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The value of global (e.g. altimetry, satellite sea surface temperature, Argo) and regional (e.g. radars, gliders, instrumented
mammals, airborne profiles and biogeochemical) observation types for monitoring the mesoscale ocean circulation and
biogeochemistry is demonstrated using a suite of global and regional prediction systems and remotely sensed data. A
range of techniques is used to demonstrate the value of different observation types to regional systems and the benefit of
high resolution and adaptive sampling for monitoring the mesoscale circulation. The techniques include Observing
System Experiments, Observing System Simulation Experiments, adjoint sensitivities, representer matrix spectrum,
observation footprints and spectral analysis. It is shown that local errors in global and basin scale systems can be
significantly reduced when assimilating observations from regional observing systems.

Introduction

High-resolution ocean forecasting, including models that
resolve eddies and the mesoscale circulation, depends
heavily on ocean observations. The generation and evolution
of mesoscale structures in the ocean are often chaotic and so
there are limitations to predictability. Without data assimila-
tion, forecasts of the mesoscale circulation are inaccurate.
The best one could hope for is an ensemble of forecasts
that predict the likelihood of a particular mesoscale feature
(e.g. eddy, front) developing or evolving. Data assimilation
uses observations to initialise and constrain those features
of the ocean that are unpredictable. But for high-resolution
models, the demands on an observing system are significant.
Simply stated, a forecast system cannot accurately predict a
chaotic feature that is poorly observed.

The main conventional components of the Global Ocean
Observing System (GOOS) include satellite altimetry and
sea-surface temperature (SST), Argo floats, eXpendable
BathyThermographs (XBT), surface drifting buoys and
moorings. These platforms partly resolve the mesoscale
ocean circulation (Oke & Schiller, 2007). Regional ocean
observing systems are being developed around the world
under the auspices of the GOOS Regional Alliance [GRA;
www.iocgoos.org], which is comprised of national and

institutional efforts that cooperate regionally to complement
the GOOS. Regional observation platforms include mooring
arrays, land-based high-frequency (HF) radar arrays and
repeat glider deployments and are organised under projects
such as EuroGOOS [www.eurogoos.org], USGOOS
[www.ioc-goos.org/usgoos] or IOOS [www.ioos.noaa.gov],
IOGOOS [www.incois.gov.in/Incois/iogoos/intro.jsp] and
IMOS [www.imos.org.au]. For regional applications, such
as shelf-scale models or even basin-scale models, obser-
vations delivered under the GRA are important for providing
additional constraints for initialising ocean forecasts. Models
on these scales often include different physics (e.g. tides) and
resolve different processes (e.g. fronts, small eddies) and can
be used for the design and assessment of regional observing
systems. This review demonstrates the value of assimilating
observations from HF radars, gliders, instrumented
mammals, and XBT observations. Additionally, the impact
of assimilating data from multiple satellite altimeters into
an eddy-resolving model is demonstrated, along with the
potential of in situ biogeochemical observations to constrain
a coupled physical-biological model.

This review article is intended to capture a broad cross-
section of observation impact studies for regional appli-
cations, including studies using global, basin-scale and
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shelf-scale models and high-resolution observational data-
bases. Applications include results from traditional Observ-
ing System Experiments (OSEs; e.g. Oke & Schiller, 2007),
traditional Observing System Simulation Experiments
(OSSEs; e.g. Milles, 1990), OSSEs with adaptive sampling
(Bishop et al. 2001), the Representer Matrix spectrum
(RMspec) using stochastic modelling (Le Hénaff, 2009)
and observation footprints (Oke & Sakov, 2012).

Contributions from the GODAE community to observing
system design and evaluation have been previously docu-
mented (Oke et al. 2009). This review article provides an
update on this community’s contribution to regional observ-
ing system evaluation, under the auspices of GODAEOcean-
View, and is complemented by a companion paper describing
global studies (Oke et al. 2015). In this paper, results from a
series of studies are presented, followed by a discussion, con-
clusion, and a series of recommendations.

Results

It is important to note that the results from the types of exper-
iments presented in this paper depend on the details of the
model and assimilation system used. This includes the
model resolution, model physics, assimilation method, esti-
mated background error covariance, observation error esti-
mate and method of initialisation. The results provide a
meaningful representation of the impact of assimilated
observations on each system, given their strengths, weak-
nesses, assumptions and limitations. Furthermore, it is antici-
pated that although the studies only represent observation
impacts in specific regions, for specific times, the results
are indicative of observation impacts in other regions with
similar dynamics and for other systems using similar
methods or approaches. Importantly, the range of approaches
presented below gives a good indication of the state of play
in observing system evaluation for the operational ocean-
ography community.

Suppose the difference between two OSE simulations is
compared, where OSEX+Y assimilates observation types X
and Y, and OSEY assimilates only observation type Y. The
difference between OSEX+Y and OSEY does not necessarily
quantify the ‘improvement’ attributable to observation type
X. However, it does faithfully quantify the ‘impact’ of
observation type X. It is preferable to quantify the improve-
ment, not just the impact, but the availability of sufficient
independent observations is a common problem for
systems that seek to assimilate all available observations.
Analysis of the difference between two OSEs is common
(Oke et al. 2009; Lea et al. 2013; Oke et al. 2015).

Bluelink altimeter OSEs around Australia

Results from a series of OSEs designed to quantify the
impact of satellite altimeter data on a regional, eddy-resol-
ving ocean reanalysis system; the Bluelink ReANalysis

(BRAN; version 3) system (Oke et al. 2013) are presented
in Figure 1. The BRAN configuration uses a near-global
configuration of the Modular Ocean Model (Griffies et al.
2004) with 1/10° grid spacing around Australia. An Ensem-
ble Optimal Interpolation (EnOI; Oke et al. 2002) data
assimilation system is used to assimilate along-track sea-
level anomaly (SLA) from altimeters, satellite sea surface
temperature (SST) and in situ profiles from Argo, XBT
and moorings.

The OSEs performed with the BRAN system include
runs that assimilate data from zero, one, two and three alti-
meters, spanning a 12-month period beginning in March
2008. Figure 1 shows profiles of the 90th percentile of
the root-mean-squared difference (RMSD) between temp-
erature and salinity in the Australian region for different
OSEs. The 90th percentile provides an indication of more
extreme impacts of withholding different sub-sets of data.
The results presented in Figure 1 show profiles of the
RMSD of temperature and salinity in OSEs that assimilate
data from a different number of altimeters. All experiments
assimilate in situ profiles and SST and each OSE assimi-
lates SLA data from a different number of altimeters. The
greatest impact of altimeter data is made with the addition
of the first altimeter (1ALT – 0ALT), where the temperature
and salinity change by up to 1.5°C and 0.4 psu, respect-
ively. The addition of the second altimeter (2ALT – 1
ALT) results in changes of temperature and salinity of up
to 1°C and 0.18 psu; and the addition of the third altimeter
(3ALT – 2ALT) changes of temperature and salinity of up
to 0.8°C and 0.14 psu.

The difference between reanalysed SLA and observed
SLA (including assimilated and unassimilated data) in
each OSE is compared in Table 1, showing the RMSD
and correlation between reanalysed SLA and along-track
SLA from Jason-1, Jason-2 and Envisat. Also shown in
Table 1, is the percentage improvement in the RMSD rela-
tive to the OSE that assimilates no altimeter data. These
results show that assimilation of data from three altimeters

Figure 1. Profiles of the 90th percentile of the RMSD for temp
erature (left) and salinity (right) between OSEs performed using
the Bluelink system using data from one and zero altimeters
(1ALT 0ALT; blue), two and one altimeters (2ALT 1 ALT;
green), three and two altimeters (3ALT 2ALT; red).
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reduces the RMSD with observed SLA by 23%. Consistent
with the results in Figure 1, the addition of the first altimeter
has the largest impact, reducing the RMSD with observed
SLA by 12% and the addition of the second and third alti-
meter improving SLA by a further 8% and 3% respectively.
For comparison, Table 1 also includes an evaluation of the
OSE with no data assimilation (with-holding SST and in
situ profiles as well). It is found that with-holding in situ
T/S and SST, in addition to withholding the altimeter
data, degrades the modelled SLA by 11%. This indicates
that the impact of one altimeter data is similar to the
impact of assimilating in situ T/S data from Argo and XBT.

It should be noted that the RMSD is about 6 cm when
data from 3 altimeters are assimilated. Also to note is that
the instrument error of altimetry is a couple of cm, the rep-
resentation error (Oke & Sakov, 2008) is a couple of cm
and the model and data assimilation are imperfect. So a
difference of 6 cm is arguably about as good as one
could expect, without over-fitting observations, given
these errors and limitations.

This OSE study demonstrates the value of satellite alti-
meter data to an eddy-resolving ocean model. It shows that
the addition of the first altimeter has the largest impact – but
that there are quantitative improvements seen by the

addition of a second and third altimeter. Further, it is
found that the assimilation of in situ profiles and SST
improves the modelled sea-level (Table 1), demonstrating
that observations provide meaningful information on
ocean state variables other than those directly measured
(e.g. temperature and salinity observations helps initialise
SLA).

MFS altimeter OSEs in the Mediterranean Sea

Results from OSEs designed to quantify the impact of sat-
ellite altimeter data on a high-resolution ocean forecast
system is presented in Figure 2 and Table 2, using the Med-
iterranean Forecast System (MFS; Tonani et al. 2009; Oddo
et al. 2009). The MFS uses 3dVar (Dobricic & Pinardi,
2008) to assimilate data from satellite altimetry, Argo and
XBT into a regional configuration of NEMO with 6–7
km resolution and 72 vertical levels. The OSEs performed
with the MFS include runs that assimilate data from one
(J2), two (J2+SA; J2+C2) and three (J2+SA+C2) alti-
meters, in addition to Argo and XBT, for the period 26
June to 5 October 2013. The results shown in Figure 2
and Table 2 report the unbiased RMSD between the ana-
lysed SLA computed for each assimilation cycle and
along-track SLA (atSLA) from each (and all) altimeter.
The mean difference of SLA for each track is removed
prior to calculation of the RMSD (hence the reference
to the unbiased RMSD above). For reference, the standard
deviation of the SLA signal in the model domain is 4-1–4.8
cm (from atSLA from altimeters). The time-series shows
that the RMSD typically ranges from about 3 cm to 4.5
cm. The OSE that assimilates data from 3 altimeters per-
forms the best and the OSE that assimilates data from 1 alti-
meter performs the worst. The difference between 1 and 3
altimeters is typically about 10% - which is comparable to
the results presented for the Bluelink altimeter OSEs
(Table 1).

The results presented in Table 2 also highlight the
difference in the quality of data from different altimeters.
Note that the RMSD is greatest for all OSEs for the com-
parisons with atSLA from Cryosat. This indicates that
Cryosat data has larger errors than the other altimeters.

The OSE that assimilates data from only one altimeter
(Jason-2) is the least reliable of all the OSEs, producing
analyses with the largest RMSD (Table 2) and the most
variability (the spikiest time-series) of RMSD (Figure 2).
The latter point is particularly important for operational
ocean forecasting. Results from these OSEs show that the
forecast error (represented here by the RMSD statistics)
when only one altimeter is used varies in time more than
the forecast error when multiple altimeters are used. This
means that decisions made (for search and rescue, for
example) based on forecasts (or analyses) from 3ALT can
be trusted more than 1ALT – both in terms of the magnitude
of the error and the consistency of the error over time.

Table 1. Area averaged correlation and RMSD between SLA in
each OSE and atSLA from all altimeters for the whole Australian
region (90 180E, 60S 10N) from the Bluelink altimeter OSEs; and
the percentage improvement of each OSE relative to the OSE with
zero altimeters (% Improvement [RMSD0ALT RMSDNALT] /
RMSD0ALT). For reference, the standard deviation of the SLA
signal from atSLA is about 15 cm in the region of interest. Note
that some observations are assimilated, but statistics reported here
are from model ‘forecasts’ not analyses.

3ALT 2ALT 1ALT 0ALT NoDA

RMSD (cm) 6.1 6.3 6.7 7.9 8.8
Correlation 0.67 0.65 0.61 0.45 0.29
% Improvement 23 20 12 0 11

Figure 2. Time series of the RMSD between analysed SLA in
each of the MFS altimeter OSEs during 2013.
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REMO GOOS OSEs in the Atlantic

The first version of the Brazilian Oceanographic Modeling
and Observation Network (REMO) ocean data assimilation
system for the Hybrid Coordinate Ocean Model [HYCOM;
www.hycom.org] (Bleck, 2002; Chassignet et al. 2003;
Halliwell, 2004) has been recently constructed
(RODAS H). At the time of writing, RODAS H is under
evaluation and only preliminary results have been produced
so far (Tanajura, 2013; Tanajura, 2014). The system is
based on the EnOI scheme mostly following the work of
others (Oke et al. 2002; Evensen, 2003; Oke et al. 2007).
REMO focuses on simulations, short-range forecasts and
observations in the Atlantic Ocean and sub-regions of par-
ticular interest to Brazil (Lima et al. 2012) [www.rederemo.
org]. The first version of RODAS H was tested in a 1/4°
grid with 21 vertical layers, covering the Atlantic Ocean
region from 78S to 50N and from 100W to 20E, excluding
the Pacific and the Mediterranean.

For this study, five OSEs are presented for the period
January to June 2010. The first OSE is a control run
without data assimilation. The other four OSEs assimilate
different observations every 3 days, namely: (i) only

along-track SLA (Jason-1, Jason-2 and Envisat; A SLA);
(ii) only ¼°-resolution Reynolds SST (A SST); (iii) only
vertical profiles of T/S from Argo (A Argo); and (iv) all
the aforementioned observation types (A All). Argo data
are assimilated using a 3-day observational window. For
the other data, only a one-day window is used.

The impact of the observations is assessed by compar-
ing the prior model state (before assimilation) with daily
T/S data from 6,988 Argo profiles (Figure 3). These data
are independent, since they were not assimilated at the
assessment time. The control run attains maximum
RMSD of about 2.2°C and 0.34 psu. A slight reduction
of RMSD is obtained with the A SLA OSE, showing
that for the REMO system there is little impact of assimila-
tion of SLA in the vertical profiles of T and S, with the
impact limited to the top 500 m depth. Assimilation of
Argo data only (A Argo) reduces the maxima RMSD for
T and S to about 1.7°C and 0.24 psu, respectively. Assim-
ilation of SSTonly (A SST) mostly constrains the tempera-
ture near the surface and it does not significantly impact in
T and S below 500 m depth. Assimilation of all data
(A All) produces results comparable to the A Argo, but
it is not always better than the A Argo along the profile.
RMSD of T in the A All experiment is higher than in the
A Argo in the top 250 m and between 600 m and 1400
m approximately. RMSD of S in the A All experiment is
slightly higher than in the A Argo between 600 m and
1500 m. This is because A All assimilates all data types,
as mentioned above – so the challenge of ‘fitting’ obser-
vations of different type using EnOI is more difficult than
it is for fitting a single data type. It is expected that this chal-
lenge to be met, with superior performance from equivalent
A All OSEs with future, more mature, versions of
RODAS H.

To further investigate the sensitivity of the prior model
state in the present OSE, the RMSD with respect to Rey-

Figure 3. Profiles of the RMSD for temperature (left) and salinity (right) between about 6988 Argo profiles (before assimilation) and
model fields from OSEs using the REMO system (RODAS H) for the entire model domain (100W 20E, 78S 50N) from January 1 to
June 30, 2010.

Table 2. RMSD of analysed SLA (cm) for each OSE with
respect to along track SLA from each altimeter and all altimeters
(J2+SA+Cr) for the MFS altimeter OSEs. For reference, the
standard deviation of the SLA signal from along track altimeters
is 4.1−4.4 cm in the model domain.

3ALT (J2
+SA+C2)

2ALT (J2
+C2)

2ALT (J2
+SA)

1ALT
(J2)

Jason 2 (J2) 3.0 3.1 3.1 3.3
Saral AltiKa (SA) 3.4 3.5 3.6 3.8
Cryosat 2 (C2) 3.8 3.9 3.9 4.1
J2+SA+C2 3.5 3.5 3.6 3.8
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nolds SST analyses and correlation with AVISO SLA
gridded data is calculated for each run. The results are pre-
sented in Table 3, which also shows the mean RMSD for all
T/S Argo data. A All does not attain the smallest RMSD
and the highest SLA correlation, for reasons described
above. However, considering the overall performance,
the A All produced the best results. Assimilation
in the A All OSE consistently reduces the RMSD of
SST, T and S and increases the SLA correlation by more
than 80%.

It can be noted that the version of the REMO system
used in this study is relatively immature, having only
been recently developed. This is reflected in the results pre-
sented in Figure 3 and Table 3, showing relatively poor per-
formance compared to other systems (e.g. Bluelink; Table 1
– SLA correlations are 0.4 for REMO and 0.67 for Blue-
link). This highlights one of the benefits of this type of
community OSEval activity, offering indirect inter-com-
parisons that help identify strengths and weaknesses in
different systems. In this case, the impact of different
data types is smaller than in other systems probably
because the estimated background error covariances are
relatively poor. It can be noted that RODAS H is under
development and new ensemble will be likely improve
the system’s skill. For instance, it was found that assimila-
tion of Argo profiles changed the model mean dynamical
topography, mainly correcting the model temperature
bias. This has led the developers to revisit the strategy for
converting model sea-level into SLA for the assimilation
of altimetry data.

Marine mammal T/S OSEs in the Southern Ocean

Results from a series of near-real-time (NRT) OSEs using
the FOAM system are described in the published literature
(Lea, 2012; Lea et al. 2013; Oke et al. 2015). Results
presented here are from a series of more traditional
OSEs, with a focus on the Southern Ocean and the region
around the Kerguelen Plateau using the FOAM system
(Lea et al. 2013; Blockley et al. 2013). Briefly, this
version of Global FOAM uses the NEMO ORCA025L75

ocean model coupled to the CICE sea-ice model. Data
assimilation is performed using the NEMOVAR 3D-Var
system with profile observations from EN3 (Ingleby &
Huddleston, 2007) as well as altimeter, SST and sea-ice
data (Blockley et al. 2013).

Temperature and salinity profiles are obtained from
instrumented marine mammals in NRT. The mammals,
mostly elephant seals, sample to depths of up to 2000 m
in high latitude regions where there are very few other in
situ observations. Two OSE integrations are performed
using the UK Met Office’s Global FOAM v12 system:
SealTS – where all mammal temperature and salinity pro-
files assimilated; and NoSeals – no mammal data
assimilated.

Both experiments assimilated all of these observations,
except the marine mammal profiles are withheld in the
NoSeals OSE. The SealTS OSE assimilated 20,593
mammal profiles between 1 December 2010 and 31
December 2011, of which 13,579 were in the Southern
Ocean.

Table 4 and Figure 4 show observation minus model
background (OmB) statistics for 2011. These statistics
provide a measure of the forecast skill of the system, repre-
senting comparisons with observations immediately before
assimilation. Percentage RMSD indicate that assimilation
of seal profiles improves model T and S fields, with
improvements of 2.3% and 11.6% in temperature and sal-
inity profiles for the global ocean and 4.3% and 33.1%,
respectively, for the Southern Ocean where seal obser-
vations are most abundant. In all three regions, the assimi-
lation of seal T & S data appears to reduce the bias and
RMS errors. For temperature, the effect is small but signifi-
cant in the upper 500 m of the Southern Ocean. The salinity
impact is evident down to 2000 m in the Southern Ocean
and Kerguelen regions and is notable in the upper 400 m
of the global ocean.

The results in Table 4 provide an optimistic estimate of
the potential for marine mammal observations to improve
FOAM system. Comparing OmB statistics in regions
where the only profiles available for assimilation are from
mammals make it appear that the mammal profiles have a
positive impact on profile statistics. A lack of independent
collocated T & S profiles makes it difficult to independently
verify the impact of the mammal observations. It is clear
that assimilation of the seal data makes a difference to
model fields, but it cannot be certain that the analysed
fields are an improvement.

A better understanding of the impact of seal obser-
vations is gained by focusing on a region with both
mammal and Argo observations. Such a region is around
the Kerguelen Islands, in the Indian sector of the Southern
Ocean (45-85E, 62-44S). Table 4 and Figure 4(c) and (h)
shows the OmB profiles using all profiles, from both
Argo and mammals; Figure 4(d) and (i) shows the OmB
profiles using only Argo profiles; and Figure 4(e) and (j)

Table 3. RMSD with respect to Reynolds SST analyses and
6,988 Argo T S profiles and correlation with respect to AVISO
SLA for each of the REMO GOOS OSEs in the whole model
domain (100 W 20E, 78S 50N) from January 1 to June 30, 2010.

RMSD Correlation

SST (°C) Argo T (°C) Argo S (psu) AVISO SLA

Control 1.51 1.42 0.26 0.22
A SST 0.81 1.30 0.27 0.23
A Argo 1.36 1.12 0.18 0.22
A SLA 1.49 1.40 0.25 0.47
A All 0.92 1.16 0.18 0.40
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shows the OmB profiles using only mammal observations.
The results are mixed. The comparison with only Argo pro-
files suggests that assimilation of mammal data degrades
the model, by 3.4% and 6.2% for temperature and salinity
respectively; but comparison with the assimilated marine
mammal data indicates a significant improvement, reducing

the RMSD by 12.3% and 39.1% for temperature and sal-
inity respectively.

The reversal of the salinity impact between Argo-only
and seal-only OmB RMS results and the corresponding
large change in the bias value lead to the conclusion that
some/most of the seal salinity data is biased high. This

Table 4. Temperature and salinity profile OmB results for three model hindcasts (no seal data assimilated, seal T and S assimilated, seal T
assimilated), calculated using all available profile observations (the percentage improvement in the RMSD, %Imp [RMSDNoSeals

RMSDSealXX]/RMSDNoSeals) for the marine mammal T/S OSEs.

Temperature (°C) Salinity (psu)

Bias Corr RMSD %Imp Bias Corr RMSD %Imp

Global Ocean (Argo + Seals)
NoSe −0.005 0.998 0.614 0.010 0.990 0.138
SealTS 0.004 0.998 0.600 2.3% 0.004 0.992 0.122 11.6%
SealT 0.004 0.998 0.601 2.1% 0.009 0.990 0.139 0.0%
Southern Ocean (Argo + Seals)
NoSe −0.038 0.993 0.580 0.038 0.908 0.163
SealTS −0.017 0.993 0.555 4.3% 0.011 0.956 0.109 33.1%
SealT −0.017 0.994 0.548 5.5% 0.038 0.913 0.159 2.5%
Kerguelen region (Argo + Seals)
NoSe −0.037 0.966 0.600 0.100 0.887 0.210
SealTS −0.024 0.967 0.589 1.8% 0.025 0.929 0.149 29.1%
SealT −0.022 0.969 0.565 5.8% 0.095 0.889 0.205 2.4%
Kerguelen region (Argo ony)
NoSe 0.008 0.963 0.801 0.003 0.931 0.146
SealTS 0.012 0.960 0.828 −3.4% −0.026 0.923 0.155 −6.2%
SealT 0.003 0.963 0.796 0.6% −0.017 0.930 0.148 −1.4%
Kerguelen region (Seals only)
NoSe −0.063 0.951 0.449 0.168 0.903 0.238
SealTS −0.044 0.960 0.394 12.3% 0.054 0.940 0.145 39.1%
SealT −0.037 0.964 0.377 16.0% 0.160 0.904 0.232 2.5%

Figure 4. Profiles of the RMSD (solid lines) and bias (dashed lines) of the OmB for (a) (e) temperature and (f) (j) salinity observations for
the (a), (f) global ocean, (b), (g) Southern Ocean and (c), (h) a region around the Kerguelen Isles (45 85E, 62 44S), compared to obser
vations from both Seal and Argo observations; and (d), (i) compared to observations of Argo only; and (e), (j) compared to observations
from Seals only. Obs background statistics were calculated using all available T/S profiles, including the seal observations.
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effect has been noted during laboratory tests of the CTD
Satellite Relay Data Logger and is thought to be due to
interference between the conductivity sensor’s electric
field and the seal’s body. It is not currently possible to
correct for this in NRT (Boehme et al. 2009). In addition,
it is likely that biased salinity data may act to reduce the
positive impact of seal temperature profile data due to the
T-S balance relationships used by the data assimilation
scheme (Boehme et al. 2009).

Work is continuing to find the most beneficial way to
assimilate mammal data into FOAM (Carse et al. 2013).
One option is to assimilate only the T data from the
mammal database. To test this, a third OSE is performed
to assimilate seal temperature profiles only. The SealT
OSE is identical to SealTS, except all mammal salinity
data is excluded from the assimilation.

SealT statistics show improvements compared with the
SealTS OSE (Table 4). In the Southern Ocean, temperature
profile RMSD improvements increase from 4.3 to 5.5%
using the all-profiles method (Table 4). A larger positive
impact is found in the Kerguelen region, with an increase
from 1.8 to 5.8% using the all-profiles method and sign rever-
sal to show a modest benefit using the Argo-only method
(-3.4 to 0.6%, Table 4). The SealT OSE has no impact on
the global ocean salinity statistics but causes an improvement
of around 2.5% in the Southern Ocean and Kerguelen regions
compared to the NoSeals OSE (Table 4). The Argo-only
OmB salinity statistics in Table 4 show a reduction from
-6.2 to -1.4% between SealTS and SealT OSEs.

The improvement in both temperature and salinity
model fields shown in the SealT OSE strongly suggests
that the mammal salinity data has a negative impact on
FOAM T and S profiles. It is concluded that assimilating
seal temperature data only is the pragmatic way to
proceed, until the salinity bias in the observations can be
corrected in near real time.

XBT-CTD OSSEs in the Gulf of Mexico

A new fraternal-twin ocean OSSE system (Halliwell et al.
2013) has been developed by the joint NOAA/AOML
and University of Miami/RSMAS/CIMAS Ocean Model-
ing and OSSE Center [OMOC; www.ci-mas.org/omoc.
html]. This OSSE system has been used to assess different
design strategies for rapid-response airborne surveys. This
fraternal twin system employs two different realisations of
HYCOM for the Nature Run (NR) and the forecast
model. Each model is configured to produce substantially
different physics and truncation errors required of a
credible OSSE system (Halliwell et al. 2013) by taking
advantage of the multiple choices of numerical
algorithms and subgrid-scale parameterizations contained
in HYCOM.

OSSE system validation in the interior Gulf of Mexico
(GoM) was achieved using an evaluation procedure that

compared OSSEs to reference OSEs. Each OSE-OSSE
experiment pair was identical, except for assimilating real
(OSE) and synthetic (OSSE) observations, respectively.
The key step was to demonstrate that similar impact assess-
ments were consistently obtained between all correspond-
ing OSE-OSSE pairs based on multiple error metrics
calculated for several model variables. This design and
validation exercise followed long-established procedures
used in atmospheric OSSEs (Atlas et al. 1985; Atlas,
1997). The initial application of this OSSE system
addressed the impact of different sampling strategies of
rapid-response Airborne eXpendable profile surveys on a
data assimilating model, including instrument type
(shallow AXBTs versus deep AXCTDs) and horizontal res-
olution (Carse et al. 2013; Halliwell et al. 2014).

Example results from this OSSE study are presented in
Figure 5. Figure 5(a) presents the locations where synthetic
profiles were sampled from the NR for the two airborne
sampling grids (0.5° and 1.0°), while Figures 5(b)-(e) pro-
vides an example impact assessment using RMS error maps
calculated within this domain. Error maps are presented for
Tropical Cyclone Heat Potential (TCHP), also known as
Ocean Heat Content (OHC), which is an index of available
thermal energy to support hurricane intensity (Mainelli
et al. 2008). TCHP is the amount of thermal energy
required to raise the temperature of all near surface water
exceeding 26°C from that reference temperature to its
actual temperature.

Figure 5(b) shows the RMS error field for experiment
AXCTDHR, which assimilates 0.5° AXCTD profiles
extending to 1000 m depth along with all other observing
systems and serves as a reference, because it provides the
greatest error reduction among all experiments. Figure 5(c)
presents the increase in RMS error in experiment NOP3B,
which denies only the airborne profiles, with respect to
AXCTDHR. Large error increases are observed, demon-
strating the positive impact of assimilating the airborne
profiles.

The increase in RMS error in experiment
AXCTDLR [assimilating profiles on the 1.0° grid –
large dots in Figure 5(a)] with respect to AXCTDHR,
is shown in Figure 5(d). Small-scale structure is
observed in this error increase pattern, with the largest
increases tending to occur at the 0.5° airborne sampling
grid points that were denied in this experiment [small
dots in Figure 5(a)]. This demonstrates that the higher-
resolution sampling reduces RMS errors primarily by
constraining smaller-scale ocean variability that is not
well constrained by altimetry.

The increase in RMS error in experiment AXBTHR
(assimilating AXBTs to 400 m depth) with respect to
AXCTDHR is shown in Figure 5(e). The change of
probes and profile depths has an insignificant impact on
TCHP error because both probe types measure temperature
profiles over the upper 400 m. By contrast, the assimilation
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of shallower probes that only measure temperature leads to
somewhat larger errors in ocean dynamical fields, such as
SSH (not shown).

From this study, it is concluded that assimilation of air-
borne profiles and that high-resolution sampling (in this
case at 0.5° resolution, compared to 1°) constrains the
small-scale circulation that is not well constrained by satel-
lite altimetry. The deep CTD observations have relatively
little impact on the upper OHC that is the focus of this
study.

Glider OSSEs in the Ligurian Sea

A series of OSSEs was performed for the Ligurian Sea
(Western Mediterranean) to evaluate the impact of the
assimilation of glider data on forecast ocean temperature.
The impact of a cooperative-coordinated glider fleet
flying in a triangular formation maintaining a 25 km dis-
tance between the platforms is compared to a coopera-
tive-unaware fleet where the individual platforms can
freely move in the domain. Both configurations were opti-
mised to minimise the temperature error between the

surface and 100 m depth in a 1.8-km resolution regional
simulation of the Ligurian Sea based on the ROMS (Shche-
petkin & McWilliams, 2005).

Observations were simulated from a nature run pro-
vided by a reference ROMS simulation and assimilated in
a slightly modified configuration of the model (a so-
called fraternal twin-experiment) using an ensemble
Kalman filter [EnKF; Evensen (2003)]. The control run is
the mean of an ensemble of simulations generated from
the same perturbations as those used in the EnKF, but
without data assimilation. One of the most striking differ-
ence between the nature and control runs is the presence
(absence) of a warm anticyclonic eddy travelling off the
north-western coast of Corsica Island in the nature
(control) run [denoted by ‘E’ in Figure 6(a) and (b)].
Figure 6(c) shows that the initial EnKF uncertainty field
(ensemble spread) includes high uncertainty to the south-
west of the domain and around the eddy ‘E’. The latter
highlights the presence of travelling eddies (with similar
characteristics to the eddy present in the nature run) off
the north-western coast of Corsica in some of the ensemble
simulations. This uncertainty estimate is used to pilot a fleet

Figure 5. (a) Synthetic airborne profile sampling array for the OSSEs; (b) RMS error map for TCHP between the Nature Run (NR) and
OSSE experiment AXCTDHR; change (increase) in RMS error (with respect to AXCTDHR) in experiment: (c) NOP3B, when all airborne
profiles are denied; (d) AXCTDLR, showing the impact of lower profile resolution; and (e) AXBTHR, showing the impact of assimilating
shallow AXBTs.
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of three gliders in both unaware and coordinated configur-
ations during four 2-day cycles. The initial glider-positions
(on 21 August 2010) are indicated by the black cross in
Figure 6(c). The fleet is redirected every 48 hours according
to an optimal mission plan aimed at minimising the pre-
dicted model uncertainty for the next two days after assim-
ilation of past observations. The algorithm constrains the
platforms to fly in the Ligurian basin, defined in particular
with a southern boundary at 43.15°N on the eastern side of
Corsica Island. The details of the mission-planning algor-
ithm are described elsewhere (Mourre & Alvarez, 2012;
Alvarez & Mourre, 2014).

The glider trajectories from 21 to 27 August are denoted
by the fine black lines in Figures 6(e) and (f). The adaptive
sampling procedure successfully directs the gliders (or at
least one of them in the case of the cooperative-unaware
scenario) towards the Corsica eddy. In the cooperative-
unaware scenario, one of the platforms samples in the
eddy area on 27 August, but without really crossing the
core of the eddy. As a consequence, the model prediction,
after assimilation of these data, does not properly reproduce
the eddy. The improved coverage provided by the triangular
formation leads to a better representation of the structure,
even if not at exactly the right position. Note that none of
the gliders are directed to the high-uncertainty region in
the south-west of the domain. This is because that region
is well constrained by remote observations, through the
system’s ensemble-based background error covariances;
so the region needn’t be sampled directly.

Statistically, no improvement is found with the coopera-
tive-unaware configuration, owing to the chaotic nature of
the high-resolution mesoscale circulation, however the
coordinated glider configuration leads to a 44% reduction

of the RMSE in the area of the eddy (Table 5). The slight
performance degradation with the assimilation over the
remaining area is attributed to spurious ensemble spatial
correlations. This effect could be eliminated by the use of
covariance localisation in the EnKF.

These results suggest that the use of gliders for adaptive
sampling, where glider fleets are piloted towards model
error hot spots, can be effective. This is particularly true
for applications that resolve the mesoscale (10–20 km) cir-
culation, in which case entire eddies and eddy systems may
be missing from a model without appropriate initialisation.
Furthermore, this study suggests that good results can be
achieved when a glider fleet maintains a geometrical for-
mation allowing the collection of information along differ-
ent directions across the mesoscale structures [i.e. the
coordinated glider fleet experiment; referred to as Assimi-
lated Coordinated; Figure 6(f); Table 5].

Shelf-scale integrated observing system impacts off
California

Results are presented from an observation impact study in
the California Current system quantifying the impact of

Figure 6. Initial 2 day averaged (21 23 August) temperature, averaged between the surface and 100 m depth, for the (a) nature run, (b)
control run and (c) estimated uncertainty; and final (27 29 August) temperature for the (d) nature run, (e) cooperative unaware and (f )
coordinated glider fleet assimilated runs. The Corsica eddy location is marked by the letter E in (a) and (b). The glider trajectories are rep
resented by fine black lines in panels (e) and (f).

Table 5. Temperature RMSE (°C), of the control and assimilated
solutions in a subdomain defined around the eddy and in the
remaining area for the period 27 29 August for the Glider OSSEs.

Control
Assimilated
unaware

Assimilated
coordinated

RMSE (eddy area) 1.40 1.42 0.79
RMSE (remaining area) 0.45 0.51 0.46
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coastal high-frequency (HF) radar observations of surface
velocities on alongshore transport estimates. The model
used is the ROMS (Shchepetkin & McWilliams, 2005)
configured for the west coast of North America, with 10
km resolution in the horizontal and 42 terrain-following
levels in the vertical (Alvarez & Mourre, 2014). The
dual formulation of the ROMS 4-dimensional variational
(4D-Var) data assimilation system (Moore et al. 2011;
Moore et al. 2011) is employed in the experiments pre-
sented here. ROMS 4D-Var has been used to compute a
sequence of historical analyses, without tides, spanning
the period 1980–2012 (Saraceno, 2008) and is also run
routinely in NRT [oceanmodeling.ucsc.edu]. In the
examples presented here the period March to December
2012 is focussed on. Data are assimilated into ROMS
using 8-day assimilation cycles, overlapping every 4
days. Each cycle assimilates standard data types, includ-
ing: SST from NOAA Coastwatch from multiple plat-
forms (combined to form super observations as
necessary), gridded SSH and T/S profiles from EN3
(Ingleby & Huddleston, 2007). Because of potential land
contamination of the altimeter return (Saraceno et al.
2008), SSH observations are not assimilated within 50
km of the coast. Additionally, ROMS assimilates de-
tided, 3-hourly gridded surface velocities from HF radar.
HF radar observations are the dominant data type during
each 4D-Var cycle when there are typically 4.3×105 HF
radar observations, 4.2×104 SST observations, 1.8×104

SSH observations, 740 vertical profiles of temperature
and 630 profiles of salinity. The model is forced with
surface fluxes of momentum, heat and freshwater from
derived atmospheric fields from the Coupled Atmos-
phere-Ocean Mesoscale Prediction System (COAMPS;
Doyle et al. 2009). Open boundary data are taken from

the Simple Ocean Data Assimilation (SODA; Carton &
Giese, 2008). During each 4D-Var cycle, the control
vector comprises the initial conditions; surface forcing
and open boundary conditions.

The impact of individual observations during each 4D-
Var cycle is quantified following the approach of Langland
and Baker (2004) who showed that the contribution of each
observation to a function I(x) of the state-vector estimate x
can be quantified using the adjoint of the Kalman gain
matrix. In the example presented here I(x) is chosen to be
the alongshore transport at 37°N over the upper 500 m
from the coast to 127°W averaged over each 8 day assim-
ilation cycle [indicated in Figure 7(b)]. This metric rep-
resents an average of the transport carried by three
distinct circulation features: the California Current, the
California Undercurrent and a coastal jet. Specifically, the
transport increment ΔI=I(xa)–I(xb) is considered, where xa
and xb are the analysis and background state-vector esti-
mates respectively. The transport increment can be
expressed as the dot-product ΔI=dTg, where d=y–H(xb)
is the innovation vector, y is the vector of observations,
H(xb) is the time evolved background estimate evaluated
at the observation points and H is the observation operator.
The vector g=(k2–k1)

-1KTSk(M
T)khk, summed from k=k1

… k2, where k1dt and k2dt are the start and end times of the
4D-Var cycle and dt is the model time step; KT is the
adjoint of the Kalman gain matrix; MT is the adjoint of
the tangent linear model of ROMS, linearised about the
time evolving background; and h is a vector such that
hTx defines the 37°N transport at a given time. Since
each observation is uniquely related to each of the elements
of the vectors d and g, the impact of each observation on
ΔI=dTg can be quantified by their individual contributions
to the dot-product.

Figure 7. (a) Time series of the transport increment DI for each 4D Var analysis cycle during 2012. The coloured segments of each vertical
bar represent the contributions from the various different observation platforms indicated: SSH Aviso SSH; SST all SST platforms com
bined; u(v) HF zonal (meridional) components of surface current from HF radar measurements; EN3 T and ENS3 S all in situ temperature
and salinity observations. (b) A map of the time mean impact of each grid point location at which HF radar surface current observations are
available. The location of the 37°N section (denoted by the black line), along which values in panel (a) are computed.
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Figure 7(a) shows a time series of the transport incre-
ments DI for each 4D-Var cycle during 2012. The contri-
bution of each observation platform to the total transport
increment DI is indicated by the different colours and the
impact of the HF radar observations is quite dramatic, par-
ticularly measurements of alongshore surface current
(denoted as v HF radar) as might be anticipated. SSTobser-
vations also often have a significant impact, in agreement
with previous studies (Langland & Baker, 2004) that did
not consider HF radar data. The HF radar network in the
region considered is extensive and in the calculations pre-
sented here, the number of HF radar measurements assimi-
lated into the model during each 4D-Var cycle typically
outnumbers, by a factor 3, the total number of all satellite
observations and hydrographic observations combined
over the entire domain.

Figure 7(b) shows the impact of each gridded HF radar
measurement location on DI averaged over all 4D-Var
cycles. It is evident that radar observations both upstream
and downstream of the 37°N section significantly impact
the analysis increments of transport. This result can be
understood in terms of equatorward advection of infor-
mation from the observations by the prevailing circulation
and the poleward propagation of information by coastally
trapped waves. During each 4D-Var cycle, observational
information is dynamically interpolated both forward and
backward in time via the tangent linear and adjoint versions
of ROMS respectively. Therefore sensitivity maps like
that of Figure 7(b) can yield significant insight into the
dynamical mechanisms that are involved in the flow of
observation information through the data assimilation
system. Figure 7(b) shows that, while on average HF
radar observations upstream of the 37°N have the greatest
influence on transport, observations downstream are impor-
tant as well, a result that may not be anticipated a priori.

The observation impact calculations presented here are
now commonplace and routine at some meteorological
centers and they provide complementary information to
the more traditional OSEs and OSSEs, described above.
The calculations presented here demonstrate the impact
of HF radar observations on an important aspect of the cir-
culation in the vicinity of Monterey Bay, supporting the
argument for the continued maintenance of the coastal
array.

Representer matrix spectrum (RMspec) using
polynomial chaos in the Gulf of Mexico

The RMspec (Le Hénaff, 2009) aims at assessing the per-
formance of an observational array without assimilating
data by characterizing the part of the system’s error sub-
space that can be detected by an observational network
(real or virtual). As in data assimilation, a major issue is
estimating the background error (BGE). This method uses
stochastic modelling (Le Hénaff, 2009), whereby uncertain

inputs are perturbed randomly and O(10–100) ensemble
simulations are performed to generate possible model
states. However, the small ensemble size may misrepresent
error statistics. Alternatively, Polynomial Chaos (PC)
methods explicitly construct the dependence of the model
output on the uncertain inputs through a spectral series in
the uncertain variables; the series can then be used as a
model surrogate and can be mined efficiently for more
accurate statistical information (Gelaro & Zhu, 2009; Le
Maître & Knio, 2010).

Here the impact of using PC-based and ensemble-based
covariances in the RMspec approach are compared the
capacity of an altimeter track over the GoM to characterize
BGEs associated with the frontal dynamics of the Loop
Current (LC) is studied. For this study a NRT version of
HYCOM is used [hycom.org/ocean-prediction]. The
initial conditions uncertainties, the sources of BGEs, are
represented using two stochastic variables (p=2): the ampli-
tudes of two variability modes, defined by an empirical
orthogonal function analysis of the model fields in the
two weeks preceding the experiment. These modes are
added as perturbations to the initial conditions. Using a
polynomial decomposition of degree 6 (k=6), the number
of simulations required to estimate the polynomial series
is (k+1)p=49. Since the PC ensemble samples the edges
of the distribution more densely than the center, only 25
of those simulations for the conventional ensemble calcu-
lation are retained.

The RMspec analysis requires the eigenvalue
decomposition of the scaled representer matrix x, which
is equivalent to the BGE covariance matrix, at the obser-
vation location, normalized by the observation error covari-
ance matrix. The performance of an observational array is
assessed by the number of eigenvalues larger than 1. The
spectrum [Figure 8(a)] from the PC approach has generally
larger values than the spectrum estimated with the ensem-
ble. In particular, the number of eigenvalues larger than
1, is 4 with the PC and 3 with the ensemble. This difference
in the number of significant modes from both approaches
supports the need for advanced techniques for characteriz-
ing BGEs; the PC approach can provide a detailed estimate
with a limited number of simulations.

The RMspec technique also provides tools for quali-
tative interpretation of the signal associated with each
eigenmode of x, through the estimation of the modal
representers, which project the eigenmodes, defined in
observation space, onto model space. The first 3 modes,
which are detected and have similar signatures in both
cases, show a stronger signal in the frontal area of the
LC [Figures 8(b)-(d)]. They clearly show ocean mesoscale
patterns with spatial scales decreasing with the mode’s
rank. The limited number of detected modes illustrates
that a single altimeter track can only detect rather large
ocean mesoscale features. Furthermore, this result demon-
strates the need for a more comprehensive observational
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array to properly observe mesoscale ocean variability;
likely comprised of multiple altimeters and other observa-
tional platforms.

Biogeochemical footprints in the Great Barrier Reef

A new project, called eReefs (Schiller et al. 2014) [www.
ereefs.org.au/] has been established within Australia to
develop a modeling, hindcasting and forecasting capability
for the ocean circulation and water quality on the Austra-
lian Great Barrier Reef (GBR). Observations over the
GBR are sparse. Satellite altimetry is unreliable, because
the reef is wide and shallow (so tidal corrections are
poor); satellite SST is often isothermal and therefore unin-
formative; and Argo and XBT programs do not cover the
shallow reef or lagoons. The motivation is, therefore, to
assess the degree to which a limited number of in situ
moorings, deployed and planned as part of the Australian
Integrated Marine Observing System [IMOS; www.imos.
org.au], can monitor the physical and biogeochemical prop-
erties of the GBR region.

Here, the ‘footprint’ of an ocean observation as the
region that is well correlated to the observed variable at
zero timelag is defined (Oke & Sakov, 2012). The footprint
of observations from an observation array provides an indi-
cation of the region that is effectively monitored by that
array. To assess the footprint of an observation of Chloro-
phyll-a (Chl-a) at different mooring locations on the Aus-
tralian Great Barrier Reef (GBR), the cross-correlation

between anomalies at an observation location with
anomalies elsewhere over the GBR using ensembles that
represent different time-scales of Chl-a variability are com-
puted (Jones et al. 2013). Specifically, a 9-km resolution
composite satellite image, based on MODIS data is used
[modis.gsfc.nasa.gov], to construct time-series of Chl-a.
The weatherband (10–30 days), intra-monthly (30–90
days) and intra-seasonal (90–180 day) time-scales in the
Chl-a data are assembled by constructing an ensemble of
anomalies. For the weatherband timescale, the ensemble
is constructed by subtracting 10-day means fields from
30-day mean fields; and similarly for intra-monthly and
intraseasonal timescales. The correlation footprints of
locations where long-term moorings are either currently
deployed or planned, under IMOS are then computed.

The Stradbroke Island National Reference Station
[NRS; Figures 9(a)-(b)] is located in a region that is
strongly influence by the East Australian Current (EAC),
where the MODIS data reliably represent biological varia-
bility. On weatherband time scales, the footprint of this
mooring is closely aligned with the principal direction of
the EAC, with short de-correlation length scale in the
cross-flow direction. The intra-monthly footprint is noisy,
is not obviously related to any specific isolated dynamical
process and indicates that this mooring represents variabil-
ity within about 200 km of its location. At intra-seasonal
timescales, the Stradbroke Island mooring is representative
of a broad area to the north and south of the mooring
location. The spatially coherent pattern to the south of the
intra-seasonal footprint represents the EAC separation
from the coast at around 32.5°S. There is no statistically
significant correlation south of 35°S, as expected, since
the variability in that region is believed to be largely inde-
pendent of the variability near Stradbroke Island.

The Yongala NRS [Figures 9(d)-(f)] is located within the
GBR lagoon system. There are a number of rivers that reg-
ularly discharge large amounts of freshwater into the system,
along with optically active components that will be evident
in the MODIS data. At intra-weekly timescales, the
Yongala NRS is representative of a large proportion of the
central and southern GBR. However, at these short time
scales, measurements at the Yongala mooring are not repre-
sentative of the northern GBR. On intra-monthly time scales,
the Yongala NRS is representative of the whole central GBR,
but with weaker correlations in the northern and southern
regions. At intra-seasonal time scales, the NRS footprint is
spatially coherent and explains more than 50% of the Chl-
a variability over the whole GBR. It is hypothesised that
this footprint is representative of the large-scale intra-seaso-
nal dynamics of the region that is dominated by the wet-dry
seasonal cycle and is related to freshwater discharge from the
numerous rivers within the region.

At intra-weekly and intra-monthly time scales the two
NRS sites considered here explain greater than 40% of
the variability near the coast for central and southern

Figure 8. (a) Representer matrix spectra, estimated with the PC
approach (blue) and the ensemble approach (red). (b), (c), (d)
Modal representers in SSH (m) for the first three eigenmodes of
the representer matrix eigenvalue decomposition. The satellite
track over which the observations are considered is thick black
line, estimated with the PC approach. The magenta line defines
the location of the Loop Current and an anticyclonic ring in the
western Gulf of Mexico.
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GBR. At longer intra-seasonal timescales, the footprints
expand to include the entire GBR and also a large portion
of the western Tasman Sea. It is clear that the Chl-a foot-
prints are closely related to the ocean circulation in the
region of interest. These results indicate that a data-assim-
ilating model of the GBR can expect to be reasonably well
constrained by a relatively small number of moorings –
carefully placed – over the GBR.

Bluelink western equatorial Pacific study

The operational ocean forecast system developed under
Bluelink, called Ocean Modelling Analysis and Prediction
System (OceanMAPS; Brassington, 2013) uses a 4-cycle
ensemble approach to deliver multiple hindcasts for the
last 9 days and multiple forecasts for the next 4-7 days
with the intention of providing routine estimates of hindcast
and forecast skill that depends on the state of the current
ocean, atmosphere and the observing system. The 4-cycle
mean has been shown to be superior to each individual
forecast (Brassington, 2013), consistent with previously
documented studies using ensemble prediction systems
(O’Kane et al. 2011). In this study, the power spectrum
of temperature and salinity in the upper ocean near the
equator (between 145–170°E) is analysed, where the Blue-
link model has 1/10° resolution. Each power spectrum
[Figures 10(a)-(b)] is averaged over time (between 1
March to 31 August 2012) and space (within 1° latitude
of the equator).

The spectra shown in Figures 10(a)-(b) are for hindcasts
of temperature and salinity, valid at 4-days behind real-time
(black) and 4-cycle means (red) for different depths. For
each case, the 4-cycle mean has less power than the individ-
ual hindcasts because the noisy aspects of each hindcast are
averaged out in the 4-cycle mean. It is suggested that the
difference between the power of individual hindcasts and
the 4-cycle mean hindcasts provides an indication of the
scales and signals that are poorly constrained in the individ-
ual hindcasts. This provides an indication of the limitations
of the observing systems that underpin the operational fore-
cast system (Brassington et al. 2014). The differences
between the power spectrum of the individual hindcasts
and the 4-cycle means are shown in Figures 10(c)-(d) for
temperature and salinity at different depths.

The differences in power spectra [Figures 10(c)-(d)] are
similar for both temperature and salinity at all depths
(except temperature at 5 m depth). Most striking the differ-
ence spectra is the high power for high wavenumbers (low
wave-lengths). It is interpreted that this means that the fore-
cast system is poorly constrained at those scales (i.e. < 1–2°
zonally). The key observation types used to initialise ocean
forecasts in the region of interest are satellite altimetry,
TAO, XBT and Argo. None of these observation types
properly resolve scales that are less than 1–2° zonally. It
is found that only SST is well constrained for most scales
(OceanMAPS assimilates a 4-km resolution SST product)
– but even SST shows some differences between the
mean and individual forecasts for shorter wavelengths.

Figure 9. Correlation footprint of Chl a for locations (denoted by stars) at (a) (c) Stradbroke Island and (d) (f ) Yangola (denoted by the
star) at the (a), (d) weatherband (b), (e), intra monthly and (c), (f) intra seasonal time scale. The colour denotes correlation, which has been
truncated at plus/minus 0.5 (statistically insignificant correlations, at the 95% level).
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Discussions and conclusions

This review article describes a range of different techniques
for quantifying the impact of assimilated observations on
ocean forecast systems. Techniques described here
include traditional OSEs, traditional OSSEs, OSSEs with
adaptive sampling; and analysis of RMspec using PC and
observation footprints. Applications described in this
paper include global and basin-scale studies using eddy-
resolving and eddy-permitting models; shelf-scale studies
using high-resolution models that resolve the mesoscale
and an observation-based study to explore the potential
impacts of assimilated mooring observations. The studies
presented here quantify the impacts of a range of different
observation types, including the conventional data types
(altimetry, SST, in situ T/S); plus newer platforms, such
as gliders, HF radars, instrumented marine mammals and

in situ biogeochemical platforms. This paper also includes
a demonstration of the benefits of adaptive sampling, where
a carefully ‘flown’ fleet of gliders, or a high-resolution
array of CTD measurements, can constrain the mesoscale
variability in a high-resolution model.

It is clear from this community paper, that forecast
systems developed under GODAE and GODAE Ocean-
View are maturing to the point where they can benefit
from a range of different observation types in addition to
the conventional data types that are associated with the
GOOS. Different systems have been developed at global,
regional and coastal scales. For each of these scales, differ-
ent observing systems are used. That is, additional obser-
vations are assimilated in regional systems compared to
global systems; and in coastal systems compared to
regional systems. The higher-resolution models require

Figure 10. (a) The power spectrum for sea surface height anomaly in the Tasman Sea composed of the average of six power spectra from
zonal sections (38S:1:32S). Each zonal section power spectra is based on a temporal average from the 1st March 31st August 2012. The
black (red) lines represent the 0 lag forecast and the ensemble mean respectively. Mean power spectrum are shown for the forecast hours
096 (solid), 048 (dashed), 000 (dash dot) and 048 (dotted). (b) the difference in power between the 0 lag forecast and the ensemble mean for
the forecast 096 (solid), 048 (dashed), 000 (dash dot) and 048 (dotted), (c) same as (a) but the south east Indian Ocean and (d) same as (b)
but the south east Indian Ocean.
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denser observing systems to constrain their circulation. The
results presented in this paper demonstrate the positive
impact of those regional datasets on ocean forecasts. Con-
clusions from this review include the following:

. data from HF radars, gliders, instrumented mammals
and airborne profiles contain independent infor-
mation to the conventional observation platforms –
providing additional constraints on systems that
better resolve the mesoscale;

. regional observation platforms may have limited
impact globally, but very significant impacts locally
– reducing local errors by as much as 50%. It is rec-
ommended that global forecast systems assimilate
regional data sets in addition to the those normally
associated with the GOOS;

. carefully designed regional in situ observation arrays
(e.g. optimized glider fleets, or high-resolution XBT
surveys) can add significant constraint to high-resol-
ution models – with up to 40% improvement;

. OSEval studies are sensitive to details of the under-
pinning systems – and can be used to identify
strengths and weaknesses of data assimilation
systems. It is recommended that the GOV OSEval-
TT coordinate community OSSEs, as well as OSEs
to further assess the GOOS as well as contributing
to the assessment and improvement of the underpin-
ning data assimilation systems;

. the suite of tools available to routinely assess observ-
ing systems for operational and quasi-operational
ocean forecast has expanded (e.g. RMspec; spectral
analysis; adjoint sensitivities); and

. the GOV OSEval-TT is well-placed to assess and
improve the quality of OSEval experiments con-
ducted by various groups.

As well as show-casing a range of conventional and
emerging techniques for assessing the impact of obser-
vations on the ocean models assimilating them, this paper
demonstrates the value of regional observation platforms,
such as HF radar, gliders and instrumented marine
mammals. These platforms are often overlooked by oper-
ational forecast centers, owing to their small spatial foot-
print. But the local impact of those observations could be
critical, particularly if the applications for which the oper-
ational forecasts are being used are focused on those
regions. Consider, for example, the case of someone who
is lost at sea with only a life jacket. Their fate could be
influenced by the quality of ocean forecasts at their
precise location. So delivering the most accurate forecasts
possible, for as many regions as possible is imperative.
This consideration puts some of the observation impact
studies into perspective. Perhaps a global metric, like
global RMS of OmB, reduces only by a small fraction of
a degree when a localised dataset is assimilated. One

might naively dismiss this dataset as unimportant.
However, if that dataset improves a forecast by a substantial
amount in the vicinity of the measurements, then for an
application like search and rescue, that dataset might be
difference between life and death.

It is important for those additional data types to be
maintained and for operational centers to assimilate their
data into forecast systems routinely. Of course, a key step
towards the uptake of these regional datasets into oper-
ational systems is the NRT availability of data.
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