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The abundance and the distribution of trophic resources
available for consumers influence the productivity and the
diversity of natural communities. Nevertheless, assessment of
the actual abundance of food items available for individual
trophic groups has been constrained by differences in methods
and metrics used by various authors. Here we develop an index
of food abundance, the framework of which can be adapted for
different ecosystems. The relative available food index (RAFI)
is computed by considering standard resource conditions of a
habitat and the influence of various generalized anthropogenic
and natural factors. RAFI was developed using published
literature on food abundance and validated by comparison of
predictions versus observed trophic resources across various
marine sites. RAFI tables here proposed can be applied to a
range of marine ecosystems for predictions of the potential
abundance of food available for each trophic group, hence
permitting exploration of ecological theories by focusing on the
deviation from the observed to the expected.

1. Introduction

1.1. The importance of trophic resources

Nutrient supply and productivity gradients can strongly influence
the diversity of natural communities through trophic linkages

© 2017 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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[1,2]. Consequently, attempts to predict biodiversity patterns in marine ecosystems should consider
the abundance of food available for different trophic groups [3,4]. To date, research has been focused
primarily on influences of predators on prey populations, through a top-down approach [5]. Various
studies also suggest that resources and consumers interact to structure food webs [6,7] with, for example,
demonstration that herbivore and predator abundances vary predictably along natural productivity
gradients [1].

Unfortunately, the various forms of trophic data reported among studies impede broad-scale
comparisons because of different sampling methods, different trophic groups, incomplete sets of plant
and animal taxa, and different units of measurements [8,9]. In the marine context, benthic and planktonic
morphofunctional groups are often sampled with different instruments, on different surface areas
or volumes, and among different habitats. For this reason, only a few broad-scale cross-ecosystem
comparisons have yet been made on relationships between productivity /functioning and food resources
available for each trophic group [3,5].

1.2. Prediction of trophic resources

Nevertheless, a classification of ecosystems based on the abundance of each trophic resource is
theoretically possible [10]. For example, the amount of plant biomass potentially available for
macroherbivores will inevitably be much higher in seagrass meadows than unvegetated sandy substrata
or marine caves [11]. In addition, the abundance of food available for macrocarnivores is higher on coral
reefs than shallow seaweed meadows [12,13]. Extending such generalizations, food resources available
to different trophic groups can be evaluated by considering habitat constraints.

Various pressures acting locally also influence and modulate these general trends. For example,
the abundance of plant detritus is high in seagrass meadows, but the presence of strong currents
may disperse the detritus particles and make that resource less abundant [14]. Wave exposure and
associated surge also negatively influence detritus, potentially reducing availability for herbivore—
detritivores. Additionally, food for microherbivores is abundant in shallow rocky bottoms and increases
with increasing nutrients [15], but declines in deep rocky environments, owing to the limiting influence
of light [16]. Therefore, nutrient availability and depth are important moderating factors, with consistent
effects across a range of ecosystems [17].

Our study aims at describing general patterns of relative abundance of food available for trophic
groups among various marine habitats. Based on these patterns, we developed a mechanistic model
of food availability and validated its predictions through comparisons of computed versus observed
food resources at several comprehensively sampled sites. Trophic resources were assessed solely on the
basis of their physical presence in each habitat, irrespective of whether the food material was protected
by physical, chemical or behavioural defences [18]. The model is presented here in order to easily
incorporate an estimate of trophic resources in evaluations of diversity—productivity relationships [19]
and in other analyses of marine ecosystems.

2. Material and methods

2.1. Computation of relative available food index tables

The relative available food index (RAFI) was computed by screening the global literature on trophic
resources in marine habitats (electronic supplementary material, table S1). A literature search was
conducted using ISI Web of Science™ (www.webofknowledge.com) from 1945 to 2010, plus hardcopy
literature contained in the library of Stazione Zoologica, Naples, that encompasses magazine collections
from 1872 to the present. Studies involving abundance and taxonomic composition of marine organisms
were considered when the information contained was comparable and appropriate, in terms of surface
units, abundance units, substrata and taxonomic groups investigated. Restrictions related to language,
publication date or publication status were not imposed. The data recorded show regional patchiness,
owing to the availability of specific studies according to the distribution patterns of authors (table 1).
The first step was the evaluation of the food resources available at each of five substrata (hard, soft, hard
biogenic, macroalgae and seagrass beds; table 2) and for 11 trophic groups (table 3) that were expressed
according to the type and size of prey items [20].

To calculate the abundance of food potentially available for microcarnivore (mCa) species in each
substratum, for example, research articles containing data on the abundance of microcarnivore prey
(meiofauna and other small animals less than 1 mm in size) were selected, and the abundances reported
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Table 1. Geographical distribution of the studies used for the construction of the RAFI model. The number of publications considered n
for each region is reported in columns, according to various ecosystems (resulting from the classification in electronic supplementary
material, table S1), in rows. The total per cent contribution of researches performed in each region is reported in the last row.
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Table 2. Example of the ranking process applied to herbivore (He) food resources for five substrata (in rows). A score from 1to 3 is
attributed (third column) according to the ranges of abundance reported (second column). The literature used to obtain abundance ranges
is indicated in the fourth column (numbers in brackets are referred to electronic supplementary material, table S1).

basic substrata abundance of food for He rank (1-3) literature
soft substratum 03-6gC(m~2 1 [78,82]
T o g g [26303 4] .....
‘hardbiogenic auogCm2 2 ma
o croalgaebeds ................................. 40_3109cm72 .............................................. o [3538 42] .......
seag L 20—6009(m*2 .......................................... o [4754 7576] .

by different authors (in various sites, seasons, etc.) were recorded. Similarly, to evaluate the abundance
of food available for macroherbivores (He) in various substrata, papers containing information on the
standing crops of plants and algae were selected for each of five habitats, and abundance data were
recorded (table 2, second column). Available data may be expressed in several different units (e.g.
number of individuals, mg of biomass, ug of carbon or kcal per unit surface area) according to the
methods followed by each author. In these cases, all data were converted, according to [21], to g C m2,
in order to permit comparisons among the different studies. Finally, the range of abundances recorded
(figure 1) was divided into three intervals ranked 1 (low abundance), 2 (medium) and 3 (high), as
indicated in table 2 (third column). The interval subdivision was made according to a best professional
judgement in order to highlight the differences found among ranges.

Subsequently, each basic substratum (table 3a) was further divided into specific habitats (table 3b),
based on the distinctions made in most trophic models [22] and each food category was assigned to
an abundance interval (1-3), for each of 10 specific habitats (table 3b and figure 2), as described above.
For example, hard substrata were grossly divided into rocky reefs and caves, according to the different
exposures to light and external influences characterizing these environments. Similarly, soft substrata
were divided into open sand and embayments, based on variable shelter influencing plant and animal
communities (table 3b).

Each ecosystem was consequently classified according to the amount of food potentially available to
each trophic group (tg), according to the following relationship:

Resource abundanceig ecosystem) = f (basic substratum x specific habitat) (2.1)

This permits estimation, for example, that the plant standing stock potentially available for herbivores
(He) is maximum in a fucoid or a seagrass meadow, lower in harbours and lowest on sandy substrata,
coral reefs and caves (table 4a).
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Figure 1. Abundances of trophic resources, expressed as g C m~", available for herbivore consumers in five different substrata. The whole
range (0-600 g C m~") has been divided into three categories of abundance.

Table 3. Computation of RAFI. The abundances of each trophic group (in columns), referring to substrata and habitats (in rows), are
derived from the available literature (electronic supplementary material, table S1). (a) Trophic resource abundances in relation to basic
substrata. (b) Trophic resource abundances in relation to specific habitats. The considered trophic groups are: microcarnivores (mCa),
carnivores (Ca), microherbivores (mHe), herbivores (He), microomnivores (mOm), omnivores (Om), microdetritus feeders (mDeF), detritus
feeders (DeF), detritus feeders—suspensivores (DeFS), Detritus feeders—herbivores (DeFHe) and filter feeders (FF).

(a) basic substrata Om mDeF DeF DeFS DeFHe FF
soft substratum 1 1 1 1 2 2 1 1 2 1 1

specific
habitats

Finally, modifying factors were considered, to explain how local environmental conditions influence
the food resources available for a particular trophic group with respect to the average conditions
for a given habitat. These modifiers acknowledge that other factors, besides the type of substratum
and the specific habitats, influence the community composition and the abundance of trophic
resources [20,23,24]. For example, variations of light irradiance owing to depth may dramatically
influence the abundance of plant biomass present in a deep rocky reef or seagrass meadow. The
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Figure 2. Each ecosystem is classified according to 10 broad habitats and defined according to eight specific modifiers. The trophic
resources available for 11 trophic groups of consumers are evaluated according to three levels of abundance (1, low; 2, medium; 3, high).

Table 4. (a) Final scores with RAFI predictions for average abundances of trophic resources in each habitat. (b) Modifiers for local
conditions. Trophic groups: mCa (microcarnivores); Ca (carnivores), mHe (microherbivores), He (herbivores), mOm (microomnivores),
Om (omnivores), mDeF (microdetritus feeders), DeF (detritus feeders), DeFS (detritus feeders—suspensivores), DeFHe (detritus feeders—
herbivores) and FF (filter feeders).

(a) habitats DeF  DeFS DeFHe FF

No
N
No

w
N
[=))

abundance of epiphytes in a shallow Posidonia oceanica meadow is approximately three times that
recorded in a deep meadow [25]. Also, the abundance of organic detritus available for detritivore
consumers is largely influenced by exposure to waves and currents [26]. Eutrophic and oligotrophic
conditions influence the standing crop of primary producers, even when the same ecosystem is
considered [27]. Therefore, the relative food resources estimated for each habitat (table 42) must be tuned
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according to these site-specific influences (table 4b) and the relationship (2.1) is set as:
Resource abundance g ecosystem) = f(basic substratum x specific habitat) x specific modifiers ~ (2.2)

For this purpose, literature data were screened to detect deviations from ‘average’ expected conditions
under the influence of each modifier. A value of 1 was set for each trophic category under standard
conditions (table 4b), meaning that the estimate of food resources, obtained in table 44, will not change.
In contrast, exposure to modifying conditions will increase or decrease the relative amount of food
resources available. For example, higher currents induce a mean decrease of 20% for the food resources
available for mCa, as determined by screening the results of studies comparing similar ecosystems
exposed to different strength currents [28]. Therefore, a modifying value of 0.8 was assigned in this case
(table 4b).

Some modifiers produce dramatic variation from average conditions. Food resources available for
mCa may be surprisingly high (330%) in oligotrophic systems [29,30], while other trophic resources (e.g.
DeF and FF) are not influenced. This is reflected in the modifying value of 3.3 in table 4b, corresponding
to the trophic resources mCa in oligotrophic environments.

These modifiers are applied only where documented local conditions strongly influence the relative
availability of trophic resources in the considered habitats. We considered ‘shallow” habitats those in
water less than 5m deep, and ‘deep’ habitats those located below a depth of 25m. We considered
‘exposed’ those ecosystems open to large sea swells or characterized by very high winds, and
‘anthropogenically impacted’ those systems for which there are clear and documented evidence for major
industrial, fishery or urban pressures. Thus, only a few characterizing pressures—the most evident and
well documented—are considered for each site (see grey cells of table 5a), to avoid interference with the
basic environmental features of ecosystems.

2.2. Application of relative available food index tables

To test the effectiveness of simulations provided by RAFIs, 19 different sites were chosen throughout
the world, among those for which sufficient information was provided on the abundance of food
items (permitting at least partial comparisons between computed and actual data). In fact, most studies
provide incomplete sets of trophic groups and, in this case, comparisons with the whole trophic model
provided by RAFI is not feasible. In particular (table 54), each site (in rows) was classified according to its
characteristics (in columns). The site descriptors (in each line) were set to “X” when that specific feature
was applicable, and left blank (null) when the feature was not applicable (table 5a). For example, ‘San
Pietro’ (the site reported in the first row) is a eutrophic (fourth grey column), shallow (last grey column)
environment in the bay of Naples (Italy), hosting a low-canopy seagrass (Cymodocea nodosa). In contrast,
‘NL.E. St. Croix’ (the site reported in the 14th line) is a shallow, exposed coral community in the US Virgin
Islands. Each site was similarly characterized.

This classification permitted the computation of the abundance of food items (table 5b), according to
the above-described RAFIs. For example, in the case of ‘San Pietro’, the values for each trophic category
were computed by multiplying all the scores previously marked with ‘X" in table 54, i.e. the scores in line
8 of table 4a (low-canopy seagrasses) by the scores in lines 3 and 8 (eutrophic and shallow, respectively) of
table 4b, following the relationship (2). The same computation was performed for all the other considered
sites (electronic supplementary material, table S2), according to their environment type and local specific
pressures, as reported in the literature. Repeating this procedure, the scores for each trophic category
in each site were computed (table 5b). These computations are available in digital format in electronic
supplementary material, table S2, along with an empty spreadsheet to be used for the simulation of
further datasets.

Finally, the values in each cell were converted, line by line, to a percentage of the total resources
present in each site (RAFI%), in order to standardize the results and make them comparable among
different ecosystems [31]. Thus, RAFI% (table 5c) allows comparisons among such different ecosystems
as coral reefs, temperate harbours, seagrass meadows and sand bottoms, which are characterized by
wide ranges of densities of organisms, dynamics and productivities.

For testing the trophic resources at three additional Australian sites (Bagot Point, Port Gawler and
Barker Inlet), only the abundance of the resources for three major trophic groups (He, DeF and Ca)
was reported in the literature [32]. Therefore, the per cent contributions of trophic resources for He
(leaf biomass), DeF (debris biomass) and macrocarnivores (fauna greater than 1 mm), as found in the
literature, were compared with the same food resources predicted by RAFI (table 6).
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Table 6. Comparison of trophic resources reported by Edgar & Shaw [32] for three Australian sites (top part) with the results of RAFI n
predictions (bottom part). The proportion of trophic resources among the three main trophic groups for which experimental data were
available has been calculated. Their percentages (% proportion of biomass versus RAFI%) are compared (right part of the table).

actual biomass (g m—2) % proportion of biomass reported
Australian sites (as reported in the literature) |eaf debris fauna >1mm debris fauna >1mm

Bagot Point (Zostera sp.)
Port Gawler (Posidoni

615001 % s uado 205y BioBuiysiqndizaposieforsos:

Finally, a simulation for a marine protected area (MPA) in Africa, for which some literature
information is available [33], was performed in order to test the sensitivity of the method for computing
changes occurring after the institution of the protection plan. In this case, the factor ‘anthropogenic
perturbations” was set to ‘X’ before the institution and ‘null’ after the institution, to perform the
simulation (electronic supplementary material, table S2).

RAFI tables were formally validated by comparing observed food resources to those predicted. For
this purpose, two comprehensively sampled sites were considered: Lacco Ameno [34] and Banco di Santa
Croce [35]. These sites were selected because (i) complete datasets were available and (ii) they host quite
different environments (table 5a): seagrass versus hard bottom, eutrophic versus pristine, shallow versus
deep, etc. Fauna was sampled using an airlift sampler [35] in two replicate 40 x 40 cm surface area plots,
and all specimens collected were counted and identified at the species level.

Lacco Ameno (40°45’ N, 13°53' E) is located in the northwest sector of the Island of Ischia (Bay of
Naples, Italy). It contains a continuous and dense meadow of P. oceanica extending from 1 m to about 33 m
(deep limit). Samples collected at a depth of 5m were considered. Animals were grouped according to
their possible role as prey for macrocarnivores, microcarnivores, filter feeders, etc. Data were integrated,
when necessary, with gut content analyses evaluated for each sampled species. Prey item size was taken
into account and their abundance in the environment was evaluated based on the following relationship:

Total food biomass available = number of items x average individual biomass (2.3)

The abundance of food available for macroherbivores and microherbivores and the actual abundance
of detritus were evaluated according to [36]. The results obtained were transformed into % abundance of
each food item and compared with the abundance of food items (RAFI) computed according to table 4.

Banco di Santa Croce (40°40' N, 14°26’ E) is a submerged seamount complex located in the eastern
Gulf of Naples. It is located 0.8 km off the coast and is composed of various rocky seamounts arising
from a depth of 60 to 11 m, forming a circular structure. Samples were obtained over a 3 year extensive
sampling programme to develop a trophic model for the site [37]. Direct measurements provided the
actual abundance of food items and the abundance of species of each trophic group per square metre.
The total number of individuals per m?, as well as the total biomass of each trophic group and abundance
of organic detritus and of phyto- and zooplankton were also available [37], and converted into the same
units to allow direct comparisons. The fish fauna was surveyed using visual census [37].

2.3. Statistical analyses

The 12 coefficient was calculated using correlation analysis to evaluate how well the RAFI predictions
for each trophic group fitted data for the selected sites derived from the literature. The results were
confirmed by the G-test (likelihood ratio test).

The actual data sampled in the two validation sites were compared with the patterns of abundance
of resources obtained by means of our model, and t-tests were used to determine the significance of
the difference of the slope from the null hypothesis of a 0 slope using GRAPHPAD PRISM 4 (GraphPad
Software, San Diego, CA). Pearson’s product-moment correlations were also used to test agreement
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Figure 3. (a) RAFI simulation and actual per cent abundance of resources available for various feeding groups, obtained for Lacco Ameno
(Ischia Island, Italy); (b) RAFI predictions and actual per cent abundance of resources available for various feeding groups, obtained for
Santa Croce Bank (Bay of Naples, Italy).

between RAFI estimated and observed food resources at the sites for which complete data across all
trophic groups were available. For all the other sites, RAFI predictions were qualitatively compared with
the available literature data, even when incomplete, by detecting the dominant food resources predicted
by RAFI and their correspondences with the dominant food resources described in the literature.

3. Results

3.1. Relative available food index validation

The comparison of the abundances of food items estimated by means of the proposed method with
field data shows some differences, but trends coincide (figure 3). In particular, data for Lacco Ameno
d’Ischia (figure 3a) show good agreement between RAFI% simulated data and observed data, other
than carnivores (Ca), which appear to be overestimated by RAFI. As for the other trophic categories,
herbivores, DeF and DeFHe, as well as mDeF, are slightly higher when calculated by RAFI, whereas
mCa, mHe, Om and DeFS are slightly lower than actual. The most abundant resource is macroherbivore
food, accounting for about 25% of the total trophic resources available, followed by DeFHe (about
15%), omnivores, mHe and mCa (about 10%). On the whole, the relationship between actual and RAFI
estimated data was highly significant (figure 4a, r*> = 0.97).

In the case of Banco di Santa Croce (figure 3b), field data show fundamentally two types of trophic
categories: those relying on low abundance resources (mCa, Ca, mHe, He, mOm, Om and FF) and those
relying on locally abundant resources (mDeF, DeF, DeFS, DeFHe). RAFI predictions respect this pattern
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Figure 4. Observed values of per cent abundance for trophic resources versus RAFI% estimated values for resources present in two
Mediterranean sites. The grey line denotes 1:1 agreement between the two methods. (a) Lacco Ameno; t =15.72, d.f. =9, p-value
<0.001, # = 0.97. (b) Banco di Santa Croce; t = 6.38, d.f. = 9, p-value <0.001, * = 0.82.

(> = 0.82 between predicted and field data; figure 4b), apart from some variability observed in individual
categories.

Similarly, t-tests indicated no significant differences (p < 0.001) between the RAFI data simulated for
three Australian sites hosting seagrass meadows and field data, according to the known feeding groups
investigated (table 6 and figure 5). In addition, data reported in the literature on the abundance of the
main trophic groups were compared with the results of RAFI predictions for various sites (table 7), with
good coincidence.

Finally, the simulation of the Sine Saloum MPA [33] produced clear differences before and after the
institution of the protection plan. In particular (figure 6), the resources available for microcarnivores,
carnivores, herbivores and omnivores showed an increase in the protected conditions, whereas the
trophic resources available for detritus feeders and herbivore—detritus feeders exhibited a decrease after
the institution of the MPA (i.e. in the absence of ‘anthropogenic influences’).

3.2. Test of relative available food index in various sites of the world

The trophic resources available at various sites were predicted by RAFI and clear distinctions were
obtained, according to specific ecological conditions, even when similar ecosystems were considered.
Comparing the trophic resources available in three sites hosting seagrass meadows (San Pietro, Castello,
Port Gawler), we observed very different patterns of resource distribution (figure 7). In San Pietro, which
hosts a low-canopy seagrass bed (C. nodosa), most trophic resources are available for herbivores (26%),
followed by detritus feeders (16%), detritus feeder-herbivores and microcarnivores (11%). In contrast,
in Castello d'Ischia, an acidified site hosting a high-canopy seagrass (P. oceanica), most trophic resources
are available for detritus feeders (35%), followed by DeFHe (22%) and DeFS (10%). The Australian Port
Gawler site hosts a Posidonia sp. meadow and exhibits maximum abundance of resources for detritus
feeders (25%) followed by DeFHe (16%) and DeFS (10%), showing the importance of plant detritus in
this Australian seagrass ecosystem.

3.3. Relative available food index trends in various environments

RAFI computations indicated that trophic resources available for mCa reach highest abundance in
several seagrass environments, coralligenous and fucoid habitats, and lowest abundance in rocky
bottoms and caves. Similarly, trophic resources available for herbivores (He) reach maximum abundance
in seagrass meadows and in shallow rocky bottoms, while they dramatically decrease in deep rocky
bottoms and caves (table 5¢). The abundance of resources available for omnivores (Om) is minimum in
rocky bottoms and embayments, while detritus feeder resources (DeF) are relatively abundant in high-
canopy seagrasses, caves and rocks. Finally, the abundance of resources available for FF is generally low
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Figure 5. Comparison of the results reported by Edgar & Shaw [32] on the abundance of trophic resources for He, DeF and (a. Edgar &
Shaw [32] data (E&S) are indicated by grey bars, against predictions of the RAFI model (RAFI%, white bars). Three sites are considered,
for which sufficient literature data were available: (a) Bagot Point, (b) Port Gawler and (c) Barker Inlet.

and sensitive to the effect of specific modifiers, in the considered environments. In fact, according to
RAF]I, the abundance of food available for FF accounts for 4% of the total trophic resources in some caves
(Grotta del Mago), and in an analogous environment (Formiche) it declines to 1% of the total trophic
resources.

4. Discussion

4.1. The accuracy of model predictions

The availability of individual food resources in shallow marine ecosystems varies with environmental
features [31], but the data published on the arrangement of resources in each ecosystem are generally
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Table 7. Comparison of predicted RAFI% and abundance of trophic resources derived from the available literature. For each site, the n
most abundant trophic groups identified by RAFI% are indicated in the second column. The most abundant trophic group (TG) or trophic
resources (TR) reported for each site in the literature (fourth column) are provided in the third column. Country abbreviations are Italy,
IT; United States Virgin Islands, US; Costa Rica, CR; New Zealand, NZ.

RAFI-predicted most abundant trophic references (electronic

highest trophic resources (TR) or trophic group supplementary
resource(s) (TG) according to the literature material, table S1)

San Pietro (IT) He herbivorous molluscs (TG) [131]
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incomplete and not comparable. The proposed model represents a framework to predict the relative
abundance of food resources for trophic groups present in marine areas, based on the habitat considered
and local specific influences (e.g. high currents, low depth, etc.). We demonstrated that the model
predictions agree well with the trophic data reported in studies undertaken in a wide range of
ecosystems, both temperate and tropical.

Statistical comparisons between RAFI-predicted and observed trophic resources at two intensively
studied Mediterranean sites demonstrate the accuracy of the RAFI estimates. RAFI predictions for Lacco
Ameno are in close agreement with measured abundances of trophic resources. The large abundance
of trophic resources potentially available for herbivores at this site was expected, since this is a
P. oceanica environment, represented by a dense meadow exhibiting a leaf standing stock peaking at
340 g dry weight per square metre [36]. RAFI provides an appropriate estimate of the large biomass
potentially available for macroherbivores. However, relatively little of this biomass is directly consumed
by grazers, owing to various deterrent compounds [38,39]. Only a few herbivores, sometimes reaching
high densities, are able to consume the abundant green leaf biomass, most notably sea urchins [40],
some isopods [41] and a few fishes [42]. As predicted, modelled food availability does not necessarily
correspond to food consumption.

The RAFI model, in fact, predicts available biomass, not consumption, and individual consumers
may exploit the available resources at various levels, according to their abilities for fragmenting and
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Figure 6. RAFI simulation for an MPA in Sine Saloum (Senegal), before and after the institution of the no-take area. The % abundances
of trophic resources available for each feeding category are reported. The area is composed of a ‘sand’ bottom and contains some
‘natural perturbations’. Therefore, these two indicators were set to ‘X’ in the classification of the sites. In addition, to simulate the local
food webs before the MPA institution, the indicator ‘anthropogenic perturbations’ was set to ‘X’; to simulate the local food webs after
the institution of the MPA, the indicator ‘anthropogenic perturbations’ was shifted to ‘nil’. The corresponding scores (table 4a,b) were
multiplied according to the relationship (2.2).

detoxifying food items [43]. Consequently, the abundance of resources estimated by RAFI represents the
potential abundance of food accessible for each category of consumers, and is independent of the ability
of individual species to exploit the resource (top-down control).

The second most abundant food resource in Lacco Ameno, based on both RAFI and observed data, is
for DeFHe. Fundamentally, this is plant detritus, which is very abundant in P. oceanica meadows [44,45]
and, in particular, in Lacco Ameno, where 42% of the plant primary production is transformed into
detritus that is degraded in situ [36]. This large biomass is available for several consumers, including
crustaceans and some echinoderms [46].

A divergence between RAFI and observed data at Lacco Ameno was found for macrocarnivores
(Ca). However, ‘macrocarnivores’ in P. oceanica ecosystems are principally represented by fishes [47],
which often consume other fishes [48,49], whereas invertebrate macrocarnivores are present only in
the rhizome layer and they are represented by a few species of large decapods and echinoderms [50].
Interestingly, literature data on fish stocks could not be considered for the evaluation of the actual
biomass, since the methods applied for their collection in this site did not refer to a surface area [51].
In contrast, the abundance of other trophic resources was evaluated on a surface unit base, according to
the literature [17,34,36]. If the fish fauna was considered and added to the actual abundance of resources
for carnivores, this value would increase substantially. Thus, RAFI arguably provides a more reliable
value for the abundance of carnivore trophic resources than data obtained from the literature, because
the abundance of fish per surface unit was not precisely evaluated through field investigations.

This outcome emphasizes the need for development of a general model to estimate trophic resources.
RAFI estimates trophic resources of ecosystems while avoiding methodological constraints hindering
comparison of food resources measured with different scales or units. In fact, owing to methodological
constraints, researchers generally consider only a subset of trophic resources, which can lead to incorrect
conclusions when different environments are compared.

4.2. Further validation on a rocky environment

The RAFI estimates for Banco di Santa Croce indicate two distinct categories of trophic resources: those
present in low abundance (less than 5% of total trophic resources), such as those sustaining populations
of carnivores, herbivores and omnivores, and those present in large abundance, all linked to the organic
detritus. Food webs in this rocky area are mostly established on the organic detritus deriving from Sarno
River [52,53] and a good statistical match between actual data and RAFI estimates was demonstrated.
The largest difference between RAFI-predicted and observed trophic resources at Banco di Santa
Croce was in the resources available for FFs. However, this particular site is characterized by an
exceptional biodiversity and abundance of FFs (sponges, gorgonians, corals, etc.), which together must
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Figure7. Distribution of trophic resources (expressed as RAFI%) for three selected sites containing seagrasses: (a) San Pietro, (ymodocea
nodosa meadow in the Bay of Naples; (b) Castello, Posidonia oceanica meadow established in a highly acidified area off the island of Ischia
(Italy); (c) Port Gawler, Posidonia sp. meadow in Australia.

rapidly deplete available trophic resources [37]. Therefore, the abundance of food for FFs, as sampled, is
potentially low, owing to rapid consumption by animals according to a very strong top-down control of
their abundance. In this case, the RAFI value, indicating the abundance of resources potentially available
for these organisms, could be closer to an index of production.

Throughout this study, we have considered food abundance as a proxy for production because very
few studies describe production for a range of food items. Nevertheless, at locations with rapid turnover
of particular dietary items this assumption may introduce over-prediction, compared with measured
values [5] of standing stocks. The actual abundance of trophic resources measured in the field (i.e. their
standing stocks) is determined by bottom-up control (the amount of production) as well as top-down
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control, owing to the activity of consumers. Therefore, measured divergences from the RAFI model of
resource distribution might be used to improve our understanding of real ecosystems, the effects of
human disturbances, the propensity of ecosystems to be invaded and their overall stability as a result of
boom and bust dynamics at given trophic levels.

4.3. Relative available food index tested at sites in the world

The RAFI tables computed in this study demonstrated good predictions of the relative trophic resources
available to each trophic group in the ecosystems tested, coinciding with the most abundant trophic
resources, or the trophic groups feeding on them, at several coastal sites worldwide (table 7). Also, the
sensitivity exhibited in the simulation of the MPA in Senegal (Sine Saloum Delta) is remarkable. In fact,
a specific investigation [33] found, as a consequence of the MPA institution, a decrease in the abundance
of herbivore—detritivore fish (from 44.0% to 6.3% in biomass), and a decrease in FF-microplanktivore fish
(from 31% to 12.5% in biomass) when compared with a significant increase of carnivore and omnivore
fish (from 5.9% to 49.6% and from 5.2% to 11.8%, respectively). These data are in accordance with the
scenarios provided by RAFI, indicating a clear decrease of trophic resources for DeF and FF, and an
increase of resources available for Ca and Om, although our computations pertain to the whole food
webs (including all animal taxa) of the area, whereas the data available in the literature are referred
to the fish compartment only. The total biomass of consumers is related to the abundance of their
trophic resources [6]. Therefore, a general agreement between the estimated available resources and the
actual abundance of their consumers was found, although published data are insufficient for formal
comparisons.

RAFI tables require further tests to extend the general applicability of the proposed model to other
ecosystems [31]. Nevertheless, the RAFI framework developed to describe the trophic resources available
in specific habitats and the modifying effect of local conditions can now be applied and tested in any
natural ecosystem worldwide.
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