argo floats, half Argo
floats, and no Argo floats.

Figure 2. Time evolution of the temperature profile in the Lab
rador Sea at 55°W 59.3°N for two Mercator OSEs: (a) all Argo
data assimilated; and (b) no Argo data assimilated.
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surface height (SSH), for the entire globe and for the Tro-
pical Pacific.

One of the main conclusions from this study is that
there is complementary information in different data
types (Lea 2012; Lea et al. 2013). More specifically,
while XBT data do not impact global metrics significantly
they do have significant local impacts (with T100 differ-
ences of up to 2°C along XBT transects; see Lea et al.
2013, Figure 2; see also the global mean and maximum
differences for the ‘No XBT’ OSE in Table 1). Data from
the TAO/TRITON array also have a large impact locally
in the Tropical Pacific, where Argo data are relatively
sparse. Altimeter data have a strong impact on the model
sea-surface height (SSH) and a positive impact on the fit
to mesoscale velocities (Lea 2012; Lea et al. 2013) (not
shown). AVHRR SST data has significant impacts
between the surface and the bottom of the surface mixed
layer, but has little impact at greater depths. By contrast,
Argo data impacts the temperature and salinity globally,
down to 2000 m depth (Lea 2012; Lea et al. 2013) (not
shown); consistent with the results from the Mercator
system, described above. Furthermore, by correcting for

model drifts, Argo data enables the forecast system to
more accurately forecast SSH and surface velocities (Lea
2012; Lea et al. 2013) (not shown).

Globally, altimeter and Argo data have the largest and
comparable impacts on model temperature, salinity, and
SSH. If the impact is assessed more locally, in the Tropical
Pacific, TAO/TRITON has a similar impact to both altime-
try and Argo data (compare the ‘No TAO’ statistics with
‘No ALT’ and ‘No Argo’ in Table 1). XBT data still
shows a much smaller impact overall but the maximum
differences in the immediate vicinity of XBT lines show
some large and persistent impacts in temperature that are
often around 1 degree C, and sometimes greater (see the
maximum differences for ‘No XBT’ in Table 1).

GIOPS OSEs

The Canadian Operational Network of Coupled Environ-
mental Prediction Systems (CONCEPTS) consortium
have taken a different approach to demonstrate the value
of observations on an ocean forecast system – answering
the question: how long does it take for a system to

Table 1. Statistics of the differences between each FOAM NRT OSE run and the control run showing the 90th percentile (pc) of the
absolute difference, the mean absolute difference, and maximum absolute difference for key variables including the sea surface height
(SSH), and temperature and salinity at 100 m depth (T100 and S100 respectively), over the entire globe and over the Tropical Pacific. Also
shown is the number of withheld observations for each OSE. Note that ‘No SST’ withheld AVHRR and METOP, but assimilated 17.8M
SST observations from AATSR, AMSRE and in situ sources.

No XBT No TAO No J2 No ALT No SST No Argo

Number of with held
observations

128 K 816 K 495 K 1.1M 8.8M 1.3M

T100: Global (Deg C)
90th pc 0.080 0.105 0.511 0.805 0.120 0.698
Mean 0.037 0.050 0.187 0.290 0.048 0.270
Max 5.421 7.228 9.848 11.080 6.628 10.529

T100: Tropical Pacific (Deg C)
90th pc 0.112 0.429 0.583 1.050 0.134 0.872
Mean 0.046 0.167 0.255 0.452 0.055 0.374
Max 3.024 6.005 6.275 9.098 3.153 4.786

S100: Global (psu)
90th pc 0.007 0.016 0.067 0.100 0.011 0.097
Mean 0.003 0.007 0.024 0.037 0.005 0.039
Max 0.981 1.458 1.575 1.792 0.849 1.355

S100: Tropical Pacific (psu)
90th pc 0.012 0.051 0.087 0.129 0.016 0.117
Mean 0.005 0.019 0.036 0.055 0.007 0.049
Max 0.368 1.091 0.768 1.373 0.849 0.543

SSH: Global (cm)
90th pc 0.27 0.35 2.46 7.23 0.47 2.94
Mean 0.13 0.18 1.05 3.77 0.19 1.33
Max 26.95 23.76 79.88 80.61 14.95 49.76

SSH: Tropical Pacific (cm)
90th pc 0.18 0.83 2.14 8.17 0.32 1.70
Mean 0.08 0.34 0.98 4.55 0.15 0.76
Max 6.27 23.76 16.78 49.38 7.42 11.77
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degrade after data stops being assimilated? This approach is
motivated by recognizing the importance of considering the
tolerance of an operational ocean forecasting system to
delays, or dropouts, in the NRT delivery of observations
to forecast centers. For example, if a particular ftp server
used to obtain observations was shut down temporarily,
for how long could a given operational system continue
to provide useful forecasts before it should be stopped
because it is too inaccurate? Clearly, this depends on the
particular observation dataset, forecasting system and
application. Regardless, such knowledge is required to
ensure product quality for users.

To provide a rough estimate of the decrease in analysis
and forecast skill for such an event, a simple OSE is per-
formed using the experimental Canadian Global Ice
Ocean Prediction System (GIOPS) (Smith et al. 2014).
All observations that would normally be assimilated are
simply withheld from the forecast system and the misfit
between the model fields and observations is assessed
over time.

GIOPS has been running experimentally in operations
at the Canadian Meteorological Centre (CMC) since
March 2014, producing daily analyses and 10-day ice-
ocean forecasts using the 1/4° global resolution NEMO-
CICE modeling system and the Mercator assimilation
system, referred to above. Ocean analyses are blended
with ice concentration analyses produced using a 3DVar
method (Smith et al. 2014).

Figure 3(a) shows the global RMSD of OmB for temp-
erature using all available in situ observations (Argo, moor-
ings, etc.). The experiment was initialised in January 2011
from a GIOPS analysis and run for 2 months before
denying all observations, starting in March 2011. As
GIOPS uses a 7-day assimilation window, RMSD
between the trial and observations can be considered to
be representative of roughly 1–7 day forecast error. When
observations are not assimilated the forecast errors begin
to grow, with a 50% increase after a few months. Only
after 6 months of integration without data assimilation,
the errors begin to saturate. While significant regional vari-
ations are present (not shown); this nonetheless gives an
indication of the system tolerance to observation dropouts.

In Figure 3(b)-(c), the global SST mean and RMSD
with the CMC SST analysis are shown. A reference exper-
iment with no assimilation is also shown. The SST errors
show a similar response to that seen for in situ observations
with errors growing rapidly over a 1–2 month period.
While the mean errors (biases) saturate fairly quickly (2
months), the RMS errors only reach background values
after 6 months. In general, SLA errors grow more quickly
(not shown).

The majority of data streams for assimilated obser-
vations (e.g. Argo, XBT, and altimetry) in operational
oceanography are not ‘operational’ (i.e. not 24-7 sup-
ported). As a result, data-dropouts are common. As such,

knowledge of the impact of data-dropouts is especially
important to guide users. The large impact on forecast
errors found here, when in situ observations are denied
(i.e. a 50% increase in error), highlights the potential
benefits of transitioning ocean observational to operational
programs.

Bluelink water mass analysis

Analysis of eddies in the Western Boundary Current
(WBC) regions in a free run of the near-global, 1/10°-res-
olution, Bluelink Ocean Forecasting Australia Model
[OFAM (Oke et al. 2013a)], with no data assimilation,
shows that the water mass properties of eddies in different
regions are distinctive [Figure 4(a)]. The analysis, shown in
Figure 4(a), is from an 18-year composite of eddies for each
WBC. The individual eddies that compose the mean are
manually identified based on SLA fields (Rykova et al.
2014). Differences in the properties of each WBC are
explained by the circulation and forcing in each region.
The differences between anticyclonic and cyclonic eddies
are explained by the formation mechanisms (Rykova
et al. 2014). The temperature-salinity (TS) relationship in
eddies is non-linear.

Most data assimilation systems used for operational
oceanography exploit statistical (typically linear) relation-
ships (i.e. model-based covariances) between observed
and unobserved variables (Oke et al. 2008; Lellouche

Figure 3. (a) RMSD between GIOPS temperature and in situ
temperature observations for an OSE where there is no data
assimilated after March 2011. (b) bias (mean difference) and (c)
RMSD between GIOPS SST and CMC operational SST analyses
for an OSE where no data are assimilated after March 2011
(green) when all data are assimilated (red), and for a run with
no history of assimilation (blue).
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et al. 2013; Storkey et al. 2010). The ability of these data
assimilation systems to realistically reproduce the ocean’s
water masses is a major challenge. Analysis of the eddy
water mass properties in the latest Bluelink ReANalysis
[BRAN (Oke et al. 2013b)] indicates that indeed, a data-
assimilating eddy-resolving ocean model struggles to accu-
rately represent the water masses [Figure 4(b)]. Indeed the
water mass properties in OFAM, with no data assimilation,
compares better with observations (using Argo profiles
within eddies) than BRAN [Figure 4(b)]. Of course,
BRAN provides a better representation of the actual circu-
lation, with eddies in the right place at the right time (Oke
et al. 2013b) for example; but OFAM with no data assimi-
lation more faithfully reproduces the ocean’s water mass
properties [Figure 4(b)].

Note that the water mass properties in the East Austra-
lian Current (EAC) region are the most well-defined (with
the TS relationship nearly linear) of all the WBC regions
[Figure 4(a)] and with the properties of anticyclonic and
cyclonic eddies almost the same. However, despite this
relative simplicity, the water mass properties in a data-
assimilating model (Oke et al. 2013b) are somewhat unrea-
listic compared to properties observed using Argo floats
[Figure 4(b)], with water masses overly mixed, and the
structure of the TS-relationship poorly reproduced in
BRAN (note that BRAN withheld data from about half
the Argo profiles in the region of interest (Oke et al.
2013b)). Note that assimilating systems, like BRAN or
operational forecast systems typically assimilate satellite
observations that resolve the mesoscale, plus in situ data
(e.g. Argo) that doesn’t resolve the mesoscale. The analysis
in Figure 4(b) indicates that either more advanced (or
different), or more carefully configured data assimilation

systems are needed to realistically reproduce the ocean’s
water masses – or more in situ observations are needed to
initialise and constrain eddy-resolving ocean models.
This result is consistent with the FOAM NRT OSEs sum-
marised above (Lea 2012; Lea et al. 2013), where it was
shown that SSH comparably degraded when either data
from Argo or Jason-2 were with-held (Table 1), confirming
the need for both profile and altimetric data for ocean
initialisation.

Argo impact on ARMOR3D

ARMOR3D (Guinehut et al. 2012) is an analysis system
that combines data from satellite altimetry, SST, and in
situ temperature and salinity to produce three-dimensional
gridded fields of temperature and salinity. Firstly, satellite
observations are projected vertically, to generate synthetic
temperature and salinity profiles. Secondly, in situ profiles
are combined with synthetic profiles using optimal interp-
olation, to construct gridded fields of temperature and sal-
inity on a 0.25°-resolution global grid down to 1500 m.

In order to assess the relative impact of satellite and in
situ data for constructing the ARMOR3D temperature and
salinity fields, the Degree of Freedom of Signal (DFS) are
computed. DFS is an influence matrix diagnostic, first
developed for the atmosphere (Oke et al. 2008) and
recently adopted for ocean applications (Oke et al. 2009;
Dibarboure et al. 2011a; Sakov et al. 2012). It provides a
measure of the information content of each assimilated
observation, based on the assumed error estimates used in
the assimilation or analysis system. The implementation
used here is similar to that described by Dibarboure et al.
(2011a).

Figure 4. TS plots of cyclonic (dashed) and anticyclonic (solid) eddies in (a) the five major western boundary currents in a free run of
OFAM; and (b) a comparison of TS plots in OFAM (Oke et al. 2013a) the latest BRAN (Oke et al. 2013b) and Argo in the EAC region
(Rykova et al. 2014 with the dots indicating depths along the profiles).
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DFS is calculated as the trace of the HK matrix, where
H is the observation operator that interpolates the back-
ground field to the observation location, and K is the
Kalman gain matrix. The optimal interpolation method
used in the ARMOR3D system uses a Gauss-Markov esti-
mator that computed HK explicitly, along with the error
covariance matrix or formal mapping error (Bretherton
et al. 1976). The DFS is computed on each HK matrix,
so that the local mapping ‘gain’ in information from each
dataset (here, in situ and satellite data) can be computed.
The partial DFS is associated with a particular dataset
and is computed from the partial trace of the HK matrix,
taking only elements associated with the dataset to be ana-
lysed. Partial DFS associated with the dataset i is written as
DFS(i). Here, the fraction of the percentage of the overall
information content (%IC) is computed for in situ data
and satellite data (%IC = DFS(i) / ΣiDFS(i) x 100); and
the fraction of information of each data type actually
exploited by the optimal interpolation system (i.e. the
amount of information not lost to duplicate data and
measurement error) (%ICexploited = DFS(i) / N(i), where
N(i) is the actual number of observations from each
dataset i).

Time series of the global average of two DFS metrics
are presented in Figure 5 for the temperature at 100 m
depth, and the information content of each satellite alti-
meter is shown in Figure 6. Figure 5 shows the impact of
in situ data (Argo, moorings, XBTs, and CTDs) and syn-
thetic profiles that are derived from satellite data (altimeter
and SST) and climatology (Gaillard & Charraudeau 2008).
Results indicate that 1/3rd (2/3rd) of the overall infor-
mation come from the in situ (satellite) data at the begin-
ning of the period and that this number increases
(decreases) to 2/3rd (1/3rd) as the Argo observing system
is established. Furthermore, this method can be applied
within a given observation system (Dibarboure et al.
2011a) to assess the impact of a sub-set of observations.
Figure 6 shows that when data from one altimeter is una-
vailable (e.g. Loss of Jason-1), the information drawn
from other altimeters (e.g. Jason-2) temporarily increases.

The fraction of the information from the in situ data
actually exploited by the optimal interpolation method is
quite constant over time (Figure 5) with mean values
around 65% and associated mean standard deviation of
about 20%. This number is really determined by the decorr-
elation lengthscales used in the optimal interpolation

Figure 5. Time series of the spatial mean (thin lines) plus/minus the standard deviation (dashed lines) of the information content (pre
sented as a percentage), computed from the DFS, for the ARMOR3D temperature at 100 m depth. The in situ data refers to Argo profiles,
and the synthetic data refers to the profiles generated by projecting satellite data over depth.
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method and by the space/time distribution of observations.
In some areas, redundant in situ observations show lower
values for the information content, and isolated obser-
vations (like in the Southern Ocean) have values close to
100%. Similarly, the fraction of the information from the
synthetic field dataset actually exploited by the optimal
interpolation method is also quite constant over time with
mean values around 20% and associated mean standard
deviation of the order of 6%. These numbers are dictated
by the way the synthetic fields are used (i.e. as the back-
ground field for step 2 of the method) and the measurement
errors applied to those fields.

ECMWF OSEs

A series of OSEs has been performed using the ECMWF’s
ocean reanalysis ORAS4 (Balmaseda et al. 2013), which is
used to initialise the operational monthly and seasonal fore-
casts. The study includes an experiment that assimilates: all
observations (ORAS4), no mooring data (ORSA4 No-
Moor), no Argo data (ORSA4 NoArgo), no altimetry
(ORAS4 NoAltim), no data (ORAS4 NoDA), plus an
experiment with no bias correction (ORAS4 NoBias).
The OSEs presented here span the period 2001–2009.

Results are summarised in Figure 7(a), showing the
RMSD of temperature, averaged over the top 300 m
depth, between each OSE and ORAS4. The overall
impact of data assimilation is significant (Figure 7), with
errors growing significantly when no data are assimilated.
The results show that the impact of the mooring obser-
vations, TAO and Pirata, is limited to within about ten
degrees of the equator in the Pacific and Atlantic Ocean.
In those regions, the impact of the mooring observations
is about half the impact of Argo (in terms of reducing the
RMSD), and is greater than altimetry. Notably, the impact
of TAO/TRITON at the Equator and that of the PIRATA
moorings is about the same as Argo in the very low lati-
tudes in the vicinity of the moorings. The impact of altime-
try is greatest in the centre of the south Indian and Atlantic

basins and in the vicinity of the Gulf Stream extension
[Figure 7(c)]; perhaps indicating that assimilation of alti-
metry impacts the large-scale gyres. Argo data clearly
have the largest impact on the tropics and the extratropics.
Argo is also the observing system that has an overwhelm-
ing impact in global salinity (not shown), in agreement
with the results reported elsewhere (Balmaseda et al. 2008).

The experiments ORAS4, ORAS4 NoArgo, ORAS4
NoAltim and ORAS4 NoMoor include a bias correction
scheme (Balmaseda et al. 2013). The bias correction
involves an adjustment to the temperature and salinity
fields estimated from a previous data assimilation exper-
iment. These experiments therefore implicitly include
some information from all the observing systems about
the climatology of model errors. In the OSEs presented
here, the data assimilation is mainly correcting the temporal
variability. The experiment with no bias correction is
included here to illustrate the role of the observations in
correcting the mean. Clearly, in several regions the under-
lying model has significant errors, and the removal of the
bias correction term results in large values of the RMSD.

Note that the fields presented in Figure 7 are based on
the differences between two model runs; namely each
OSE and ORAS4. These fields accurately quantify the
data-impacts, as noted above, but do not necessarily quan-
tify the change in forecast error. To better understand this,
the profiles of the RMSD between each OSE and ORSA4
[Figure 8(a)] are computed, along with the profiles of the
RMS error (RMSE) between all OSEs and the in situ obser-
vations [Figure 8(b)]. The former RMSD fields represent
the data-impact on the model; and the latter RMSE fields
represent the data impact on the error (assuming that the
observation errors are negligible). It is found that in the tro-
pical Pacific, whenever any data type is withheld, the fit to
in situ temperature profiles degrades. Note that the impact
of the mooring data from the TAO array is greater than
the impact of Argo in the equatorial Pacific [Figure 8(b)].
This indicates that all data types contribute some unique
information to the data assimilating system.

Figure 6. Time series of the relative information content for each satellite altimeter for the DUACS system, based on DFS calculations.
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MOVE-G OSEs

Several activities for evaluating ocean observations have
been performed using MOVE/MRI.COM-G (MOVE-G)
by the JMA/MRI group (Takaya et al. 2010). MOVE-G
is an ocean data assimilation system that underpins the

operational seasonal forecasting at JMA. MOVE-G uses a
near-global configuration of the MRI.COM [MRI Commu-
nity Ocean Model (Tsujino et al. 2010)]. The grid spacing is
1° in the zonal direction, and changes from 0.3° (within
5.7°S-5.7°N) to 1° (Poleward of 16°S and 16°N) in the

Figure 7. RMSD between each OSE and the ORAS4 run that assimilates all observations, for temperature, averaged over the top 300 m.

Figure 8. Profiles of the (a) RMSD for temperature in the equatorial Pacific between the OSEs and the ORAS4 run that assimilates all
observations; and (b) the RMSE for temperature in the equatorial Pacific, computed by comparing the temperature in each experiment with
all in situ observations.
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meridional direction. A multivariate three-dimensional
variational analysis scheme, MOVE (Multivariate Ocean
Variational Estimation) (Fujii et al. 2003; Fujii et al.
2005; Tsujino et al. 2010) is employed to assimilate
along-track SLA from altimeters, gridded SST data from
satellite and in situ profiles from Argo, XBT, and
moorings.

Table 2 reports results from two experiments:
REGULAR – that assimilates almost all data (temperature,
salinity, and SLA; withholding only Argo data from floats
where the last digit of the World Meteorology Organization
(WMO) ID is ‘4’); and NOSAL - that is the same as
REGULAR, except all salinity observations are withheld
and no update to salinity is applied (i.e. for NOSAL, the
covariances between temperature-salinity and SLA-salinity
are assumed to be zero). Table 2 demonstrates that salinity
observations (mainly from Argo floats) improve the accu-
racy of the analysed temperature in the top 200 m in the
equatorial Pacific. This improvement is largely due to the
multivariate nature of the MOVE-G data assimilation
system (Fujii et al. 2011). For both of these experiments,
Argo data from the withheld floats are used for independent
evaluation. In NOSAL (Table 2) there is a cold bias in the
equatorial temperature field due to density instability that
results from updating temperature, but not salinity.
However, assimilating salinity observations (REGULAR)
using the multivariate analysis framework in MOVE-G
effectively reduces this bias, and improves the temperature
variability, as indicated by the reduced RMSDs and
increased Anomaly Correlation Coefficients (ACCs). This
shows the importance of assimilating salinity data and
also highlights the benefits of a multivariate data assimila-
tion system.

In a second OSE study using MOVE-G, the impact of
Argo data is demonstrated. Figure 9 shows the results
from a series of OSEs designed to assess the impact of
assimilating data from a different number of Argo floats
(Fujii et al. 2015) using the multivariate capabilities of
MOVE-G. In these OSEs, 5 experiments that assimilate
data from approximately 80%, 60%, 40%, 20%, 0% of
the available Argo float profiles were performed for the

period 2000–2010. Here, the last digit of WMO number
is again used for the selection of the assimilating Argo
floats. For example, Argo floats where the digit is 0 or 1
(0, 1, 2 or 3) are used in the OSE with 20% (40%) of
Argo, and similarly for the other OSEs. The accuracy of
these runs was evaluated by comparing output from each
run with data from the 20% of Argo float profiles that
were withheld from all assimilation runs (Figure 9). The
percentage improvement of RMSD is defined as
(RMSDNoArgo - RMSDOSE) / RMSDNoArgo x 100, where
RMSDOSE denotes the RMSD between the simulated and
observed values for each OSE, and RMSDNoArgo denotes
the RMSD between the simulated and observed values
for the OSE where all Argo data are withheld. The results
indicate that the accuracy monotonically improved with
increase in the number of assimilated Argo floats from
0% to 80%. This indicates that any further increase in the
number of Argo floats has a potential to further improve
the accuracy of our assimilating model. It is also clearly
demonstrated that the impact of Argo floats on salinity is
larger than the impact on temperature; indicating that
other observation types provide more constraint on temp-
erature. This result is consistent with the conclusions of
an earlier study (Oke & Schiller 2007) using the eddy-
resolving Bluelink system. In addition, the impact was
found to be quite large on salinity in the eastern equatorial
Pacific, relatively large in both temperature and salinity of
the subtropical Pacific, and relatively small in the mid-lati-
tudes of the North Pacific. The reason for these regional
differences relates to system errors (e.g. surface fluxes,
mixing) that differ from place to place.

In a third OSE study using the MOVE-G system, a
series of OSEs were performed to evaluate the relative
impact of Argo floats and TAO/TRITON buoys on ENSO
forecasts using an operational seasonal forecasting system
(Fujii et al. 2011). First, three data assimilating runs are pre-
pared using MOVE-G. All available data are assimilated in
one run, but Argo floats or TAO/TRITON buoys data are
systematically withheld in the other two runs. Forecasts
are started at the end of January, April, July and October
2004–2008. Thirteen-month, 11-member ensemble

Table 2. Statistics of the absolute model differences for temperature at different depths for REGULAR and NOSAL in the equatorial
Pacific (2°S 2°N, 130°E 80°W). Bias and RMSD: averaged difference and RMSD between modelled and reference values (modelled
minus reference). ACC: Correlation coefficient between anomalies of modelled and reference values. Anomalies are calculated as the
deviation from the World Ocean Atlas 2009 (Fujii et al. 2011)

Bias (°C) RMSD (°C) ACC

Depth NOSAL REGULAR NOSAL REGULAR NOSAL REGULAR

10 m −0.134 0.029 0.572 0.487 0.795 0.828
50 m −0.120 0.079 0.620 0.553 0.860 0.880
100 m −0.471 0.030 2.386 1.121 0.561 0.645
150 m −0.584 0.120 1.893 1.536 0.522 0.651
200 m −0.350 0.129 1.391 1.202 0.447 0.553
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forecasts were performed with each run using the coupled
atmosphere-ocean model in the seasonal forecasting
system (Takaya et al. 2010). The forecast scores for 6-
month lead-time are improved for NINO3, NINO3-4 and
NINO4 SST when Argo floats or TAO/TRITON buoys
data are assimilated (compared to the scores when the

data are withheld), and this impact is enhanced for 12-
month lead-time (Figure 10). The improvement of ENSO
forecasts at longer lead time are likely to be due to better
subsurface temperature fields achieved via assimilation of
Argo profiles. This improvement also positively influences
several atmospheric fields (not shown), including the sea

Figure 9. Percentage improvement of RMSDs (positive values indicate that assimilation improves the skill) for 0 300m averaged temp
erature and salinity by assimilating 20%, 40%, 60% and 80% of Argo profiles. (a) Eastern Equatorial Pacific (5S 5N, 170 80W). (b)
Western Equatorial Pacific (5S 5N, 170 80W). (c) Subtropical North Pacific (5 20N, 130E 90W). (d) Mid latitude North Pacific (30
60N, 130E 120W).

Figure 10. Improvements of the ACC scores by assimilating Argo Floats and TAO/TRITON buoys for SST averaged in the box areas
denoted by the left bottom map in 1 7 and 8 13 Lead Time (LT) forecasts. These improvements are calculated by subtracting the scores
for OSE runs where Floats (TAO/TRITON) are withheld from the scores for the Control run, when all data are assimilated (Fujii et al. 2011).
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level pressure, precipitation, and the divergence in the
upper troposphere, demonstrating the value of these data
sets to seasonal prediction systems.

Discussion and conclusions

In this study, results are presented from a series of OSEs
using eddy-permitting global ocean forecast and analysis
systems, and seasonal prediction systems. Each study
takes a different approach to quantifying the impact of
observations on each forecast/analysis system. This
includes traditional OSEs, where data are systematically
withheld for a 1-10 year data assimilating model run; a
series of 1-month long NRT OSEs (Lea et al. 2013); a
total data-denial OSE, where all data are presumed to
become unavailable; and an analysis of assimilation/
mapping diagnostics (using DFS metrics). These different
approaches provide clear demonstrations of the value of
different observation types.

In all but one study above, the impact of Argo data is
explicitly assessed. All the studies draw the unanimous con-
clusion that Argo data are a critical data type for ocean fore-
casting; providing unique and valuable information about
the ocean properties and circulation down to depths of
2000 m. Specifically, it is shown that Argo data are important
for constraining the mixed layer depths and water mass prop-
erties of the ocean interior. Several studies also demonstrate
the value of altimeter data and re-confirmed conclusions
from previous studies; indicating that it is the most critical
data type for initialising the mesoscale ocean circulation
(in eddy-permitting systems) where at least a constellation
of three altimeters is needed; and also the basin-scale circu-
lation in the extra-tropics and boundary currents (using sea-
sonal prediction systems).

Although TAO/Pirata data are limited in their extent to
the tropics; the studies presented in this paper demonstrate
that within about 10 degrees of the equator, the TAO/Pirata
data are as important for ocean/seasonal forecasting as
Argo and altimeter data. These results indicate the possi-
bility that the current degrading of the TAO array system,
taking place after the summer of 2012 [see www.ioc-
goos.org/tpos2020] might induce serious deterioration in
the forecast/analysis systems, and imply that the prompt
recovery of the array to the original state is highly desirable.
Similarly, although XBT data represent only a small com-
ponent of the GOOS now that the Argo array is complete,
the impact of XBT data in the vicinity of the XBT transects
is very significant, with the lack of XBT data degrading
forecast systems for some time after their neglect. The
experiments conducted by the Japanese group, using the
MOVE-G system, is perhaps the most comprehensive
assessment of the impact of Argo in the published litera-
ture; hinting that future enhancements to Argo, with more
floats, may continue to yield benefits to seasonal
predictions.

The more novel studies outlined in this paper include a
series of NRT OSEs, described in detail elsewhere (Lea
2012; Lea et al. 2013); the ‘total-denial’ OSE, performed
by the Canadian consortium; and the analysis of
assimilation metrics, described by the CLS group. These
non-traditional studies provide many unique insights.
Importantly, from a practical point of view, they represent
the types of experiments that could be performed routinely
with all operational ocean forecast systems, on an ongoing
basis. Indeed, the NRT OSEs, performed by the UK Met
Office in 2011 were performed alongside their operational
forecast system in NRT. The ‘total-denial’ OSE performed
by the Canadian group could also be easily performed for
all operational systems, with minimal computational over-
head (just a single month-long model run performed behind
real-time); as could the assimilation diagnostics of the CLS
group. If these experiments/diagnostics could be computed
routinely, then the ocean forecast community could have a
NRT, up-to-date, relevant suite of results that demonstrate
the value of the present-day GOOS at hand all the time.
In recognition of this opportunity, the GODAE OceanView
Observing System Evaluation Task Team [OSEval-TT;
www.godae-oceanview.org/science/task-teams/observing-
system-evaluation-tt-oseval-tt/] has proposed the concept
of Observation Impact Statements (OISs). OISs (Lea
2012) are intended to be a concise set of results that demon-
strate the value of the present-day GOOS in a way that is
easily understood by non-expert users. The details of
OISs are being worked through by the OSEval-TT. But it
is the vision of the OSEval-TT that all operational
systems perform parallel NRT OSEs, or compute equival-
ent assimilation diagnostics, to provide the broader com-
munity, including the observational community and
Decision-Makers, with the information that is needed to
assess, manage, and maintain the GOOS routinely. By so
doing, the GODAE OceanView community could help
empower the Decision-Makers to advocate for the mainten-
ance of the GOOS using up-to-date evidence, and consen-
sus results.
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