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ABSTRACT

Saturn’s North Polar Hexagon was discovered by Godfrey who pieced together map projections
of images captured by the Voyager mission to unveil a hexagonal structure over the north pole
of Saturn. This article attempts to answer whether or not a hexagonal structure can be formed
through anticyclones impinging on the dominant eastward circumpolar flow and is in part
based upon the proposed theory by Allison et al. that the Hexagon may be the result of at least
one impinging anticyclone perturbing a circumpolar jet centrally located around the 76°N
latitude. A high-latitude §-plane approximation is used to simulate the interaction between an
initially circular circumpolar jet and at least one perturbing anticyclone. Our simulations with
one perturbing anticyclone failed to form a hexagonal structure; yet by including an additional
anticyclone it was found that depending on the strength, location and radius of the perturbing
anticyclones a hexagonal feature could develop. However, the longevity and drift rate of the

actual Hexagon must be attributed to other factors not considered in this paper.
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1 INTRODUCTION

The Voyager space probes that were launched in 1977 heralded vast
scientific insight into the study of the outer Solar system. Originally
the objective was to obtain data on the atmospheric conditions of
Jupiter and Saturn, their satellites and the rings of Saturn (Smith
et al. 1977). It was envisaged that the Voyager flight paths would
enable observations of the north and south poles of Saturn’s atmo-
sphere. However, due to the south pole being in total darkness at
the time, images of the south pole could not be captured (Godfrey
1988). The north polar images on the other hand revealed a hexag-
onal structure centred at the north pole. Godfrey (1988) pieced
together map-projections taken as Saturn rotated and thus was the
first to identify Saturn’s North Polar Hexagon. Fig. 1 is the sixth
and final mosaic published in Godfrey’s paper. Godfrey (1988) also
produced streamline maps that showed that there existed a hexago-
nal flow pattern about the pole, with a substantial counter-rotating
vortex along one edge. It is also clear from these streamline plots
that there are other counter-rotating vortices that were not visible,
aligned along the other edges of the Hexagon.

The Hexagon appears almost stationary with respect to the inter-
nal rotation of Saturn (Godfrey 1990) and is ingrained in an eastward
circumpolar jet of width 4° latitude. However, the cloud formations
within the hexagonal structure were observed by the Voyager space
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craft to move with a velocity of approximately 100 m s~' at the
mid-point latitude of 76°.

There has been some considerable work on interpreting the origin
of the North Polar Hexagon on Saturn; Allison, Godfrey & Beebe
(1990) proposed that the Hexagon is the result of the eastward jet, in
the form of a planetary Rossby wave being continually perturbed by
at least one anticyclonic elliptical vortex to the south of the structure.
This proposition is in part based on the fact that an anticyclone with
approximate radius 3000 km is observed to be visibly impinging
on one edge of the Hexagon in the mosaic published by Godfrey
(1988) and thus has been of considerable interest and widely cited.
Godfrey (1990) estimated that the visible vortex has a rotation rate
of —8.13 £ 0.6 x 107 rad s~! with respect to a fixed meridian,
in later publications the rotation rate of the once visible vortex is
referred to as the drift rate. The drift rate calculated by Godfrey
(1990) corresponds to roughly —0.040° d~! using data captured
over a nine-month period during 1980 and 1981.

Until the early 1990s, it was not established whether the rotation
rate estimated by Godfrey (1990) was in fact representative of the
actual movement of the vortex, or just error that could be associated
with the internal rotation rate of Saturn (Caldwell et al. 1993).
The Hubble Space Telescope (HST) observations in 1990 and 1991
confirmed that there is movement of the visible vortex relative to the
rotation of Saturn. Caldwell et al. (1993) coupled the data interpreted
from the original Voyager images and the HST observations to form
an 11-yr baseline. It was found that over this longer period the
vortex moved —0.0569° d~'.
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Figure 1. Composite map-projected images of Saturn’s North Polar
Hexagon as published by Godfrey (1988) and reprinted with permission
from Elsevier.

The Hexagon and visible vortex were also observed over the
period 1990 July to 1991 October using ground-based instruments
(Sanchez-Lavega et al. 1993). Over this 16-month period the vortex
drifted longitudinally at a mean rate of —0.0353° d~'. These data
were collated with the observational data used by Godfrey (1990) to
give another perspective into the long-term motion of the vortex. The
long-term drift rate in this case was calculated to be —0.0577° d™!
(Sanchez-Lavega et al. 1993), nearly identical to that of the HST
value calculated by Caldwell et al. (1993). Although the average
drift rates of the visible vortex given by Godfrey (1990), Caldwell
et al. (1993) and Sanchez-Lavega et al. (1993) are relatively small
with respect to Saturn’s internal rotation, the short-term fluctuation
is considerable, drifting upwards of 14° longitudinally at rates of
approximately 1° d~!, as well as latitudinal movement but on a
much smaller scale (Sanchez-Lavega et al. 1993).

Interestingly, Sanchez-Lavega et al. (1993) raise the possibility
that the vortex observed using ground-based technology in 1990
may be a different vortex than that captured by the Voyager space-
craft. This conclusion is based on knowing the longitude of the
vortex at the time when the Voyager and 1990 images were cap-
tured and projecting forward in time using the respective short-term
drift rates of —0.040° (Godfrey 1988) and —0.0353° (Sanchez-
Lavega et al. 1993) d~'. It was shown that the vortex would be in
two distinct locations separated by approximately 60° in longitude,
the angle spanned by a hexagon side. This therefore led Sanchez-
Lavega et al. (1993) to suggest that there might be at least two
vortices centrally located along the edge of the Hexagon that may
or may not be visible at different times. This theory would coincide
with the streamline maps produced by Godfrey (1988) and that of
Allison et al. (1990) who proposed possible multiple perturbing
anticyclones.

Images captured by the visual-infrared mapping spectrometer
(VIMS) on board the Cassini-Huygens Orbiter in 2006 (Baines
et al. 2009), and more recently the first visible light images
captured by the Imaging Science Subsystem in 2009 (Sayanagi,
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Ewald & Ingersoll 2009) indicate that the Hexagon is a long-lived
atmospheric vortex. However, these images indicate that the previ-
ously observed anticyclone(s) in 1980 and 1990 have dissipated to
non-existence, casting doubt over the Allison et al. (1990) proposi-
tion. Although there is currently no visible anticyclonic vortex to the
south of the Hexagon, there is a visible anticyclonic spot located in
the interior of the Hexagon (Antufiano et al. 2015; Morales-Juberias
etal. 2015), indicating that anticyclonic phenomena occur on a reg-
ular basis to the north and south of the Hexagon. The hexagonal
structure bounds a pole centred cyclonic vortex with speed upwards
of 135 ms~! (Baines et al. 2009; Antufiano et al. 2015).

The VIMS imagery indicates that the clouds within the easterly
flow have speeds in excess of 125 m s™!, an increase of 25 per cent
from the observations of Voyager. These observed changes could
be due to temporal variability and/or vertical shear (Baines et al.
2009). The most recent observations suggest that the peak velocity
within the Hexagon is around 119 m s~! (Antufiano et al. 2015).

Rotating tank experiments have been used for simulating atmo-
spheric jets that meander about a given latitude. An interesting and
not uncommon result of such experiments is that various polygonal
flow features form, depending on the type of forcing (Sommeria,
Meyers & Swinney 1989; Vatistas 1990; Vatistas, Wang & Lin 1994;
Marcus & Lee 1998; Jansson et al. 2006). This type of experiment
has given rise to alternate explanations of the origin of the North
Polar Hexagon. In particular, laboratory experiments with fluids
in rotating tanks in conjunction with a barotropic linear instabil-
ity analysis of Saturn’s zonal wind profile were used to infer that
Saturn’s Hexagon is the result of equilibrated wavemodes of the
barotropic instability, with mode six being the preferred state on
Saturn due to the location and strength of the eastward circumpolar
jet (Barbosa-Aguiar et al. 2010). Numerical simulations using the
Explicit Planetary Isentropic-Coordinate (EPIC) model found that
a stable hexagonal structure can result without forcing (Morales-
Juberias et al. 2011). The EPIC simulations are in agreement with
the experimental findings of Barbosa-Aguiar et al. (2010) and the
resulting hexagonal structure arises due to the formation of what is
termed a ‘vortex street’, where there is an alignment of opposing
vortices such that there exists a meandering jet separating them. In
the case of the Saturn hexagon simulations, there are six anticy-
clones slightly south of the six cyclones.

Although the experimental (Barbosa-Aguiar et al. 2010) and nu-
merical (Morales-Juberias et al. 2011) results produce hexagonal
features as a bi-product of a ‘vortex street’, there remains doubt
over the legitimacy of such a model producing the actual North
Polar Hexagon on Saturn, due to the debate over the existence of
large vortices being observed in the vicinity of the Hexagon re-
gion of Saturn (Morales-Juberias et al. 2011; Sanchez-Lavega et al.
2014). A visible ‘vortex street’ may not be apparent in the Cassini
images (Sanchez-Lavega et al. 2014), but it has been shown pre-
viously by analysing the original Voyager images that there was
a visible anticyclone and several other non-visible anticyclonic re-
gions aligned centrally along the southern side of the Hexagon
edges (Godfrey 1988), but the lack of cyclonic regions to the north
exclude it from being the result of a ‘vortex street’. The speed
needed to propagate the ‘vortex street’ hexagon in the numerical
simulations by Morales-Juberias et al. (2011) would exceed the sta-
tistical bounds of measurements by Godfrey (1988). However, by
considering small perturbations to an eastward Gaussian jet simi-
lar to that used by Morales-Juberias et al. (2011), a hexagon can
result in the form of a shallow meandering jet that has comparable
phase speed to the actual North Polar Hexagon (Morales-Juberias
et al. 2015).



A common practice in simulating atmospheric phenomena is
to simplify spherical coordinate geometry by projecting on to a
‘tangent plane’. The f-plane and B-plane approximations are used
extensively in atmospheric fluid dynamics, but their validation is re-
stricted to mid-latitude regions (Lipps 1964; Vallis 2006). In simu-
lating the North Polar Hexagon, a high-latitude polar approximation
must be used. In order to study high-latitude atmospheric Rossby
waves, Yang (1987) proposed a §-plane approximation. Similar to
the development of the S-plane where the 8 term represents the
rate of change in the Coriolis parameter f, the §-plane (denoted
y-plane by Nof 1990) includes the latitudinal variation of B so that
8 = 0B/90y and thus allows for the quadratic variation in the Cori-
olis parameter around the polar regions. The quadratic variability
in the Coriolis parameter was noted by LeBlond (1964) in what is
considered to be the first valid polar plane approximation technique.

Saturn’s Hexagon has the north pole centrally located within and
thus the pole itself is the logical tangent point for the §-plane approx-
imation. Nof (1990) outlines the appropriate momentum equations
to use in such an instance and has the quadratic term in the form
(x> + ¥?), indicating that lines of latitude are circles centred about
the pole, with zero linear variation term; 8 = 0. These equations
are also extended to take into account that not all polar approx-
imations have the need for the pole to be the tangent point and a
simple coordinate transformation enables the 8 term to be recovered
so that the Coriolis parameter also has linear variation in latitude.
A similar approach was used by Harlander, Schonfeldt & Metz
(2000) to investigate flows near the poles with a poleward rigid
boundary, thereby only having linear and quadratic change along
the north—south y-axis. Unlike the B-plane approximation, higher
order approximations such as the §-plane theories outlined by Yang
(1987), Nof (1990) and Harlander et al. (2000) cannot be derived
from spherical geographic coordinates. However, using a rotated
geographic coordinate system, Harlander (2005) was able to derive
a é-plane model from spherical geometry.

The current non-existence of a perturbing anticyclone has for at
least a decade now cast doubt over the original proposal of Allison
et al. (1990). However, this does not necessarily mean that the
former visible spots impinging on the hexagonal edges did not
influence its development initially, conversely the visible spots may
have been the result of the Hexagon itself. It cannot be denied that at
the time of discovery, the Hexagon had a significant counter-rotating
vortex pushing on one edge. Without data prior to 1980 it is hard to
say how long the spot was in existence. Maybe these vortices were
enough to give the circumpolar jet the required perturbation similar
to those given to the model used by Morales-Juberias et al. (2015)
so that the circumpolar current could evolve to form a hexagonal
structure. Although not correct, the theory of Allison et al. (1990)
and the multiple vortex conjecture discussed by Sanchez-Lavega
et al. (1993) raises some interesting questions and thus this article
seeks to determine whether or not a hexagonal feature can be formed
by anticyclones perturbing an initially circular circumpolar jet. A
8-plane approximation similar to the one outlined by Nof (1990)
will be used to simulate the spheroidal effects of polar flow and
a Gaussian profile function will represent both the predominant
eastward circumpolar current and the smaller magnitude westward
flow to the south.

2 MATHEMATICAL FORMULATION

A two-dimensional Cartesian coordinates system is used to simulate
vortex phenomena over the north pole of Saturn. However, the
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x- and y-axes are not defined to point east and north, respectively.
The origin of the coordinate system is the north pole.

The motion of the atmospheric fluid is driven by the Coriolis
pseudo-force. The Coriolis parameter at latitude ¢ is given by

f =2Qsing, €]

where  is the angular velocity of Saturn. The sidereal rotation

period of Saturn is taken to be 10.656 h, corresponding to the

Saturnian system III coordinates (Williams 2015) and thus Saturn’s

angular velocity is
27

"~ 10.656 x 3600

The §-plane approximation assumes that the Coriolis parameter
fhas quadratic variability, so that

f=2Q -804y, 3)

Q =1.638 x 107*s7. 2)

where 22 is the value of the Coriolis parameter given by equation (1)
at the north pole latitude and § is the absolute value of the second
derivative of (1) with respect to the latitude ¢ evaluated at the north
pole and is given by

Q

6=R7?,

“
in which Ry is the radius of Saturn. The §-plane has the unique
characteristic that the magnitude of Coriolis parameter decreases
away from the pole, which forms the origin of this ‘tangent plane’.
Unlike the more commonly used f-plane and S-plane, the x- and
y-axes are not defined to be pointing east and north, respectively.
The easterly direction is defined to be pointing anticlockwise around
circles of equal latitude with centres located at the origin, and the
northerly direction is the ray from any (x, y) coordinate terminating
at the pole. A geometric sketch of the dimensional §-plane is given
in Fig. 2, with boundary —L <x < L, —H <y < H. The arrows along
the rays terminating at the origin show the northerly direction and
the arrows on the concentric circles show the easterly direction. It is
important to note that the é-plane approximation does not describe
dynamics on a hypothetical tangent plane and only takes the name
from the analogous f-plane approximation.

It is convenient to scale the problem so that all quantities, vari-
ables and equations are dimensionless. Pressure is referenced to
the quantity Py = poRTy, in which R is the ideal gas constant and
takes the values of R = 4016.43 J kg~' K~! on Saturn and p, and

H

-H
-L 0 L

X

Figure 2. Geometric sketch of dimensional §-plane with north and east
directional arrows.
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Figure 3. Sketch of the dimensionless computational 5-plane. The contours
have been taken from an actual solution of the pressure at time 7 = 0.1.

T, are the respective scaling values for the density and tempera-
ture. The time-scale is 7, the approximate number of seconds in
one day (10° s). The length-scale D is the approximate distance
spanned by 10° of latitude (107 m). It follows then that the speed is
scaled relative to D/t, the approximate maximum velocity inside
the hexagonal flow. The problem then is found to be dependent on
six dimensionless constant parameters,

L H Cp
=T e=2 y=2
D D Cy
RTy .
v="220 FosAln Q=or )
D_

The first two constants A and w in the system (5) represent the
dimensionless half-width and half-breadth of the tangent plane,
respectively. The constant y = ¢,/c, is the ratio of specific heats,
where ¢, is the specific heat at a constant pressure and c, is the
specific heat at a constant volume. The constant parameter v is a
modified inverse Eckert number and describes the ratio of kinetic
energy and enthalpy (Kay & Nedderman 1985, p. 255). The last
two constants § and € describe aspects of the Coriolis force due
to the rotation of Saturn. A definition sketch of the dimensionless
computational §-plane is given in Fig. 3.

The velocity vector is v = ui + vj, where u and v are the re-
spective x- and y-directed velocity components with respect to the
coordinate geometry in Fig. 2. The governing equations are well
known and will only be discussed briefly. The mass continuity
equation is

0p 0p 0p ou Ov
— — — —+ — ) =0. 6
at+”ax+”ay+”<ax+ay> (©)

The respective momentum equations for the velocity components
are

ou ou ou vop
— v

ou  ou_ raer_y, 7
o T Ty U S @
ov ov ov 4 vop

v, v, o vor _y, 8
at-l—uax—l—vay-kfu-kpay 3)

where f is the dimensionless Coriolis parameter given by

F=2Q-35(x>+ . )
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As a result of assuming no addition of heat by external sources, the
governing energy equation takes the form

6T+ aT+ E)T+( ) au+8v 0 (10)
— — +v— -D=(—+—]=0.
or Uax Ty TV ox " dy

This paper will look at ideal fluids that are weakly compressible,
so that density p is variable. An ideal fluid must obey the equation
of state that takes the dimensionless form

p=pT. (1n

The dimensionless equation of state (11) is transformed by taking
the time derivative, so that

op 0p 0p ou Ov
R o PP - D T
or { ox +Uay+p(ax+6y)]

o o k(e 2o (12)
P ox v oy v o \ox 9y/|’
after use of (6) and (10).

Time independent steady state background flow behaviour is used
to determine the boundary conditions. It will be assumed that the at-
mospheric flow is geostrophic and that the atmosphere is isopycnal.
The Hexagon itself is embedded within an eastward circumpolar jet
spanning the latitudes 74°-78°, with peak velocity at 76°. Godfrey
(1988) calculated the peak velocity to be approximately 100 m s~
Baines et al. (2009) suggest it could be as high as 125 m s~! and
Antufiano et al. (2015) indicate that it is about 119 m s~'. The veloc-
ity drops significantly to less than 20 m s~! at the boundary latitudes
of the Hexagon. At the approximate latitude of 69° the velocity is
about —20 m s~', indicating a moderate westward jet to the south.
These extremes of the velocity profile are paramount when deciding
on the initial velocities of the numerical simulations. The velocity
profile given by Godfrey (1988, fig. 4) will be the basis for the time
independent steady background flow component of the non-linear
representations given later. Due to the scaling of the problem, 1° in
latitude is approximately equal to a dimensionless distance of 0.1
and the background flow components take the form

up(x,y) = —Coy exp {—Cl (\/x2 +y2— 1.4)2}
2
1 Chyexp {—03 (\/xz T 2.1) } , (13)

vp(x, y) = Cox exp {—Cl (x/x2 + y2 — 1.4)2}
— Cyx exp {—C3 (\/xz T2 2.1)2} . (14)

The constants 1.4 and 2.1 in the velocity representations (13) and
(14) are the dimensionless distance from the origin of the §-plane
to the latitude where the eastward and westward jets are at their
maximum flow rates.

The flow region of interest is between latitudes 66° and 80° where
the eastward and westward velocities are extremized around the
hexagonal feature. Outside of this region, the background velocity
will take the value of zero. A curve-fitting procedure was used
to determine the values of the constants Cy, C;, C; and C3 so
that the background flow had similar characteristics to the zonal
velocity profile published by Godfrey (1988) over the flow region
of interest. It was found that Cy ~ 0.7, C; = 40, C; =~ 0.1 and
C3 = 20. The constants Cy and C, are effective amplitude values for
the exponential terms and the constants C; and Cj are just dilation
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Figure 4. Curve-fitted zonal velocity profile. The blue crosses are values
interpreted from the velocity profile published by Godfrey (1988) and ex-
pressed in dimensionless form.

factors of the peaks in the exponential representations. Fig. 4 shows
a plot of the curve-fitted representation of the zonal velocity, with
the blue crosses indicating values interpreted from the zonal velocity
profile published by Godfrey (1988) in dimensionless form, with u
representing the zonal velocity and r is the radius from the pole.

For the isopycnal atmosphere, the constant density in dimension-
less variables is simply

Po(x,y) = 1. 15)

The equation of state (11) must be satisfied and thus it follows
that the background pressure py(x, y) and temperature T}, (x, y) are
initially equal. The material derivative terms of the momentum
equations (7) and (8) are ignored under the geostrophic assumption
so that they can be re-arranged and simplify, approximately, to

Opu(x.y) __un(x, )

Jy v (16)

p(x,y) _ oo, 1] an
Ox v

To get arepresentation for the background pressure, equation (16)

is integrated with respect to y, the result is then differentiated with

respect to x and compared to equation (17). Thus, the background

pressure (and background temperature) has the form

G [* , )
Po(x, y) 7/ rf exp [—Cl (r — 1.4)} dr
0

&
- % / r}' exp [—C3 r— 2.1)2] dr + K
0
= Tp(x, y). (18)

Here, r = /x2 + y2 = & and the constant K is chosen such that
the pressure and temperature take the values p = 1 and 7 = 1,
respectively, on the boundaries of the §-plane.

It has been suggested by Allison et al. (1990) that the hexagonal
structure over the pole of Saturn is the result of at least one perturb-
ing anticyclone. This claim by Allison et al. (1990) appears not to
have been investigated thoroughly in the literature. For this reason,
the effects of perturbing anticyclone(s) will be simulated to infer
whether or not anticyclones could be a possible trigger mechanism
for the formation of the North Polar Hexagon on Saturn. The per-
turbing anticyclones are modelled using high-pressure systems in
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the form
—((x = M)+ (y — M)*)
Pp(X, y) = p1exp 3
0]
—((x + M)’ +(y + M)")
+ o exp 5
5)
= T,(x, y). (19)
The rise in pressure is given by the values of 1, (o and the radii
of the anticyclones are ¢, 0. For convenience if @, = mu, the

pressure rise will be denoted w, similarly if o} = o, the radii will
be specified as o. The initial locations of the anticyclones are the
Cartesian coordinates (M, M). A direct result of the equation of
state (11) and the isopycnal assumption is that the perturbing density
must be

pp(x,y) =1 (20)

The velocity components of the atmospheric flow induced by the
anticyclones are

K app(x’ }’)

. = -5 20 1)
0 ,
vy, y) = %%y) 22)

3 THE SPECTRAL SOLUTION METHOD

This section discusses the numerical techniques used in order to
solve for the five dependent variables, pressure p, density p, temper-
ature 7" and the x- and y-directed velocity components « and v. Spec-
tral solutions using both Dirichlet and Robin boundary conditions
are sought and a comparison of both approaches is discussed in the
results section. The following outlines the derivation of the Dirich-
let boundary value problem and the earlier paper by Cosgrove &
Forbes (2017) gives a derivation for the corresponding similar Robin
boundary value problem.

The state variables are given the value one on the boundaries of
the é-plane and the velocity components are zero there. This leads
to the spectral representation

P,y D) =1+ fjl f:l Pon() ()G (), 23)
p.y. =1+ i i R0 F ()G (), (24)
T(x,y,1)=1+ mi;‘l i T (D) F ()G (3), (25)
u(x,y. 1) = g 2 A F ()G (). (26)
v(x,y. 1) = fj fj By Fu ()G (). @7)

m=1 n=1

The time-dependent Fourier coefficients P, (f), Run(t), Tpun(2),
A, (t) and B,,,(f) are to be determined.

MNRAS 469, 4133-4147 (2017)
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The basis functions F,,(x) and G,(y) are chosen so that the Dirich-
let boundary conditions that are imposed on the unsteady time-
dependent components take the form

p(Er, y, 1) =0; plx, tw,1) =0 (28)

for the pressure and similarly for the remaining series terms. This
leads to sinusoidal basis functions

Fo(o) = sin [ 7TE A
e 2
G.(y) = sin (W) . 29)

The governing equations (6)—(10) and (12) are used to evalu-
ate the time-dependent coefficients P,,,(f), Ryu(t), Tyn(t), Apmn(t)
and B,,,(7) by isolating the time-dependent and spatial components
of each governing equation. For example, the Fourier coefficients
A, (1) used in the x-directed velocity component are determined by
using the non-linear representation (26) and the x-directed momen-
tum equation (7) together to give the expression

au oo oo ,
3, = 22 2 A OF ()G () = —Fa(x, y,1), (30)
m=1 n=1
where
() ou . ()
FaGe,yo ) = ut o 3y 4 222 31)
Ox dy p Ox

The function F,4(x, y, f) represents the spatially varying terms in
the x-directed momentum equation (7). Spectral decomposition is
used to develop a system of ordinary differential equations for the
Fourier coefficients A,,,(#). This is achieved by multiplying by basis
functions Fj(x), G;(y) and integrating over the region of the §-plane
giving

, _1 A 10}
AL = / / FaCr, y. D F()Gi(y) dy dx
)"a) -1 J—-w
for k=1,2,...,M, and,1=1,2,...,N. (32)

The Fourier coefficients P,,,(t), R,,(?), T,,,(t) and B,,,(t) are derived
in the exact same manner and will not be stated here.

4 PRESENTATION OF RESULTS

Allison et al. (1990) proposed that the hexagonal feature centred at
the north pole of Saturn is a Rossby wave which may have been
caused by at least one perturbing anticyclone to the south. Although
there are no such anticyclones currently observed in the vicinity of
the Polar Hexagon, this section will outline whether or not it is
possible for a hexagonal feature to be formed by an anticyclone
impinging on the boundary of a larger cyclone. The results that
follow are obtained through numerical simulations using parameter
values close to those observed on Saturn with basic atmospheric
assumptions. The majority of results outlined in this section will be
presented in the form of pressure contour charts. Solutions will be
given for single and binary perturbing anticyclones. The variation
in the location, radius and pressure differential of the perturbing
anticyclones will also be considered.

The pressure scale is py = poRTy = 1 bar =103 Pa. At this pres-
sure, the Saturnian atmosphere has a temperature of approximately
134° K (Williams 2015) and so the scale temperature 7y, = 134° K
and scale density of py = 0.186 kg m~> will be assumed. The di-
mensionless half-plane width and breadth are A = @ = 6, so that
the §-plane region is —6 < x < 6, —6 < y < 6. These values are
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Figure 5. Contour diagram of the approximation error. The scale gives the
percentage relative error (33) in the §-plane assumption.

chosen so that there is ample space between where the actual flow
of interest occurs and the location of the artificial §-plane bound-
aries. In the results that follow the flow feature of concern is more

or less bounded by the region —3 <x < 3, =3 <y < 3 where

2
there is much less than 1 percent difference between Coriolis pa-
rameter value given by (1) and the associated §-plane value (9).
This qualitative value is determined using the error approximation

function

2Qsing — 2 + 8(x* + y?) y

Erxy) = 2Qsing

100. (33)
The contours of the error as given by (33) are shown in Fig. 5.

The background flow will be perturbed with either a sin-
gle anticyclone or a binary anticyclone system as given in
equation (19); setting ©, = 0 in this equation produces a single
anticyclone. The initial eye locations of the perturbing system(s)
will be (x, y) = (M, M) or (x, y) = £(M, M), hereafter denoted M.
This geometry is chosen so that the possible interference caused by
reflections off the artificial boundaries when using spectral meth-
ods takes its maximum time to impact on the numerical solution
and thus reliable, informative solutions can be obtained. The fig-
ures throughout this section will be magnified over a region smaller
than the computational domain of A = w = 6, so that the intricacies
of the flow can be more readily shown. This section will attempt
to answer the following questions: (1) Is it possible for perturb-
ing anticyclone(s) to produce a hexagonal structure over the pole
of Saturn? (2) What effect does the location, radius and pressure
differential have on the formation of a hexagon?

The types of background flow coupled with the perturbation flow
have varying degrees of influence on the evolving flow pattern. To
get an overall feel for what is happening, quiver plots of the velocity
field using the horizontal velocity representations (13), (21) and the
vertical velocity components (14), (22) are shown in Fig. 6 and
confirm the eastward and westward circumpolar jets as indicated by
the respective anticlockwise and clockwise directional quivers. As
expected there is an annulus of stagnation flow between both jets.
The perturbing quiver plots in Figs 6(a) and (b) clearly show the
anticyclonic rotation of the high-pressure regions. The perturbing
anticyclones also interrupt the stagnation ring, particularly in this
case when the perturbations are in close proximity to the easterly
jet and thus impinge on the flow.

The first image of the North Polar Hexagon (Godfrey 1988)
showed that there was at least one anticyclone to the south of the
hexagonal structure. In particular, it was proposed that the Hexagon
may be the result of at least one perturbing anticyclone (Allison
et al. 1990). The pressure differential in such an anticyclone has a



Figure 6. Quiver plots of the initial background velocity with perturbation
from (a) a single anticyclone and (b) two anticyclones.

major impact on the flow strength around the eastward jet. Figs 7(a)
and (b) show the quivers of the initial velocity field for the respective
pressure differential of . = 0.1 and u = 0.2. In these figures, the
eyes of the anticyclones are located at M = 1.5 with radius 0 = 0.4,
and although generated over the entire computational domain, both
figures are cropped so that the flow pattern and strength are empha-
sized. The larger the pressure differential value p, the more intense
the perturbing system as indicated by the large-magnitude quivers
in the top-right corner of Fig. 7(b). An additional result made clear
in these two diagrams is the pin-wheel effect occurring in the inter-
facial region between the two opposing flow directions. This results
in fluid being ejected tangentially towards the top left of the §-plane.

The initial conditions for the polar flow on the §-plane were de-
termined by making the atmosphere initially isopycnal so that the
density is just the background density p = 1 and is achieved by set-
ting R,,,(0) = 0 in equation (24). A direct consequence of the initial
isopycnal atmosphere is that the initial pressure and temperature are
identically defined as

px,y, 00 =1+ H(x,y)=T(x,y,0), (34)

where H(x, y) is conveniently defined as a slightly modified sum
of the background (18) and perturbation (19) components for the
pressure and temperature and is of the form

Co [* 5
H(x,y) = 7/ rf exp [—Cl r— 1.4)] dr
0

§
—9/ rfexp[—Cs(r —2.1°] dr
v Jo
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Figure 7. Quiver plots of the initial background velocity with perturbing
anticyclone of pressure differential (a) © = 0.1 and (b) © = 0.2.

n [—((X—M)2+(y—M)2)}
K1 exp 0_2

1
—((x +M? +(y + M)

2
0;

~+ o exp [ } +S. (35)
The constant S is chosen so that H(x, y) = 0 on the boundary of the
8-plane and r and & are as defined previously. The initial Fourier
coefficients P,,,(0) and 7,,,(0) for the pressure and temperature
functions are found using spectral decomposition. Thus

1 A 9]
Pmn(o) = E/ / H()C, )’) Fk(x) Gl(y)dy dx
= Tun(0). (36)

The initial Fourier coefficients for velocity components A,,,(0) and
B,,,(0) are similarly found. For A,,,(0), the function H(x, y) in the
integrand of equation (35) is replaced with the sum of the x-directed
background flow (13) and perturbation flow (21). Likewise, the sum
of the y-directed components (14) and (22) are used to determine
B,,,(0). The quadratures are performed using the Gaussian integra-
tion routine provided by von Winckel (2004).

A three-dimensional plot of the initial pressure and temperature
for the unperturbed and perturbed flows is shown in Figs 8(a) and
(b). In these figures, the unperturbed flow induces values of dimen-
sionless pressure in the approximate interval 0.88 < p < 1.04, with
p = 1 on the boundaries. The easterly circumpolar jet produces a
region of low pressure and the westerly flow creates a high-pressure
annulus. The perturbing anticyclones are located at M = 1.4 with
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TV

Figure 8. Sketch of 2 three-dimensional initial pressure and temperature
profiles for (a) unperturbed flow and (b) perturbed flow.

radius o = 0.3 and pressure differential ;1 = 0.1, and thus increase
the pressure to p &~ 1.14 at the eye.

The results of perturbing the underlying circumpolar jets with a
single anticyclone of radius o = 0.4 located initially at M = 1.5 are
shown in Fig. 9, at time r = 1.6. When the anticyclone has strength
@ = 0.1 there is no significant change in the initial circular shape
of the pressure system, which can be seen in Fig. 9(a). However,
when the pressure differential of the anticyclone is increased to
u = 0.2, as illustrated in Fig. 9(b), there is evidence of the anticy-
clone influencing the flow, in particular, the creation of a straight
edge between the two opposing systems. Furthermore, there are
two rounded vertices, one at each end of the edge forming what
could be interpreted as the beginning of a hexagonal portion of a
trapezoid. Our simulations using one anticyclone failed to produce
a hexagonal feature, but instead, generated a circular-shaped region
but with one flattened side, as shown in Fig. 9(b).

If one perturbing anticyclone could produce a trapezoid type
structure as indicated in Fig. 9(b), then two symmetrically placed
anticyclones may just produce what is proposed. Fig. 10 is a time-
lapse illustration of the influence two perturbing anticyclones have
on the pressure structure over the polar region. The pair of anticy-
clones is modelled using equation (19). The initial placement of the
anticyclones is M = 1.5 with 0 = 0.4 and u; = u, = 0.2. Hereafter,
if the pressure change is equal in both anticyclones (i = u,), then
the pressure change will be expressed as p alone. For the single
perturbing anticyclone with the same characteristics as the pair in
Fig. 10, the trapezoidal formation was first observed at time t = 1.6.
Thus, Fig. 10(a) shows the contour map of the binary perturbation
at the same time 7 = 1.6. At this time, the hexagonal structure can
already be seen. Figs 10(b)—(d) show the evolution of the pressure
at the times r = 1.8, 2.0 and 2.2, respectively. As the time increases
to r = 2.0 the hexagon is at its most regular. Although the feature
is still prominent at the later time # = 2.2, there are ripples forming
along the edges non-adjacent to the anticyclones. At time ¢ = 3.0,
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Figure 9. Pressure contour plots with single anticyclone located originally
at M = 1.5 of radius 0 = 0.4 at time ¢ = 1.6 with pressure differential
(a) w = 0.1 and (b) u = 0.2.

the hexagonal structure is still evident; however, there are clear in-
dentations along the edges to the west of the anticyclones indicating
the structure is beginning to collapse. Due to the short lifespan of
the hexagonal structures, it is hard to determine for how long the
hexagon is approximately stationary. If it is stationary over the ap-
proximate dimensionless time 1.6 < ¢ < 4.0, this would correspond
to a time interval of approximately 3 d. This is not the case for the
perturbing anticyclones; the location of the anticyclones is within
the westward jet and thus there is clear movement to their west.

It is interesting to note the closed elliptical contours aligned
centrally along the outer edges of the hexagonal structure. These
are isolated regions of higher pressure in the form of smaller, less
intense anticyclones, which is consistent with what Godfrey (1988)
observed through streamline maps.

It has now been shown that a hexagonal feature, although tran-
sient, can be formed through anticyclones impinging on the bound-
ary of a circumpolar jet and thus the results shown in Fig. 10 can be
used as a baseline to determine the effects that the initial location
M, radius o and pressure differential  have on the development of
a hexagonal structure. The location of the initial anticyclones needs
to be within a close enough proximity to influence the flow associ-
ated with the eastward jet. Moving the location of the anticyclones
closer to the jet, so that M = 1.4 and keeping all other baseline
parameters identical, inhibits the formation of the furthest vertex
from the anticyclones being formed. This is depicted in Fig. 11(a)
and shows the most regular hexagonal type feature that occurred
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Figure 10. Pressure contour plots with two perturbing anticyclones located
originally at M = 1.5 of radius o = 0.4 with pressure differential © = 0.2
attimes (a) r=1.6,(b)t=1.8,(c)r=2.0and (d) t = 2.2.
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Figure 11. Pressure contour plots with two perturbing anticyclones of ra-
diuso =04 for(ayM=14,t=12and (b) M =1.6,r=2.4.

with M = 1.4. As would be expected, the hexagonal type structure
formed at the earlier time of = 1.2 compared to the baseline time
of t = 2.0. Although there is a hexagonal structure, it is less defined
than that of Fig. 10. Conversely moving the initial eye outto M = 1.6
a hexagonal structure is never formed. However, there is a slight
vertex being formed to the west of each anticyclone which may be
the results of the pin-wheel effect; this is shown in Fig. 11(b) at the
later time t = 2.4.

Decreasing the magnitude of the pressure differential plays a
significant role in the formation of a hexagonal structure. Fig. 12(a)
is the contour diagram at time ¢ = 2.0 using the baseline parameters
except that the pressure differential is now p = 0.1. At this time
there is no significant hexagonal formation developing, whereas
for the baseline simulation with . = 0.2 the hexagon was at its
most regular. However, with this decrease in pressure differential a
hexagon is produced at time # = 2.0 when the anticyclone is initially
closer to the easterly jet. This is illustrated in Fig. 12(b) which has
uw=0.1and M=14.

Although not shown here, when the pressure differential u is
unchanged, the smaller the radius of the anticyclone, the greater
the internal flow velocity. Fig. 13 shows the effect of changing the
radius of the anticyclones as compared to the baseline simulation.
The respective pressure contour plots at time ¢ = 2.0 with smaller
radius o = 0.3 and larger radius o = 0.5 are shown in Figs 13(a) and
(b). There is no indication of a hexagon being formed when o = 0.3.
This can be attributed to the fact that the anticyclones are sufficiently
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Figure 12. Pressure contour plots with two perturbing anticyclones of ra-
dius o = 0.4, pressure differential © = 0.1 at time ¢ = 2.0 for location
(@M =15and (b)M = 14.

separated from the eastward jet, so that the greater internal velocity
has no influence on the overall polar flow. The converse is true when
the radius is o = 0.5. The internal velocities are smaller in this case
compared to when the radius is ¢ = 0.3, but due to the initial
location being identical, the larger radius anticyclones have impact
on the polar flow, and thus on the deformed hexagonal structure. For
the larger radius o = 0.5, the hexagonal feature was most regular
attime t = 1.5.

Morales-Juberias et al. (2011) showed that stable polygons can be
formed by ‘vortex streets’ with cyclonic and anticyclonic vortices
aligning themselves on the pole and equator sides of the eastward
circumpolar jet, respectively. However, they suggest that the vortex
street model and the observed wind profile are incompatible. The
governing equations used in our simulations are not formulated in
terms of potential vorticity. However, as a bi-product of calculating
the velocity components forward in time, the vorticity can be de-
termined at any given time. Vorticity is a way to describe the local
rotation of a fluid about some point and is simply given by

ov  Ou

= oy 37

The contour plots shown in Fig. 14 are of the local vorticity
of the baseline perturbing system in Fig. 10. The vorticity (37)
is computed by direct differentiation of the Fourier series (26),
(27) at the desired time. As expected the perturbing anticyclones
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Figure 13. Pressure contour plots with two perturbing anticyclones located
originally at M = 1.5 with pressure differential = 0.2 at time ¢ = 2.0, for
radius (a) 0 = 0.3 and (b) 0 = 0.5.

have negative vorticity, in the interval —9 < ¢ < —1, and the
inner hexagonal region is the perturbed northernmost section of the
eastward jet and has positive vorticity ranging over 1 < ¢ < 5. For
the outer regions of the §-plane, where the quiver plots indicate
that there is negligible flow, the vorticity is similarly zero. There is
remarkable agreement in the shape of the vorticity contours to those
of the pressure contours at the same times.

It is shown in Fig. 8 that the unforced circumpolar jets have
pressure ranging from p = 0.88 to p = 1.04. The intermediate
pressure value p = 0.96 is a good indicator of the crossover from
positive to negative vorticity regions, as well as the defining pressure
contour of the hexagonal structure. This fact is confirmed in Fig. 15
and shows the pressure and vorticity contours in the respective
subfigures (a) and (b) at time ¢ = 0.19 for the baseline configuration
M = 15,0 = 04 and n = 0.2, combined with the interfacial
pressure contour p = 0.96 in black.

In trying to keep the simulations aligned with what was first
observed by Godfrey (1988), the parameter space for the single
perturbing anticyclone was kept to eye locations M € [1.4, 1.5] and
radii 0 = 0.3 and o = 0.4. It was evident from these simulations
that a hexagonal structure was unlikely to be formed. However, the
results obtained from the single anticyclone simulations indicated
that it may be possible for a hexagonal feature to be formed by
introducing a second symmetrically placed anticyclone. Table 1
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Figure 14. Vorticity contour plots with two perturbing anticyclones located
originally at M = 1.5 of radius o = 0.4 with pressure differential © = 0.2
attimes (a) r = 1.6, (b)t=1.8,(c)r=2.0and (d) t = 2.2.
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Figure 15. Contour plots with two perturbing anticyclones located origi-
nally at M = 1.5 of radius o = 0.4 with pressure differential ;. = 0.2 at time
t = 1.9 for (a) pressure and (b) vorticity. The thick black lines indicate the
interfacial pressure contour p = 0.96.

shows a list of all the space parameters investigated in this paper
for two perturbing anticyclones, the asterisk indicates that a single
anticyclone perturbation was also simulated. The fourth column of
Table 1 indicates the lifespan of hexagonal structures that resulted.
The lifespan of a hexagonal feature is given as the approximate time
range from formation to dissipation.

The results above arise from perturbing an eastward circumpolar
jet with anticyclones to the south and thus the problem is essentially
an interacting atmospheric vortex problem. It has been shown pre-
viously by Cosgrove & Forbes (2017) that the results of simulating
interacting atmospheric vortices using the f~plane approximation
can be misleading due to false reflections off the artificial bound-
aries, especially when Dirichlet boundary conditions are involved.
To overcome this phenomenon, Cosgrove & Forbes (2017) used
Robin boundary conditions to absorb and minimize the influence
of such reflections. However, using the §-plane approximation, the
numerical solutions obtained using Dirichlet and Robin boundary
conditions are virtually identical, indicating that the §-plane ap-
proximation with its quadratic variation is capable of absorbing
false reflections. An example of the similarity between the numeri-
cal solutions for the Dirichlet and Robin boundary value problems
are shown in Figs 16(a) and (b), respectively.

It is clear from the smoothed zonal velocity profiles given by
Godfrey (1988), Baines et al. (2009) and Antufiano et al. (2015)
that there is considerable change in the magnitude of the observed
maximum velocity within the hexagonal structure. The one constant
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Table 1. Shows all combinations of the simulation parameters investigated
and lifespan of hexagonal structure.

Eye location Anticyclone Pressure Lifespan
M radii, o differential, u

1.3 0.3 0.1 l6<r<18
1.3 0.3 0.2

1.3 0.4 0.05 20<1r<23
1.3 0.4 0.1

1.3 0.4 0.2

1.4* 0.3* 0.1*

1.4* 0.3* 0.2* 15<t<17
1.4* 0.3* 0.3*

1.4* 0.4* 0.1* 1l4<t<22
1.4* 0.4* 0.15* 12<tr<17
1.4* 0.4* 0.2* 10<t<14
1.45* 0.4* 0.1* 1.7<t<22
1.45* 0.4* 0.2* 1.1 <t<18
1.5% 0.3* 0.1*

1.5% 0.3* 0.2*

1.5% 0.4* 0.1*

1.5% 0.4* 0.2* 14<t<30
1.5% 0.4* 0.3

1.5 0.5 0.2 12<1r<18
1.6 0.4 0.1

1.6 0.4 0.2

1.6 0.4 0.3

1.6 0.5 0.1

1.6 0.5 0.2 14<1r<23
1.7 0.6 0.1

1.7 0.6 0.2 l4<r<2l1

feature of all three aforementioned velocity profiles is that the max-
imum velocity is observed at approximately 76° latitude within the
hexagonal region and steadily declines towards the outer boundaries
of 74° and 78°. Moreover, the most recent measurements reported
by Antufiano et al. (2015) have the velocity within the Hexagon
being in the range 104 & 15 m s~'. To get an idea of the effect
of the velocity variation, Figs 17(a) and (b) show the respective
pressure contour diagrams using the baseline parameters with a
maximum velocity that is 75 per cent and 125 per cent of that used
in the simulations above. The smaller velocity magnitude forms a
more regular hexagonal feature but takes longer to develop; con-
versely, the hexagonal feature formed using the increased velocity
evolves more quickly but is less regular.

The spectral representations have used M = N = 41 Fourier
coefficients with 161 sample points in each spatial variable. The
results above have centred on pressure contour diagrams and to in-
dicate the convergence of the numerical solution Fig. 18(a) shows
the spectral representation of the initial pressure using equation
(23) and Fig. 18(b) illustrates the initial ‘true’ closed form of the
pressure given by the sum of the components (18) and (19). The
only observable differences between the figures are the contour
slivers in the westward jet at 3, 6, 9 and 12 o’clock. Figs 19(a)
and (b) show three-dimensional surface plots of the magnitude of
the Fourier coefficients P,,,(f) for the pressure at time r = 0 and
t = 1.5, respectively, for the baseline simulation parameters. The
higher Fourier coefficients have magnitudes that decay essentially
to zero, indicating convergence. Although not shown here, an in-
vestigation into an appropriate grid resolution found that having
greater that 161 grid points in each spatial variable produces con-
tour plots that are for all intents and purposes identical to those
using a grid that is 161 by 161.
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Figure 16. Pressure contour plots with two perturbing anticyclones located
initially at M = 1.4 of radius o = 0.4 and pressure differential © = 0.1 at
time ¢ = 1.8 using (a) Dirichlet boundary conditions and (b) Robin boundary
conditions.

The contour diagrams above have been generated by considering
the impact of two symmetrically located anticyclones perturbing
an eastward circumpolar jet. In reality, there is a polar cyclone
centred at the pole (Baines et al. 2009; Antufiano et al. 2015) and a
visible anticyclone located in the interior of the hexagonal feature
(Antufiano et al. 2015; Morales-Juberias et al. 2015). Although
not shown here, a simulation of the polar cyclone alone does not
produce any special feature and the associated pressure structure
remains essentially circular. Incorporating an internal polar spot to
the stand alone polar cyclone produces a distortion in the contour
structure but never forms what could be interpreted as a hexagon.
Including the polar cyclone in our simulations where there are two
perturbing anticyclones seems to have marginal influence over the
formation of the hexagon as indicated in Fig. 20, which illustrates
the pressure contours of the baseline parameters at time # = 2.0 with
a polar cyclone component added to the background flow. There are
small changes in the hexagonal feature compared to the baseline
configuration shown previously in Fig. 10(c). Although slight, these
differences may have been caused by increased shearing induced
by the polar cyclone and thus produce closed pressure contour
regions of similar length to the hexagonal edges, which are not
evident in the contour plot in Fig. 10(c). An explanation for this
similarity is that there is still a substantial ring within the hexagonal
structure that is approximately stagnant and thus limits the effect of
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Figure 17. Pressure contour plots using baseline parameters with eastward
jet having velocity (a) 75 per cent at time ¢ = 2.2 and (b) 125 per cent at time
t=18.

the polar cyclone’s influence on the hexagon formation. However,
there are still flow-on effects from the polar cyclone components
and although slight, these differences may have been caused by
increased internal shearing induced by the polar cyclone.

5 CONCLUSIONS AND DISCUSSION

This paper has considered a possible trigger mechanism for the for-
mation of the famed North Polar Hexagon on Saturn, in the form
of perturbing anticyclones. The hexagonal feature is a long-lived
atmospheric structure that continues to this day. It was theorized
by Allison et al. (1990) that the hexagon structure was the result of
a Rossby wave being perturbed by at least one anticyclone to the
south. Although at this point in time there is no evidence of a per-
turbing anticyclone, the claim by Allison et al. (1990), in particular
the perturbation aspect of the theory, has not been substantiated in
the literature and thus is a focal point of this article. A high-latitude
é-plane approximation is used with tangent point located at the
north pole, ¢ = 90° N. In the é-plane approximation, the Coriolis
acceleration varies quadratically with latitude.

The Hexagon is centrally located about 76° N latitude within
an eastward circumpolar jet with an approximate maximum zonal
velocity of 100 m s~!. There is a smaller magnitude, 20 m s/,
westward jet to the south at the approximate latitude of 69° N which
seems to be ignored when modelling and simulating the formation

Polar Hexagon — 4145

(a 3

-3 -1.5 0 1.5 3

Figure 18. Initial pressure contour plots with two perturbing anticyclones
located originally at M = 1.5 of radius 0 = 0.4 with pressure differential
n = 0.2 for (a) spectral pressure and (b) ‘true’ representation.

of the Hexagon in the current literature. These circumpolar jets are
simulated with a Gaussian profile function offset at the appropriate
dimensionless distance from the pole. The perturbing anticyclones
are modelled using an exponential function (19) with variable initial
eye location M, radius o and pressure differential n. It was found
that the most regular hexagonal structure formed at time ¢t = 2.0
using the parameters M = 1.5, 0 = 0.4 and p = 0.2. These were
then used as the baseline values to determine the effect on hexagon
formation of varying one of the parameters.

The pin-wheeling effect caused by the opposing rotations of the
eastward jet and anticyclones being in close proximity is the major
contributing factor in the formation of a hexagonal edge in the
simulations. A result of moving the anticyclones closer to the jet is
that the pin-wheeling may become non-tangential and a pronounced
curve in the pressure contour structure can arise and cause the
non-formation of a hexagonal vertex, and although a hexagonal
structure may eventuate, it will never be regular. Conversely, if the
anticyclones are moved away such that there is no pin-wheel effect
occurring then an edge will never eventuate to form a hexagonal
feature.

The pressure differential u changes the internal velocity of the
anticyclones and thus contributes to the pin-wheeling effect. De-
creasing the pressure differential lessens the pin-wheeling effect
between the polar jet and the anticyclones. To overcome this lack of
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Figure 19. Absolute value of the Fourier coefficients Py, (t) for pressure
withM =1.5,0 =0.4and u = 0.2 at time (a) t =0 and (b) t = 1.5.
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Figure 20. Pressure contour plot at time # = 2.0 using baseline parameters
with additional polar cyclone components added to the background flow.

influence, the location of the anticyclones must be moved closer to
the circumpolar jet. Apart from the baseline parameters, it was also
shown that a hexagonal structure is formed with decreased pressure
differential u = 0.1, closer location of M = 1.4 and baseline radius
of 0 = 0.4 at time t = 2.0.

MNRAS 469, 4133-4147 (2017)

The radius of the anticyclone impacts on the internal velocity;
if the pressure differential u is identical, the smaller the radius of
the anticyclone, the more intense the internal velocity. However, the
anticyclone must be within a close enough proximity to influence
the flow of the polar jet.

The initial unperturbed pressure profile of the circumpolar jet
had pressure in the range p = 0.88 to p = 1.04. The intermediate
pressure contour p = 0.96 is used to define the hexagonal structure
in the pressure contour maps. Surprisingly, the defining intermediate
pressure value aligned itself extremely closely with the boundary
between positive and negative local vorticity. Therefore, it could
be concluded that the hexagonal feature may be linked through
pressure and local vorticity.

It has been shown that a hexagonal feature can be formed through
at least two anticyclones impinging on the southern boundary of the
eastward circumpolar jet, with varying parameters, even with con-
siderable smaller magnitude velocities than observed in nature. This
is not a solution to the famed North Polar Hexagon on Saturn, but
a demonstration of a trigger mechanism in the form of perturbing
anticyclones that could help form a hexagonal structure. Our sim-
ulations produce hexagons that are transient, lasting approximately
t = 1.5 (2 days) in duration. We are unable to replicate the stabil-
ity that has been observed in reality and thus the longevity of the
structure has to be attributed to other factors not considered in this
paper. This merits further research.
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