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Shear stress regulates endothelial cell autophagy via
redox regulation and Sirt1 expression

J Liu1,6,7, X Bi1,6, T Chen1, Q Zhang1, S-X Wang1, J-J Chiu2, G-S Liu3, Y Zhang1, P Bu*,4 and F Jiang*,5

Disturbed cell autophagy is found in various cardiovascular disease conditions. Biomechanical stimuli induced by laminar blood
flow have important protective actions against the development of various vascular diseases. However, the impacts and underlying
mechanisms of shear stress on the autophagic process in vascular endothelial cells (ECs) are not entirely understood. Here we
investigated the impacts of shear stress on autophagy in human vascular ECs. We found that shear stress induced by laminar flow,
but not that by oscillatory or low-magnitude flow, promoted autophagy. Time-course analysis and flow cessation experiments
confirmed that this effect was not a transient adaptive stress response but appeared to be a sustained physiological action.
Flow had no effect on the mammalian target of rapamycin-ULK pathway, whereas it significantly upregulated Sirt1 expression.
Inhibition of Sirt1 blunted shear stress-induced autophagy. Overexpression of wild-type Sirt1, but not the deacetylase-dead
mutant, was sufficient to induce autophagy in ECs. Using both of gain- and loss-of-function experiments, we showed that
Sirt1-dependent activation of FoxO1 was critical in mediating shear stress-induced autophagy. Shear stress also induced
deacetylation of Atg5 and Atg7. Moreover, shear stress-induced Sirt1 expression and autophagy were redox dependent, whereas
Sirt1 might act as a redox-sensitive transducer mediating reactive oxygen species-elicited autophagy. Functionally, we
demonstrated that flow-conditioned cells are more resistant to oxidant-induced cell injury, and this cytoprotective effect was
abolished after inhibition of autophagy. In summary, these results suggest that Sirt1-mediated autophagy in ECs may be a novel
mechanism by which laminar flow produces its vascular-protective actions.
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Vascular endothelial cells (ECs) are fundamentally important
in maintaining structural and functional homeostasis of blood
vessels. Normal biological functions of ECs are highly
sensitive to the biomechanical stimuli induced by blood flow,
of which shear stress acting on the surface of EC has
been recognized to be one of the most important vasoactive
factors in EC.1,2 A relatively high level of laminar shear stress
is cytoprotective, whereas abnormal (low-magnitude or
oscillatory) shear stress is a detrimental cellular stress to
ECs.1 Transduction of the mechanical signals involves multi-
ple messenger molecules and signaling proteins, which
collectively regulate important endothelial functions, such as
gene expression, proliferation, migration, morphogenesis,
permeability, thrombogenicity, and inflammation.2

Autophagy (also known as macroautophagy) is an
evolutionarily conserved cellular stress response.3,4 Autop-
hagy is a cellular self-digestion process, which is responsible
for degradation of misfolded proteins and damaged orga-
nelles. Autophagic process is mainly mediated by the
formation of autophagosome, a double-membrane vacuole

structure containing engulfed cellular components. This
process requires expression of a group of key genes involved
in autophagy, including LC3A, beclin-1, Atg5, Atg7, and
Atg12, for example.3,5 Autophagosomes fuse with lyso-
somes, forming autolysosomes, where the cellular compo-
nents are degraded by various hydrolases in an acidified
environment.4,5 In ECs, an autophagic response can be
initiated by different stress stimuli.6–8 It is noted that the
cellular outcome following autophagy induction in ECs varies
depending on the nature of stimuli and specific experimental
settings.6,7,9,10 Moreover, there is evidence showing that
autophagy may also be involved in modulating other EC
functions such as angiogenesis and cellular
senescence.11,12 Therefore, understanding the regulatory
mechanisms of autophagy in ECs will be important for
discovery of strategies to protect normal endothelial func-
tions. Recently, Guo et al. provided some evidence indicating
that the autophagic process in EC might be affected by shear
stress.13 This argument, however, was only based on
observations of changed expression levels of LC3 and
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beclin-1; further experimental evidence is needed to confirm
such an effect of shear stress on autophagy. More impor-
tantly, the mechanisms underlying this phenomenon are not
understood. Different signaling pathways may be involved in
modulating autophagy in ECs.14–16 For example, inhibition of
the mTOR (mammalian target of rapamycin) pathway by
rapamycin-induced endothelial autophagy and prevented
energy stress-triggered cell damage.16 There is also evi-
dence indicating a potential role of Sirt1.14 Moreover,
accumulating evidence has suggested that reactive oxygen
species (ROS) are closely implicated in modulating autop-
hagic responses via complex interactions with other
autophagy-related factors.15 Despite of these results, the
signaling mechanisms of shear stress-regulated autophagy
in EC remain to be defined. Hence, here we aim to delineate
the impacts and underlying mechanisms of shear stress on
autophagy in human vascular ECs.

Results

Laminar flow promotes autophagic response in ECs. To
determine the effects of different types of shear stress on
autophagic response in ECs, we treated human umbilical
vein ECs (HUVECs) with laminar flow (12 or 20 dyn/cm2),
oscillatory flow (±5 dyn/cm2 at 1 Hz), or low-magnitude flow
(4 dyn/cm2). As shown in Figure 1a, application of laminar
flow induced realignment of the actin fibers along the
direction of flow. Using LC3 immunofluorescence, we showed
that laminar flow significantly increased the abundance of
LC3 puncta (Figures 1a–c), indicating an increased level of
autophagy. The flow-induced autophagic response was
comparable to that induced by amino-acid starvation
(Supplementary Figure I and Figure 2a), which was used to
mimic a positive control response. It should be noted that
shear stress- and amino-acid starvation-induced responses
involve distinct mechanisms (see below). To exclude the
possibility that laminar flow-induced autophagy is just a
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Figure 1 Laminar shear stress enhanced autophagic response in cultured endothelial cells. (a) Fluorescence images showing shear stress (20 dyn/cm2 for 8 h)-induced:
(from top to bottom) realignment of actin fibers in human umbilical vein endothelial cells (HUVECs); accumulation of LC3 puncta (arrows) in HUVECs (asterisks indicate punctate
LC3- cells); puncta accumulation of GFP-LC3 (arrows) in transfected telomerase-immortalized human microvascular endothelium cell (TIME) cells; acidification of autolysosomes
detected with acridine orange staining (red fluorescence represents acidic vesicles); flow cessation decreased the abundance of GFP-LC3 in shear-adapted TIME cells.
(b) The average number of LC3 puncta per cell and proportion of punctate LC3+ cells under static (S) and laminar flow (F) conditions. (c) Comparison of the proportion of cells
containing different numbers of LC3 puncta under static and flow conditions. (d) Time course of laminar flow-induced autophagic response in HUVECs. (e) Effects of flow
cessation (FC) on punctate LC3 in cells adapted to flow for 8 h. (f) Semi-quantitative data showing the effect of laminar flow on GFP-LC3 puncta accumulation in transfected TIME
cells. (g) LC3 immunofluorescence showing that low-magnitude flow (LowF; 4 dyn/cm2) or oscillatory flow (OF; ± 5 dyn/cm2 at 1 Hz) did not have the same effect as laminar
flow (12 dyn/cm2) on autophagy induction. Data are mean± standard error of the mean (S.E.M.). *Po0.05, unpaired t-test, n= 3–5. LF, laminar flow
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transient adaptive response of static cells, we performed a
time-course experiment and showed that the autophagic
response was maintained at a stable level up to 24 h
(Figure 1d). To exclude any artifacts introduced by LC3
immunostaining, we expressed ectopic GFP-LC3 in the
human microvascular endothelium cell line TIME (telomer-
ase-immortalized human microvascular endothelium) cells
and then treated the cells with laminar flow. We demonstrated
that flow induced similar GFP-LC3 puncta accumulation in
TIME cells (Figures 1a and f). Then we performed a reversal
experiment by withdrawing shear stimulus from flow-adapted
cells. We showed that flow cessation for 4 h significantly
decreased the abundance of LC3 puncta (Figures 1a and e).
We also examined the time course of the effect of flow
cessation on the autophagic response in HUVECs. We found
that the abundance of LC3 puncta started to decline from 2 h
after flow cessation, and returned to the basal level at 8 h
(Supplementary Figure II). To determine whether pathological
types of shear stress induced by oscillatory or low-magnitude
flow had similar effects on endothelial autophagy, we treated
HUVECs with oscillatory flow (by changing the direction of
flow every half second with an amplitude of 5 dyn/cm2, i.e.,
±5 dyn/cm2 at 1 Hz) and low-magnitude flow (4 dyn/cm2),
and demonstrated that these types of flow failed to reproduce
the stimulating effect of laminar flow on autophagy (Figure 1g
and Supplementary Figure III).
Autophagic process results in acidification of autolyso-

somes and this can be monitored by acridine orange
staining.17 We stained the cells with acridine orange and
showed that laminar flow increased the amount of red
fluorescence (Figure 1a). Next, we performed western blots
for LC3. As shown in Figure 2a, flow significantly increased
both of LC3-II and the amount of total LC3. In contrast, there
was not a significant change in the protein level of p62
(Figure 2b). There is evidence showing that autophagy-
inducing stimuli, especially oxidative stress, can upregulate

the expression of p62.18,19 Therefore, we measured the
mRNA levels of p62. We found that shear stress enhanced
the p62 mRNA expression by 2.9±0.9-fold (Po0.05). Hence,
the unchanged p62 protein level after shear stress stimulation
may indeed indicate an enhancement in the p62 protein
clearance, supporting an increased autophagic flux rate. We
also measured the mRNA levels of LC3A, beclin-1, and Atg5,
which were all significantly upregulated by flow (Figure 2c).
To verify that a basal level of autophagic flux was still present in
the static cells used, we treated cells with the autophagy
inhibitor chloroquine (50 μM), and demonstrated that chlor-
oquine induced significant accumulation of LC3 as shown in
Supplementary Figure IV. To further confirm that the increase
in LC3 puncta accumulation induced by shear stress was not
due to impaired autophagic flux, we pretreated the cells with
bafilomycin A1, an inhibitor of the late phase of autophagy.
We showed that bafilomycin alone increased LC3 puncta,
whereas application of laminar flow also exhibited
an increasing effect on this response in the presence of
bafilomycin (Supplementary Figure V).

Sirt1 is essential in mediating shear stress-induced
autophagy in EC. The mTOR-ULK pathway is the master
regulator of autophagy. We therefore examined whether
shear stress-induced autophagy involved the mTOR-ULK
pathway. Western blot analysis showed that under current
experimental conditions, laminar flow had no significant
impacts on the phosphorylation levels of mTOR or ULK1
(Figure 3a and Supplementary Figure VI), suggesting
that this pathway was unlikely to have a major role. As
emerging evidence has suggested that the nicotinamide
adenine dinucleotide (NAD+)-dependent protein deacetylase
Sirt1 may have an important role in modulating autophagy.
To examine this possibility, we measured Sirt1 expression in
ECs. As shown in Figures 3a and b and Supplementary
Figure VI, laminar flow significantly increased Sirt1 mRNA
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and protein levels. We also showed that flow significantly
enhanced the Sirt1 promoter activity (Figure 3c), indicating
that shear stress might directly regulate Sirt1
transcription in EC.
To clarify whether Sirt1 is necessary and sufficient in

mediating the autophagic response in EC, we first treated the
cells with the Sirt1-activating compound resveratrol, and
demonstrated that resveratrol upregulated Sirt1 expression
and triggered autophagy in EC (Figure 3d). Next, we
performed Sirt1 gain-of-function experiments by overexpres-
sing the wild-type human Sirt1; we found that Sirt1 over-
expression significantly increased the level of LC3-II
(3.9± 0.3-fold, Po0.05, n=3) and accumulation of LC3
puncta (Figures 3e and f). In contrast, expression of the
deacetylase-dead mutant Sirt1-H363Y had minor effects
(Figures 3e and f). Moreover, we showed that the wild-type
Sirt1, but not the H363Y mutant, significantly upregulated the
expressions of Atg5, Atg7, Atg12, beclin-1, Bnip3, and LC3A
(Figure 3g). To further confirm the role of Sirt1, we pretreated
the cells with the specific Sirt1 inhibitor EX-527, and showed
that EX-527 significantly blunted the stimulatory effect of flow
on LC3 puncta accumulation (Figure 3h). EX-527 also
suppressed flow-induced upregulation of beclin-1, Atg5, and
LC3A (Figure 3i). Finally, we performed Sirt1 gene silencing
experiments using siRNA as described before,20 and showed
that knockdown of Sirt1 significantly inhibited the stimulatory
effect of flow on LC3 puncta accumulation (Figure 3j).

Flow-induced autophagy is redox dependent. It is well
documented that shear stress regulates ROS production in
EC, and redox-dependent mechanisms have important roles
in mediating shear stress-induced responses,21 we next
tested whether flow-induced autophagy was also related to
redox regulation. We first measured the ROS production
using the Amplex Red Hydrogen Peroxide Assay. We showed
that laminar flow significantly increased the ROS production
(Figure 4a). To confirm this result, we also performed DCFH-
DA fluorescence. Similarly, we found that cells under flow
condition displayed a higher intracellular ROS level than cells
under static condition (Supplementary Figure VII). Numerous
studies have demonstrated that NADPH oxidase is a major
source of ROS in ECs.22 To confirm the source of ROS under
current experimental settings, we treated the cells with
various enzyme blockers. We showed that flow-induced
ROS production was blocked by the NADPH oxidase
inhibitors diphenyleneiodonium (DPI, 10 μM) and diapocynin
(100 μM, purchased from Sigma; Figure 4a). In contrast, the
nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester
(100 μM) or the mitochondrial respiration chain inhibitor
rotenone (10 μM) showed no effects on endothelial ROS
generation (data not shown), which were consistent with our

previous observations.23 Then we showed that pretreatment
of the cells with EUK-134, a synthetic superoxide dismutase/
catalase mimetic, significantly suppressed flow-induced
autophagic response (Figure 4b). In cells maintained under
flow condition, treatment with EUK-134 markedly decreased
the expression levels of beclin-1, Atg5, and LC3A (Figure 4c),
whereas EUK-134 had no significant effects in cells main-
tained under static condition (Figure 4d). Moreover, we
showed that EUK-134 significantly blocked the upregulating
effects of flow on Sirt1 and LC3-II (Figure 4e). To confirm the
effects of EUK-134, we also pretreated the cells with another
antioxidant N-acetyl cysteine (NAC, 1mM). We showed that
NAC produced similar inhibitory effects as EUK-134 on flow-
induced autophagic responses (Figures 4b–e).

Sirt1 is a redox-sensitive regulator of autophagy in
ECs. Autophagy is regulated by intracellular redox status,
whereas the mechanistic links between ROS and autophagy
are poorly understood. Given the pivotal role of Sirt1 in
maintaining cellular homeostasis during oxidative stress,24

we then examined whether Sirt1 could function as a redox-
sensitive transducer. An oxidative condition was induced by
treating cells with exogenous H2O2. Because the effects of
H2O2 on Sirt1 expression appeared to be variable in the
literature, we first performed a dose–response analysis on
H2O2 effects. We found that at 300 μM, H2O2 significantly
increased the expression level of Sirt1 in EC (Figure 5a).
Using this concentration, we further showed that H2O2 also
increased both of the mRNA and protein levels of Sirt1
(Figures 5a and c). In contrast, H2O2 treatment had no effects
on the phosphorylation levels of mTOR or ULK1 (Figure 5d).
We next demonstrated that treatment with H2O2 increased
EC autophagy as measured by LC3 western blot (Figure 5e).
Moreover, we demonstrated that H2O2 increased the expres-
sion levels of beclin-1, Atg5, and LC3A, and these actions
were all abrogated by inhibiting Sirt1 with EX-527 (Figure 5f).
To further establish the role of Sirt1 in redox-dependent
autophagy, we transfected the cells with Sirt1 siRNA and
showed that H2O2-induced accumulation of LC3-II was
abolished by Sirt1 siRNA (Figure 5g).

Sirt1-dependent activation of FoxO1 is critical in mediat-
ing shear-induced autophagy. FoxO transcription factors
are important downstream effectors of Sirt1. To clarify
whether FoxO is involved in shear- and Sirt1-mediated
autophagy in ECs, we first measured the responsiveness of
FoxO1 to shear stress and Sirt1. As shown in Figure 6a, we
found that both of flow and Sirt1 overexpression induced
FoxO1 nuclear translocation. Treatment of the cells with
resveratrol also produced similar effects (data not shown).
Then we examined how shear stress and Sirt1 regulated

Figure 3 Sirt1 was critical in mediating shear stress-induced autophagy in endothelial cells. (a) Effects of laminar flow on the phosphorylation levels of mTOR and ULK1, and
the expression level of Sirt1 (representative images from four experiments). (b) Time course of the effect of laminar flow on the mRNA expression of Sirt1. (c) Effect of laminar flow
on the promoter activity of human Sirt1 as measured by luciferase reporter assay. (d) Effects of the Sirt1 activator resveratrol (10 μM) on the protein levels of Sirt1 and LC3.
(e) Effects of overexpression of Flag-tagged wild-type Sirt1 and Sirt1-H363Y mutant on LC3 expression. (f) Effects of Sirt1 and Sirt1-H363Y overexpression on accumulation of
LC3 puncta. (g) Effects of wild-type Sirt1 and Sirt1-H363Y overexpression on the mRNA expression levels of various autophagy-related genes as indicated. (h) Effects of the
Sirt1 inhibitor EX-527 (10 μM) on flow-induced autophagy. (i) Effects of EX-527 on flow-induced upregulation of Atg5, beclin-1, and LC3A. (j) Effects of Sirt1 gene silencing with
siRNA on flow-induced LC3 puncta accumulation. Data are mean± S.E.M. *Po0.05, unpaired t-test or one-way analysis of variance, n= 3–4. Res, resveratrol
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FoxO1 acetylation. We showed that flow significantly
decreased the acetylation level of FoxO1, indicating an
increased interaction between Sirt1 and FoxO1 with shear
stress stimulation; and this effect was inhibited by cotreat-
ment with EX-527 (Figure 6b and Supplementary Figure VIII).
Moreover, FoxO1 acetylation level was also reduced
by resveratrol and H2O2 (Figure 6b and Supplementary
Figure VIII).
Next, we overexpressed the wild-type FoxO1 and the

constitutively active FoxO1-AAA mutant. Overexpression of
both forms of FoxO1 increased the expression levels of beclin-1,
Atg5, LC3A, and glutathione peroxidase-1 (a known target
gene of FoxO1), while these effects were more prominent in
the presence of resveratrol (Figure 6c). The little effects of
wild-type FoxO1 in the absence of resveratrol may reflect the
fact that FoxO1 activity is coordinately regulated by both
phosphorylation and acetylation.25 Moreover, expression of
FoxO1-AAA significantly increased the level of LC3-II and total
LC3 in the presence of resveratrol (Figure 6d). Because
FoxO3a is also expressed in EC and may have overlapping

roles as FoxO1, we also tested the effects of FoxO3a.
Nonetheless, we found that overexpression of FoxO3a pro-
duced non-significant effects in contrast to FoxO1, either in the
absence or presence of resveratrol (data not shown). Then we
tested effects of three different FoxO1 siRNAs; we found that
siRNA #2 and #3 showed high gene silencing efficacies
(Supplementary Figure IX). Using siRNA #2, we demonstrated
that knocking down FoxO1 expression significantly inhibited the
stimulatory effect of flow on autophagy (Figure 6e). To exclude
possible off target actions of the siRNA, we repeated the
experiments with siRNA #3, and confirmed that these siRNAs
had similar effects (Figure 6e). Moreover, we demonstrated that
FoxO1 gene silencing suppressed the effects of Sirt1 over-
expression on the expression of autophagic genes beclin-1,
Atg5, and LC3A (Figure 6f).

Shear stress induces deacetylation of Atg5 and Atg7.
There is evidence suggesting that Sirt1 may regulate
autophagy through deacetylation of Atg proteins.26 Therefore,
we performed immunoprecipitation and western blot
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experiments, and showed that treatment with flow indeed
decreased the acetylation levels of Atg5 and Atg7
(Figure 6g).

Flow-induced autophagy was cytoprotective in EC. To
understand the functional importance of autophagy in EC, we
pretreated flow-adapted cells with the autophagy inhibitor
3-methyladenine (3-MA) and the Sirt1 inhibitor EX-527, and
induced acute cellular injuries using a high concentration of
H2O2 (600 μM for 2 h). We showed that 3-MA and EX-527
aggravated oxidant-induced cell death (Figure 7a). Next, we
compared the H2O2-induced cell death in static-adapted and
flow-adapted (20 dyn/cm2 for 8 h) cells. We found that flow
significantly decreased H2O2-induced cell death, an effect
that was diminished by 3-MA cotreatment (Figure 7b).
To confirm that the cytoprotective effect of flow observed in
Figure 7b was associated with changes in the level of
autophagy, we detected LC3 immunofluorescence under
these treatment conditions. We showed that the short-term
ROS challenge did not trigger autophagic responses,
whereas flow-adapted cells showed increased autophagy.
Moreover, flow-induced autophagy was blocked by 3-MA
(Supplementary Figure X). To clarify whether induction of
autophagy per se in the absence of shear stress was also
cytoprotective, we induced autophagy by amino-acid starva-
tion and demonstrated that autophagy induction suppressed

H2O2-induced cell death, which was abolished by 3-MA
(Figure 7c). Moreover, we knocked down Atg5 expression
with two different siRNA sequences (Supplementary Figure
XI). We showed that Atg5 siRNAs partially attenuated the
cytoprotective effect of resveratrol on cell apoptosis induced
by serum deprivation (Figure 7d). In addition, as shown in
Figure 7e, we confirmed that Atg5 gene silencing also
partially reversed the cytoprotective effect of shear stress
using staurosporine as an apoptosis inducer. These results
were consistent with previous studies showing that autop-
hagy protected cells from both necrotic 27,28 and apoptotic
cell death.29–31

Discussion

Here we have provided evidence suggesting that shear stress
induced by laminar flow can promote autophagy in vascular
ECs. This response was unlikely to be due to reduced
autophagic flux, as evidenced by the similar effect of flow in
the presence of bafilomycin and the unchanged p62 level.
Studies using loss-of-function models have suggested that a
normal autophagic process is important for maintaining
cellular homeostasis in myocardium, skeletal muscle, and
neurons.32–34 In vascular EC, disruption of autophagy by
genetic manipulation of beclin-1 or LC3B had no effect on EC
phenotype under normal conditions; but autophagy-deficient
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ECs displayed aberrant cellular functions under various stress
conditions.35,36 In addition, we found that flow-conditioned
cells are more resistant to oxidant-induced cell death, and this
beneficial effect was abolished after pharmacological and
genetic inhibition of autophagy. This observation is consistent
with previous studies showing that under certain
circumstances, inhibition of the autophagic process in EC
increased the cell sensitivity to various stress stimuli,6,10,29,37

whereas induction of autophagy in EC had cytoprotective
actions.30,31,38 Given the well-documented protective effects
of laminar blood flow on normal endothelial functions, taken
together, our results suggest that induction of autophagy may
represent a novel mechanism of the vascular-protective
actions of laminar flow.
Mammalian Sirt1 has a pivotal role in modulating stress

responses in mammalian cells.39 Emerging evidence has
suggested that Sirt1 may have an important role in modulating
cell autophagy.26,40–42 In cultured cardiac myocytes, nutrient
deprivation upregulated expression of Sirt1 and induced
autophagy, which was attenuated by Sirt1 inhibition.40 More-
over, in kidney proximal tubular cells, inhibiting Sirt1 function
significantly inhibited the autophagic responses induced by
calorie restriction.41 Our observation that flow upregulated
Sirt1 expression in EC was consistent with those reported by
others.43,44 Using both gain- and loss-of-function experiments,
we provided evidence supporting that Sirt1-mediated FoxO1
activation was likely to have a major role in flow-induced
autophagy in vascular EC. In addition, we found that flow-
induced Sirt1 upregulation and autophagy were accompanied
by reductions in the acetylation level of Atg5 and Atg7, an
observation that was consistent with that obtained in HeLa
cells.26 Hence, we could not exclude that Sirt1-mediated
autophagy in EC might involve multiple mechanisms.
We showed that flow increased ROS production in EC,

which was consistent with previous results.45–49 In addition,
antioxidant treatment prevented flow-induced autophagy, and
exogenous H2O2 mimicked the effects of flow, consistent
with previous studies in neurons.50 It is clear that autophagy is
regulated by intracellular redox status;6,51 however, the
mechanistic links between ROS and autophagy are still poorly
understood.52,53 Our data have shed a light on this question.
We found that an oxidative condition enhanced Sirt1 expres-
sion, whereas blockade of the Sirt1 function suppressed ROS-
induced autophagic responses. The regulatory effects of ROS
onSirt1 expression appear to be divergent. Both of stimulatory
and inhibitory effects of ROS on Sirt1 at the transcriptional
level have been reported in different cells.54–56 Moreover, ROS
may also regulate Sirt1 expression at the posttranscriptional
and posttranslational levels.57,58 It appears that the final
outcome is in a highly cell- and context-dependent manner.
Our observation is supported by several studies showing
that ROS may upregulate the expression of Sirt1.54,55,59,60

The molecular mechanisms of ROS-dependent regulation of
Sirt1 expression are not entirely understood. There is
evidence showing that H2O2 treatment increases the Sirt1
promoter activity, indicating an important role of redox-
dependent regulation of the Sirt1 gene transcription.61 Like-
wise, we observed that shear stress enhanced the Sirt1
promoter activity in EC. We suggest that Sirt1 may act as an

intracellular redox sensor that mediates ROS-triggered
autophagy response in EC.
Functions of FoxO are enhanced by deacetylation.25 We

demonstrated that flow decreased the acetylation level of
FoxO1 in EC; likewise, we showed that overexpression of Sirt1
induced nuclear localization of FoxO1 in EC. FoxO regulates
the expression of multiple autophagy-related genes, including
LC3, Atg5, Atg8, Atg12, Bnip3, and beclin-1.41,42,62 Moreover,
there is evidence showing that FoxO can modulate the
transcription of some autophagic genes by directly binding to
the promoter region.41,42 Our data suggest that flow may
enhance FoxO functions in EC via upregulation of Sirt1,
whereas FoxO activation in turn promotes the autophagic
response. Indeed, important roles of the Sirt1-FoxO axis in
modulating autophagy have been documented in previous
studies in cardiomyocytes and skeletal muscle cells,40,42,63

although the results appear controversial. It is noted that the
mechanisms by which FoxO modulates autophagy appear to
be complex,40,64 whereas transcriptional regulation of autop-
hagic genes may not be able to fully explain the effect of FoxO.
Therefore, more studies are needed to further elucidate the
mechanisms by which the Sirt1/FoxO pathway regulates
autophagy in EC.
In summary, we have presented evidence showing that

laminar flow-induced shear stress promotes autophagic
responses in ECs via a redox- and Sirt1-dependent mechan-
ism. Shear stress-induced autophagy in ECs may represent a
novel mechanism by which laminar blood flow produces its
vascular-protective actions.

Materials and Methods
Reagents. Resveratrol, EX-527, and 3-MA were purchased from Sigma
(St. Louis, MO, USA). Euk-134 was from Cayman Chemicals (Ann Arbor, MI,
USA). Plasmids expressing wild-type Sirt1 (pFlag-Sirt1) and the deacetylase-dead
mutant (pFlag-Sirt1-H363Y),39 wild-type FoxO1 (pFlag-FoxO1) and the constitutively
active form of FoxO1 (pFlag- FoxO1-AAA)65 were obtained from Addgene
(Cambridge, MA, USA). The plasmid expressing GFP-tagged LC3 (pSelect-GFP-
LC3) was purchased from InvivoGen (San Diego, CA, USA). Sequences of siRNA
targeting human Sirt1 and FoxO1 were synthesized by GenePharma (Shanghai,
China). A non-targeting siRNA (5′-UUCUCCGAACGUGUCACGUTT-3′) was used
as control.

Cell culture. HUVECs and telomerase-immortalized human microvascular
endothelium cell line (TIME cells) were purchased from the American Type Culture
Collection (Rockville, MD, USA). Cells were maintained in complete ECM medium
(Catalog #1001, ScienCell, Carlsbad, CA, USA) supplemented with 5% FBS, the
Endothelial Cell Growth Supplement, penicillin (100 U/ml), and streptomycin
(100 μg/ml) as described.66

In vitro flow simulation. Cells were seeded on glass slides coated with
collagen and cultured in a Streamer parallel-plate flow chamber (FlexCell,
Burlington, NC, USA) system. The flow rate and type were controlled by a
programmable flow controller device (Osci-Flow, FlexCell).

Immunofluorescence and confocal microscopy. Cells cultured on
Lab-Tek II chamber slides were fixed in 4% paraformaldehyde, permeabilized with
0.5% Triton X-100 for 15 min, and blocked with 2% BSA for 30 min. Cells were then
incubated with anti-LC3 antibody (Cell Signaling, Beverley, MA, USA) overnight
followed by FITC-conjugated anti-IgG (Jackson ImmunoResearch Laboratories,
West Grove, PA, USA) at room temperature for 1 h. DAPI was used for counter-
staining. Images were taken with a laser-scanning confocal microscope (Model
LSM710, Zeiss, Jena, Germany). LC3 morphology was assessed by an
independent viewer in a blind manner. For each independent experiment, 5–10
random high-power fields (at least 50 cells in total) were surveyed. Cells were
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arbitrarily categorized into punctate LC3+ and LC3- groups (as guidance, LC3
punctation induced by amino-acid starvation was used as a positive control). We
also counted the average number of LC3 puncta in individual cells.

Western blot and immunoprecipitation. Cells were homogenized in cold
lysis buffer (50 mM Tris, pH 7.5, 2 mM EDTA, 100 mM NaCl, 50 mM NaF, 1% Triton
X-100, 1 mM Na3VO4, and 40 mM β-glycerol phosphate) containing a protease
inhibitor cocktail (Roche, Mannheim, Germany). Total proteins were separated
by SDS-PAGE and electro-blotted onto nitrocellulose or PVDF membranes.
After blocking with 5% non-fat milk, membranes were probed using various primary
antibodies at 4 °C for overnight, followed by 2 h of incubation with horseradish
peroxidase-conjugated secondary antibodies at room temperature. The membranes
were developed with an enhanced chemiluminescence reagent (Millipore,
Temecula, CA, USA). The following antibodies were used: Sirt1, LC3B, phospho-
and total ULK1, phospho- and total mTOR, Flag tag, acetylated-lysine (all from Cell
Signaling), and FoxO1A (from Abcam, Cambridge, UK). For immunoprecipitation,
cell lysates were precleared and incubated with 2 μg of capture antibody and 20 μl
of 50% protein A/G-agarose bead slurry (Pierce Biotechnology, Rockford, IL, USA)
overnight at 4 °C with gentle rotation. The beads were washed and boiled in 2 ×
Laemmli buffer. The densitometry analysis was performed with Image-J software
(NIH, Bethesda, MD, USA). The specificity of antibodies used for immunoprecipita-
tion was routinely validated by running negative controls using non-immune IgG
using the same conditions as in formal experiments.

Quantitative real-time PCR. Total RNA was isolated with TRIzol reagent
(Life Technologies, Carlsbad, CA, USA) and reverse transcribed using random
hexamers and the PrimeScript RT Kit from TaKaRa (Dalian, China). Quantitative
real-time PCR was performed using predesigned Taqman probe-primer sets and the
Gene Expression Master Mix in a Prism 7500 system (all from Applied Biosystems,
Foster City, CA, USA). 18 S was used as the house keeping gene. The 2−ΔΔCt

method was used to assess the relative mRNA expression level.

Sirt1 promoter reporter assay. The human Sirt1 promoter sequence
(−1616 to +5 bp) with 5’ SacI and 3’ HindIII sites was obtained by DNA synthesis
(BioSune, Shanghai, China) and cloned into pGL3 vector. Cells were transfected
with Lipofectamine LTX Reagent (Life Technologies), and the reporter activity was
measured with a Luciferase Assay Kit (Promega, Madison, WI, USA).

Intracellular ROS measurement. ROS production was measured with an
Amplex Red Hydrogen Peroxide Assay Kit (Life Technologies) as described in our
previous studies.67 In addition, DCFH-DA (Life Technologies) fluorescence was also
used to measure intracellular ROS levels. Briefly, cells were incubated with 5 μM
DCFH-DA at 37 °C for 20 min in Hanks' balanced salt solution. After staining, cells
were rinsed and photographed with a fluorescent microscope (Nikon Eclipse 80i,
Nikon, Melville, NY, USA). The fluorescent intensity was measured with Image-Pro
Plus software (Media Cybernetics, Atlanta, GA, USA).

Plasmid and siRNA transfection. Cells were subcultured into 24-well
plates 24 h before transfection and maintained in antibiotic-free Opti-MEM
medium (Life Technologies). Plasmid transfection was performed using 500 ng
DNA and the Lipofectamine 2000 reagent (Life Technologies). Transfection of siRNA
was performed at 30 nM of final concentration using the Lipofectamine RNAiMAX
reagent (Life Technologies). After 6 h of treatment, the cells were changed to fresh
complete culture medium.

Cell viability assays. Cell viability was assessed with the tetrazolium-based
(MTS) assay using CellTiter 96 Aqueous kit (from Promega) according to the
manufacturer’s direction. Apoptosis was assessed by a Caspase-Glo caspase3/7
activity assay kit (Promega).

Statistical analysis. Data are presented as mean± standard error of the
mean (S.E.M.). Data analysis was performed with unpaired t-test or one-way
analysis of variance followed by post-hoc Tukey's test as appropriate. A P value of
o0.05 was considered as statistically significant.
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