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Signalling by potassium: another second messenger to add 
to the list?
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Cytosolic potassium homeostasis and the ability of various 
tissues to retain potassium under stress have emerged 
as important for salinity tolerance in plants, but recent 
evidence suggests that stress-induced K+ efflux may be 
equally important in mediating growth and development 
under hostile conditions. Here, the evidence is assessed, 
and the already-proposed concept of potassium efflux 
being a switch between metabolic and defence responses 
is developed. A new model is put forward which suggests 
signalling roles for cytosolic K+ changes, alongside well-
known cytosolic Ca2+ and ROS ‘signatures’.

Over the past decade, cytosolic potassium homeostasis and the 
ability of various plant tissues to retain potassium under stress 
conditions have emerged as novel and essential mechanisms 
of salinity stress tolerance in plants (reviewed by Shabala and 
Pottosin, 2014; Shabala et al., 2016a). Reported initially for barley 
roots (Chen et al., 2005, 2007a,b), a positive correlation between 
the overall salinity stress tolerance and the ability of root tissue to 
retain K+ was later expanded to other plant species such as wheat 
(Cuin et al., 2008, 2009), lucerne (Smethurst et al., 2008; Guo et al., 
2016), pepper (Bojorquez-Quintal et al., 2016), cotton (Wang et 
al., 2016b), cucumber (Redwan et al., 2016), and Arabidopsis (Sun 
et al., 2015). This trait also explains the inter-specific variability 
in salinity stress tolerance (poplar – Sun et al., 2009; mangroves –  
Lu et al., 2013; Brassica – Chakraborty et al., 2016), and has 
recently emerged as a novel (and essentially overlooked) mecha-
nism of salinity tissue tolerance in shoots (Wu et al., 2013, 2015). 
Differential K+ retention ability also confers differential salinity 
stress tolerance between halophytes and glycophytes (Percey et 
al., 2016).

Electrophysiological and genetic studies have revealed that 
K+-selective, depolarization-activating outward-rectifying K+ 
channels (GORK channels in Arabidopsis) represent one of 
the major pathways of salinity-induced K+ efflux from plant 
cells (Demidchik, 2014; Pottosin and Dobrovynskaya, 2014; 
Shabala et al., 2016a). The GORK channel belongs to the 

so-called Shaker family of transporters. These are multimeric 
proteins with the trans-membrane core, forming the permea-
tion pathway, composed of four subunits (Very et al., 2014). 
Similar to all K+-selective channels, the GORK channel bears 
a specific signature TxGYG (Thr-X-Gly-Tyr-Gly) in the pore 
loops (Sharma et al., 2013) that underlies its explicit K+ selec-
tivity. The GORK channel is strongly voltage-gated (Very et 
al., 2014) and activated upon membrane depolarization and 
by reactive oxygen species (ROS) (Demidchik et al., 2010).

The essential nature of the K+ retention trait has moved 
well beyond salinity stress tolerance. For example, the capac-
ity to maintain high cytosolic [K+] was shown to be critical 
for heavy metal tolerance (Murphy and Taiz, 1997). The 
recent paper from our laboratory has shown that Arabidopsis 
gork1-1 mutants lacking functional K+ efflux channels possess 
higher hypoxia stress tolerance (Wang et al., 2016a). Earlier, a 
similar conclusion was reached for oxidative stress tolerance 
(Demidchik et al., 2010). Thus, the ability of plant tissues to 
retain K+ seems to be a common feature of all stress-tolerant 
genotypes and species.

GORK channel puzzles

If  potassium retention is so essential for stress tolerance, 
why do plants have GORK channels? Wouldn’t it be more 
logical to eliminate them over the course of evolution? Can 
we ‘assist’ plants in doing this by knocking them out? Will 
it result in a stress-tolerant phenotype? Before these ques-
tions can be answered, GORK functional expression and 
regulation patterns should be considered at the tissue- and 
cell-specific level.

To start with, GORK channels are expressed not only in 
the root epidermis but also in guard cells (hence the name 
GORK – Guard Cell Outward Rectifying K+ channels; Very 
et al., 2014) and play an important role in stomatal closure. 
In shoots, drought stress can cause up-regulation of GORK 
transcripts (Becker et  al., 2003), and disruption of GORK 
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this and avoid the competition for energy between meta-
bolic and defence responses is to shut down cell metabolism. 
Decreasing the cytosolic [K+] to sub-threshold levels will 
inactivate numerous metabolic reactions, allowing a redistri-
bution of the ATP pool towards defence responses (Box 1).

Can plants afford such a mechanism? The answer is yes, 
assuming the process is tightly controlled (see suggested 
model in Box 2) and several restrictions are in place. To start 
with, such rapid K+ efflux from the root should be confined to 
a relatively small root region, thereby ensuring that the over-
all root potassium nutritional status is not compromised. The 
root apex seems to be the most likely candidate for such a role 
(Box 2). First, cells in this zone are very active metabolically 
and thus best suited for the role of such a switch. Second, 
these cells show much higher sensitivity to salt, having an 
overall rate of K+ loss 10 to 30 times higher compared with 
mature zone cells (Shabala et al., 2016b). Third, root apical 
cells have less negative membrane potential (MP) compared 
with cells in the mature zone, reflecting lower H+-ATPase 
activity in this region (Shabala et al., 2016b), and thus should 
rely more on K+ efflux as a means of restoring membrane 
potential (MP). Fourth, the xylem tissue in this region is 
underdeveloped so the changes in the radial K+ fluxes will 
have no implications for long-distance K+ transport to the 
shoot. Finally, the overall volume of cells in the apex is much 
smaller compared with the bulk of the root, made of mature 
root cells; thus, such signalling by K+ loss will have no major 
implications for overall K+ nutrition.

The timing of such signalling should be also considered. 
Given the connection noted above between potassium and 
PCD events, a prolonged decrease in the cytosolic K+ level 
may be detrimental to cell viability. Hence, signalling via K+ 
efflux should only be transient (Box 2) and kept under tight 
control. So, is it the right time to add transient cytosolic [K+] 
spikes to the list with Ca2+ and ROS, messengers that signal 
and shape plant adaptive stress responses?
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