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Summary

1. The size spectrum of an ecological community characterizes how a property, such as abundance or biomass,

varies with body size. Size spectra are often used as ecosystem indicators ofmarine systems. They have been fitted

to data from various sources, including groundfish trawl surveys, visual surveys of fish in kelp forests and coral

reefs, sediment samples of benthic invertebrates and satellite remote sensing of chlorophyll.

2. Over the past decades, several methods have been used to fit size spectra to data. We document eight such

methods, demonstrating their commonalities and differences. Seven methods use linear regression (of which six

require binning of data), while the eighth uses maximum likelihood estimation.We test the accuracy of themeth-

ods on simulated data.

3. We demonstrate that estimated size-spectrum slopes are not always comparable between the seven regression-

basedmethods because suchmethods are not estimating the same parameter.We find that four of the eight tested

methods can sometimes give reasonably accurate estimates of the exponent of the individual size distribution

(which is related to the slope of the size spectrum). However, sensitivity analyses find that maximum likelihood

estimation is the only method that is consistently accurate, and the only one that yields reliable confidence inter-

vals for the exponent.

4. We therefore recommend the use of maximum likelihood estimation when fitting size spectra. To facilitate

this, we provide documented R code for fitting and plotting results. This should provide consistency in future

studies and improve the quality of any resulting advice to ecosystem managers. In particular, the calculation of

reliable confidence intervals will allow proper consideration of uncertainty whenmakingmanagement decisions.

Key-words: abundance size spectrum, biomass size spectrum, bounded power-law distribution,

ecosystem approach to fisheries, ecosystem indicators, individual size distribution, truncated Pareto

distribution

Introduction

For aquatic ecosystems, size-based indicators are tools for

understanding food-web structure and enabling cost-effective

monitoring (Shin et al. 2005). One indicator, the size spectrum

(Sheldon & Parsons 1967; Sheldon, Prakash & Sutcliffe Jr.

1972), has been adopted by several fields in ecology as a

method of quantifying the distribution of body size, or other

biological or ecological traits, across a community. Size spectra

are commonly used to examine fishing impacts at the commu-

nity or ecosystem level (Rice & Gislason 1996; Bianchi et al.

2000; Shin et al. 2005; Law, Plank & Kolding 2012; Jacobsen,

Gislason & Andersen 2014; Thorpe et al. 2015) and have been

more broadly used in analyses of macroecological patterns

(Jennings et al. 2008; Reuman et al. 2008) and dynamical food

web models (Blanchard et al. 2009; Hartvig, Andersen &

Beyer 2011). Despite the widespread use of the size spectrum,

its success as a general tool in marine and terrestrial ecology

has been hampered by confusion surrounding its definition

(White et al. 2007) and by methodological inconsistencies in

how it is fitted to data (Vidondo et al. 1997).

For a fish community, Rice & Gislason (1996) define size

spectra as generally being ‘the variation in a community prop-

erty across the size range of fish in the community’. This allows

for different types of spectra, such as the traditional biomass

size spectrum (Boudreau & Dickie 1992) the abundance size

spectrum (Rice & Gislason 1996) and the diversity size spec-

trum (Reuman et al. 2014).

White et al. (2007) give a more specific definition of a size

spectrum as the relationship between the number of
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individuals in a body-size class and the average size of that

body-size class. Typically, the pattern is linear on logarithmic

axes and is quantified by the slope, which ideally should be

uniquely defined. However, if the same data set (e.g. individual

body masses of fish in a community) is given to two research-

ers, under current practices it is not clear that they would

obtain the same value for the slope of the size spectrum. This is

because there are usually choices to be made in determining

the slope: (i) how to define the size classes to bin the data, and

(ii) how to plot the binned data.

White et al. (2007) point out that the size spectrum is, more

generally, a frequency distribution or probability density of

body sizes of individuals in a community and recommend the

term ‘individual size distribution’ (ISD). We adopt this

approach because it moves away from the need to define some-

what arbitrary body-size classes. By thinking of body-size data

as individual measurements drawn from a probability distribu-

tion, we can fit the distribution using likelihood methods

(which do not require binning), to give a uniquely defined

parameter that is analogous to the size-spectrum slope.

To determine such a parameter requires specifying a proba-

bility distribution for the ISD. Size spectra typically exhibit

power-law relationships (Platt & Denman 1978; Boudreau &

Dickie 1992; White et al. 2007; Reuman et al. 2008). For

example, in community size-spectrum models ‘the number of

individuals in each size group is often found to exhibit a power-

law relationship with size’ (Andersen & Beyer 2006), and in

empirical studies, fitting of straight lines on logarithmic axes

implicitly implies the fitting of a power-law relationship (New-

man 2005). Therefore, a power-law distribution (or Pareto dis-

tribution or Zipf’s law; Newman 2005) is the distribution to be

specified; Vidondo et al. (1997) recommended thinking about

size spectra in such a context. Specifically, we specify a

bounded (truncated), rather than the usual unbounded,

power-lawdistribution (seeMaterials andmethods).

Here, we describe and test eight different methods that have

been used to fit size spectra. Six of these methods require bin-

ning the data in some way, plotting the binned data and fitting

a linear regression. The seventh involves no binning and fits a

linear regression to all data points, while the eighth involves

maximizing the likelihood of a distribution. Using simulated

data, we test the accuracy of each method in determining point

estimates and confidence intervals for the exponent of the ISD.

Our results first demonstrate that estimated slopes are not

always comparable between regression-basedmethods because

the different methods are not estimating the same parameter,

even though this may have been assumed or implied in the

past. However, for most methods the estimated slopes can be

adjusted to provide comparable estimates of the exponent of

the ISD. Some methods perform much better than others, but

sensitivity analyses show that maximum likelihood estimation

is the only method that is consistently accurate, and the only

one that yields reliable confidence intervals. We also extend it

to deal with data that are only available in binned form.

Therefore, we recommend maximum likelihood estimation,

in contrast to previous advice (Vidondo et al. 1997). Since this

method is computationally more complicated than the

regression-type approaches, in the Data S1 (Supporting Infor-

mation) we provide fully documented and functionalized R

code (R Core Team, 2015) intended to be used by other

researchers to reproduce our results and to apply methods to

their own data.

Materials andmethods

INDIV IDUAL SIZE DISTRIBUTION

Let the randomvariableX represent the bodymass of an individual fish

(or other organism). Considering X to come from a bounded power-

law (PLB) distribution, the probability density function forX is:

fðxÞ ¼ Cxb; xmin � x� xmax; eqn 1

where

C ¼
bþ 1

xmax
bþ 1�xmin

bþ 1 ; b6=–1,
1

logxmax�log xmin
; b=–1,

(
eqn 2

x represents possible values of X, log is the natural logarithm, b is an

exponent and xmin and xmax are the minimum and maximum possible

values of bodymass (with 0\xmin\xmax). The normalization constant

C is calculated by solving
R xmax

xmin
fðxÞdx ¼ 1. Assuming that the body

mass of each individual fish is independently distributed according to

(1) means that (1) is the ISD. Because of the normalization constant,

the ISD describes the shape of the size spectrum independently of the

total abundance of fish. The ISD is characterized by the exponent b that

needs to be estimated from data. This exponent is expected to be nega-

tive, and it can be related to the slope of the size spectrum, though

exactly how depends on the method used to estimate the slope (see

Results). A steepening slope (e.g. due to selective fishing of larger fish)

corresponds to amore negative b.

We use a bounded rather than unbounded (xmax ! 1) distribution

for several reasons. By definition, the unbounded distribution assumes

that individuals can, and occasionally will, attain extremely large body

masses, even though such body masses are unrealistic. In related tests

of the distribution of the mean body masses of species, the bounded

power law had overwhelmingly more support than the unbounded

power law (Reuman et al. 2008) – real biological data inherently have

an upper bound. Also, ecological surveys are often designed to sample

a specific range of body sizes, leading to size spectra being fit across a

finite range (e.g. Dulvy et al. 2004; Trebilco et al. 2015), so a bounded

distribution is being implicitly assumed (even though for most methods

the distinction cannot be made). Finally, Graham et al. (2005), for

example, calculated size-spectra slopes that estimated b to be between

�0.24 and�0.20. Such values of b > �1 are only possible for bounded,

and not for unbounded (e.g. Edwards 2008), power-law distributions.

For a community of n individuals, the abundance density function,

N(x), is

NðxÞ ¼ nfðxÞ ¼ nCxb; xmin � x� xmax: eqn 3

This leads to the biomass density function, B(x), that describes how

biomass is distributedwith respect to bodymass:

BðxÞ ¼ xNðxÞ ¼ nCxbþ1; xmin �x� xmax: eqn 4

This is the equation for the biomass size spectrum (Boudreau &

Dickie 1992) and allows calculation of the total biomass of all individ-

uals with body mass ≤x (see Appendix S1); see also Vidondo et al.

(1997).

Some studies (e.g. Dulvy et al. 2004; Daan et al. 2005; Boldt et al.

2012) used length to represent size, and calculated the slope of the
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length size spectra. Thus, body mass x in (1) would be replaced by

length l, but our results regarding the calculation of slopes and the

exponent b still hold. There is no direct length-based equivalent to the

biomass size spectrum (4); calculating (4) would require first converting

lengths to body masses, via species-specific allometric relationships

(e.g. Shin et al. 2005; Trebilco et al. 2015).

SIMULATED DATA

We simulate a data set that consists of individual body masses of

n = 1000 fish. Define xi to be the body mass (g) of fish i, where

i = 1,2,3, . . .,n. The 1000 simulated values are independently drawn

from the PLB distribution (1) using the inverse method (see

Appendix S1), with xmin ¼ 1, xmax ¼ 1000 and the exponent b = �2.

The exponent b = �2 comes from the Sheldon, Prakash & Sutcliffe

(1972) conjecture (Andersen&Beyer 2006), and theoretical and empiri-

cal estimates are often close to this value (e.g. Platt & Denman 1978;

Boudreau &Dickie 1992; Gaedke 1992; SanMartin et al. 2006). Other

values of xmax; b and n are tested later.

We use sevenmethods that have previously been used to estimate the

slope of a size spectrum, and one that estimates the exponent b directly.

We test each method on the simulated data set to obtain an estimated

slope. Motivated by other ecological contexts, similar approaches were

taken by White, Enquist & Green (2008) and Edwards (2008) to test

methods used to fit unbounded power-law distributions (xmax ! 1 in

(1)), though only three of the eight size-spectra methods tested here

were investigated, and neither study investigated confidence intervals,

as we do here.

We then estimate b for 10 000 simulated data sets to determine the

accuracy of eachmethod and the reliability of confidence intervals. Our

overall aim is to investigate whether the differentmethods, which some-

times differ by seemingly minor details, give consistent results. We

acknowledge that authors themselves may be aware of any differences,

but this is not necessarily apparent from published studies. For clarity,

we describe each method in the Results section in conjunction with the

figure that arises from applying it to simulated data.

Results

For eachmethod in turn (summarized in Table 1), we prescribe

a name, describe the method, plot the results and give the esti-

mated slope for the simulated data set of 1000 values. The

slope is what is usually reported, but we explain how it can be

an estimate of b, b + 1 or b + 2, depending upon the method

used. Thus, slopes cannot be interpreted as comparable if

derived from different methods. Figure 1 is a standard his-

togramof the simulated data set; the y-axis has a break because

so many of the counts end up in the first bin (size interval),

since the data are power-law-distributed.

L l i n (LOG-L INEAR) METHOD

The Llin (log-linear) method involves binning the data into

bins of constant width, plotting log(count of the number

of individuals within a size interval) against the mid-point

of the size interval and then using linear regression to esti-

mate the spectrum slope. Essentially, the histogram in

Fig. 1 gets replotted as Fig. 2a with the counts plotted on

a logarithmic y-axis and the mid-points of each bin on the

x-axis. Such a method was used by Daan et al. (2005) to

analyse changes in the North Sea fish community. Note

that they (and Dulvy et al. 2004, Boldt et al. 2012 and

Trebilco et al. 2015) subtracted the mid-point of the full

range of data, ðxmax � xminÞ=2, off the mid-points of all

size intervals, in order to centre the size classes around

zero. But such a constant shift does not affect the calcu-

lated value of the slope, and so for simplicity we omit it

in this manuscript.

Applying the Llin method to our simulated data set esti-

mates a slope of �0�0156. We used eight bins, but two are

empty (Fig. 1) and so do not appear on the logarithmic scale of

Table 1. Brief description of methods used to estimate the slope of a size spectrum. Two of the example references use a different logarithmic base

for the regression fit to that stated, but this does not affect the estimated slope (see text).

Name Brief description Example reference(s)

Llin Log-linear transform. Plot linearly binned data on log-linear axes then fit regression of log(count in bin)

againstmid-point of bin.

Daan et al. (2005)

LT Log-transform. Plot linearly binned data on log-log axes then fit regression of log(count in bin) against

log(mid-point of bin).

Rice&Gislason (1996),

Boldt et al. (2012)

LTplus1 Log-transformplus 1. Plot linearly binned data on log10-log10 axes then fit regression of log10(count+1)
against log10(mid-point of bin).

Dulvy et al. (2004),

Graham et al. (2005)

LBmiz Logarithmic binning as done bymizer. Bin data using log10 bins (but with largest bin the same

arithmetic size as the penultimate bin), and regression of log(count in bin) against log(lower bound

of bin).

Scott et al.’s (2014)mizer

Rpackage

LBbiom Logarithmic binning and then fit biomass size spectrum. Bin sizes using log2 bins then fit regression of

log10ðbiomass in binÞ against log10ðmid-point of binÞ.
Maxwell & Jennings (2006),

Jennings, deOliveira &

Warr (2007),

Trebilco et al. (2015)

LBNbiom Logarithmic binningwith normalization and then fit biomass size spectrum. Bin sizes using log2 bins,

then fit regression of log10ðbiomass in bin divided by bin widthÞ against log10ðmid-point of binÞ.
Blanchard et al. (2005),

Roy, Platt &

Sathyendranath (2011)

LCD Logarithmic plotting of 1�F(x), that is oneminus the cumulative distribution. Rank data from largest

(rank 1) to smallest (rank n), fit regression of log(rank(x)/n) against log x.

Vidondo et al. (1997),

Rogers, Blanchard&

Mumby (2014)

MLE Maximum likelihood estimate. Nobinning or plotting necessary. Calculate themaximum likelihood

estimate of the parameter b. Data and fitted distribution can be plotted on a rank/frequency plot.

Arim et al. (2011),

Robinson&Baum (2016)
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Fig. 2a. The use of log-linear axes suggests an exponential dis-

tribution, and so the slope cannot be related to b.

LT (LOG-TRANSFORM) METHOD

The LT (log-transform) method involves binning the data into

bins of constant width, plotting log(count within a size inter-

val) against log(mid-point of the size interval) and then using

linear regression to estimate the spectrum slope. Thus, the only

difference to the Llin method is the logging of the values on the

x-axis. Such a method was used on length-based data from

groundfish trawl surveys by Rice & Gislason (1996) for the

North Sea and Boldt et al. (2012) for the eastern Bering Sea.

Figure 2b shows the result of applying the LT method to the

simulated data set, using the same eight bins (and thus counts),

as in Figs 1 and 2a. The LTmethod estimates a slope of�2.64,

which is an estimate of b because of the logarithmic axes

(White, Enquist &Green 2008).

LTp lus1 (LOG-TRANSFORM PLUS 1) METHOD

The LTplus1 (log-transform plus 1) method is similar to the

LT method, except that the count in each bin is increased by

one. Dulvy et al. (2004) and Graham et al. (2005) used it to

examine the effects of fishing intensity on coral-reef fish com-

munities in Fiji. Their choice of log10 axes, rather than log

axes as for the LTmethod, does not affect the slope (this is true

for all regression-based methods – see Appendix S1). Conse-

quently, log10(count +1within a size interval) is plotted against
log10(mid-point of the size interval), and a linear regression is

fitted. Adding one to the count avoids bins with zero counts

not appearing in the plots and not contributing to the

regression calculation, as occurred in Fig. 2a,b for the Llin and

LTmethods. For the LTplus1 method, Fig. 2c has eight points

(one for each bin), and the slope of the regression is �2�33,
which is an estimate of b. Adding one to the counts has esti-

mated b closer to the true value of b = �2, compared to the LT

method’s estimate of�2�64.

LBmiz ( l og1 0 B INNING PLOTTED ON log AXES USED IN

mizer ) METHOD

The LBmiz method involves binning the data using bins that

have equal width on a log10 scale (e.g. bin breaks of 1, 10, 100,

1000), but with the largest bin set to the same arithmetic width

as the penultimate bin. It then involves plotting and fitting

the regression of log(count within a size interval) against

log(lower bound of the size interval). It was used in theR pack-

age mizer (Scott, Blanchard & Andersen 2014), which simu-

lates the potential consequences of various fishing patterns

using an approach based on the McKendrick–von Foerster

equation and calculates resulting size spectra. The user specifies

the number of bins, and the lower bounds of the lowest and

highest bins. For our simulated data, we know the minimum

andmaximum values of the data and can derive the bin breaks

(see Appendix S1). Our estimated slope is�1�11. For logarith-
mically spaced bin breaks, as used here except for the largest

bin, the slope estimates b + 1 (Appendix A of White, Enquist

& Green 2008), such that this method essentially estimates

b = �2�11. Repeating the LBmiz method using the mid-point

of bins (as per the other binning methods), rather than the

minimum, estimates b = �2�13, suggesting that the LBmiz

method’s use ofminima is not important.

LBb iom ( log2 B INNING WITH BIOMASS IN EACH BIN

PLOTTED ON log1 0 AXES) METHOD

The LBbiom method involves binning the individual fish into

size intervals that have equal width on a log2 scale, and then

plotting and fitting the regression of log10(biomasswithin a size

interval) against log10(mid-point of the size interval), as used

by Maxwell & Jennings (2006) for data on benthic inverte-

brates in the North Sea and Jennings et al. (2007) for theoreti-

cal work and analyses of fish data from bottom trawl surveys.

Trebilco et al. (2015) used it (with log2-log2 axes) to examine

the role of habitat complexity on the size structure of the rock-

fish-dominated fish community in kelp forests off Haida

Gwaii, Canada. So in contrast to the above methods based on

number of fish in each bin, this method uses the total biomass

in each bin and is effectively fitting the biomass spectrum rather

than the ISD, though these are related via (3) and (4). Maxwell

& Jennings (2006) and Jennings, de Oliveira & Warr (2007)

used bin breaks at integer powers of two that spanned their

data, and so we set bin breaks at 1, 2, 4, 8, . . . . Vidondo et al.

(1997) described how early instruments measured numbers of

particles within log2 size classes, and such binning was adopted

by later scientists (even when sizes could be individually mea-

sured). We obtain an estimated biomass size-spectrum slope of

�0�0937. The biomass size spectrum (4) has exponent b + 1
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Fig. 1. Standard histogram of a random sample of 1000 values from a

bounded power-law distribution (1) with b = �2, xmin ¼ 1 and

xmax ¼ 1000. Histogram shows the number of counts within each of

the eight equally sized bins. Note the break in the y-axis to clearly show

all the counts.
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and, since logarithmically spaced bins mean the slope is the

exponent plus one (White, Enquist & Green 2008), the slope is

estimating b + 2, giving b = �2�09.

LBNb iom ( log2 B INNING WITH NORMALIZED BIOMASS IN

BINS PLOTTED ON log10 AXES) METHOD

The LBNbiom (log-binning with normalization using bio-

mass) method is the LBbiom method but with the biomass in

each bin normalized by dividing it by the bin width, that is

plotting and fitting the regression of log10(biomasswithin a size

interval divided by the width of that size interval) against

log10(mid-point of the size interval). Blanchard et al. (2005)

used it to analyse groundfish survey data from the Celtic Sea,

andRoy, Platt & Sathyendranath (2011) used it (with log-log

axes) to investigate temporal changes in the slope of the

normalized phytoplankton biomass size spectrum for a loca-

tion in the North Atlantic Ocean. Platt & Denman (1977,

1978) introduced the idea of dividing the total biomass in a size

class by the width of that size class. For our simulated data set,

using the same bin breaks as for the LBbiom method, the esti-

mated biomass size-spectrum slope is �1�09. This correctly

estimates the biomass size spectrum (4) exponent b + 1

because of the normalized counts (White, Enquist & Green

2008), giving b = �2�09.

LCD (LOG CUMULATIVE DISTRIBUTION) METHOD

The LCD (log of the cumulative distribution) method requires

no binning because it plots all data points. Body masses are

ranked from largest (rank 1) to smallest (rank n), and

log(rank(x)/n) against log x is plotted, with one point for
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Fig. 2. Results from using eight methods

(Table 1) to estimate the slope or exponent of

size spectra from the simulated data set of

1000 values shown in Fig. 1. The estimated

slope and/or the estimated value of the ISD

exponent b is given for each method in panels

(a–h), with lines showing the resulting fitted

size spectra.
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each body mass x. A regression is fitted to estimate the slope.

Note that rank(x)/n is the fraction of values ≥x, which is esti-

mating P(X≥x) = 1�F(x), where F(x) is the probability distri-

bution function (Grimmett & Stirzaker 1990) or cumulative

distribution function (Bolker 2008), and the resulting slope is

approximately b + 1 (see Appendix S1). Vidondo et al. (1997)

recommended this method (for the unbounded power law),

and it was recently used by Rogers, Blanchard & Mumby

(2014) to investigate vulnerability of coral-reef fisheries in The

Bahamas. Figure 2g demonstrates this method for our data

set, yielding an estimated slope of�1�04, giving b = �2�04.

MLE (MAXIMUM LIKEL IHOOD ESTIMATE) METHOD

TheMLE (maximum likelihood estimate)method directly esti-

mates the parameter b using a standard statistical likelihood

approach (e.g. Hilborn & Mangel 1997; Bolker 2008). It finds

the value of b that maximizes the likelihood function for the

given data set. In the context of unbounded power-law distribu-

tions, it has been tested (e.g. Newman 2005; Edwards 2008;

White, Enquist & Green 2008) and used (together with other

methods) by Arim et al. (2011) on body-size data from ponds

in Uruguay. The bounded power-law distribution was recently

used by Robinson & Baum (2016) to analyse visual-census

data from coral-reef fish communities around Kiritimati

(Christmas Island). The MLE for b requires numerical maxi-

mization of the log-likelihood function (Page 1968; Edwards

2011; see Appendix S1). The MLEs for xmin and xmax are the

minimum and maximum observed values, respectively

(Edwards et al. 2012). For our data set, theMLE for b is�2�03.
The MLE method does not require any plotting to estimate

b. To visualize the resulting fit, in Fig. 2h we show a rank/fre-

quency plot which gives, on logarithmic axes, the rank of x

(the number of values ≥x) against the value of x (e.g. Edwards

et al. 2007).We label axes using actual values (rather than log

values) for easier interpretation of the results; the points in

Fig. 2g,h are essentially the same with the axes defined differ-

ently. The fitted PLBmodel (red curve) is calculated across the

range of x values as (1�F(x))n using the MLE value for b and

characterizes the abundance size spectrum based on (3); see

Appendix S1. It is not linear because we have used the MLE

method to explicitly fit a bounded power-law distribution; the

fit from the LCD method in Fig. 2g is linear because

that method implicitly assumes an unbounded power-law

distribution.

SUMMARY OF METHODS APPLIED TO THE SIMULATED

DATA SET

Overall, the slopes differ considerably between methods, from

�2�64 to �0�02. But the slopes cannot be directly compared

because they are estimating different quantities. Translating

the slopes into estimates of b means that five of the methods

estimate b in the range (�2�11,�2�03), just below the true value

of b = �2.

While some of the above differences in what each method

calculates will have been appreciated by some authors, it is not

always clear that subtle methodological differences are impor-

tant. For example, Daan et al. (2005) initially talk about the

‘slope of the log-linear size spectrum of the total fish commu-

nity’ (i.e. the Llin method) and then mention Rice & Gislason

(1996) as having shown that the spectrum slope for a North

Sea fish community had steepened over time. However, Rice &

Gislason (1996) used the LT method. Thus, spectrum slopes

were being defined using different methods and so cannot be

considered comparable.

REPEATED SIMULATIONS – ACCURACY OF THE

METHODS

The above results depend on the single simulated data set of

n = 1000 random numbers drawn from the PLB distribution

(1). To build a more detailed picture of the accuracy of each

method, we now repeat the above calculations on 10 000 inde-

pendent simulated samples (a number recommended by Craw-

ley 2002), each containing 1000 values drawn randomly from

the PLB distribution (still with b = �2, xmin ¼ 1 and

xmax ¼ 1000). So for each method we obtain 10 000 estimates

of b (or slope for the Llin method). For theMLEmethod, xmin

and xmax are explicitly estimated as the minimum and maxi-

mumdata values, respectively, for each of the 10 000 samples.

The resulting estimates of b are shown in the blue histograms

in Fig. 3, with summary statistics in Table 2. The Llin method

gives a narrow range of slopes that are just below zero, which

is intuitive when looking at the scales of the axes in Fig. 2a.

The distribution of estimates of b for the LT and LTplus1

methods are fairly wide and highly biased (Fig. 3b,c), with

99% and 82%, respectively, of the estimates being below the

true value of b = �2 (Table 2).

For the remaining five methods, the means and medians of

the estimates are all within 0�01 of the true value of b (Table 2),
with LBmiz having 47% of the estimates below the true value,

which is the closest any of the methods get to the desired value

of 50% (equally likely to be above or below the true value).

The LBmiz, LBbiom andLBNbiommethods show similar dis-

tributions, with the LCD and then MLE methods having pro-

gressively narrower distributions. Thus, overall, the final five

methods appear to be fairly accurate, with MLE showing the

least variation.

The shaded gold histograms in Fig. 3 show the same analy-

ses but with xmax ¼ 10 000 (rather than xmax ¼ 1000). Such a

10 000-fold range of body sizes can be observed for coral-reef

fishes (Robinson & Baum 2016). The results for the MLE

method remain essentially unchanged from the xmax ¼ 1000

results, while the accuracy of some of the other methods is

diminished. For example, for the LBNbiommethod the distri-

bution of estimated b values shifts to the right in Fig. 3f, such

that only 20% (rather than 45%) of the estimated values fall

below the known value of�2. See Appendix S1 for full details.

CONFIDENCE INTERVALS

The previous results estimate b using the different methods.

Bolker (2008) states that such types of best-fit estimates require
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some measurement of uncertainty to be meaningful. However,

uncertainty of slopes has only been occasionally calculated in

previous studies (e.g. Rice & Gislason 1996; Graham et al.

2005), a situation that is ‘particularly unsettling’ (Rice 2000).

Therefore, we now construct confidence intervals of b for each

method and test howwell they perform.

For the regression-based methods, a confidence interval for

the slope can be calculated (e.g. Crawley 2002) using the R

command confint. The confidence interval for b can then be

obtained by subtracting one or two as appropriate for each

method (see Table 2). For theMLEmethod, a 95% confidence

interval for b can be calculated using the profile likelihood-

ratio test (Hilborn&Mangel 1997).

By definition, 95% of the 95% confidence intervals should

contain the true value of the estimated quantity. To see

whether this holds, for each method we compute a confidence

interval for b for each of the 10 000 simulated data sets (with

xmax ¼ 1000) and see what percentage of a method’s intervals

contain the true value of b = �2. This percentage is the ‘ob-

served coverage’ and should ideally equal the ‘nominal cover-

age’ of 95% (Bolker 2008).

Figure 4 shows the resulting confidence intervals for sub-

samples of the 10 000 simulated data sets; we use subsamples

for clarity (see Appendix S1). For each method, the true value

of b is shown as a vertical red line, and each confidence interval

is coloured grey if it encompasses the true value and blue if it

does not. Thus, we would expect 95% of the intervals to be

grey and 5% to be blue. The resulting percentage (the observed

coverage) based on all 10 000 confidence intervals is indicated

for eachmethod.

Figure 4a shows that the confidence intervals of the slope

for the Llin method never include the true value of b. The

confidence intervals of b for the LT and LTplus1 methods

are so wide that they essentially always include the true

value (Fig. 4b,c); such intervals are therefore not of practi-

cal use. For the LBmiz, LBbiom and LBNbiom methods,

the confidence intervals include the true value of b only

90% of the time (Fig. 4), thereby overstating their reliabil-

ity. For the LCD method, only 6% of the confidence inter-

vals include the true value of b because the intervals are

very narrow (Fig. 4g). Intuitively, such narrow intervals can

be inferred from Fig. 2g – the regression line is being fitted

to all n = 1000 points, and there is clearly not a large possi-

ble range in the slope (compared to, say, Fig. 2e). Thus, the

very narrow confidence intervals from the LCD method

give a misleading impression of accuracy.
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Fig. 3. Histograms (in blue) of estimated

exponent b for 10 000 simulated data sets,

each of which contains 1000 independent ran-

dom numbers drawn from a bounded power-

law distribution with b = �2, xmin ¼ 1 and

xmax ¼ 1000. Each panel (a–h) uses the

method from the corresponding panel in

Fig. 2. The vertical red lines indicate the

known value of b = �2. Shaded gold his-

tograms show results when setting

xmax ¼ 10 000. Axis scales are the same for all

panels except (a), which gives estimates of

slope since the Llin method does not estimate

b.
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For the MLE method, 95% of the confidence intervals

include the true value of b (Fig. 4h). The intervals are of

a relatively consistent width, which is an intuitively desir-

able property that is lacking for the other methods.

With xmax ¼ 10 000, the observed coverage declines from

90% to 84% (LBmiz method) and 74% (LBbiom and

LBNbiom methods) and remains at 6% for the LCD method

and at the desired 95% for theMLEmethod (see Appendix S1).

Table 2. Summary statistics for each method for the 10 000 simulations of 1000 samples from (1), corresponding to the blue histograms

(xmax ¼ 1000) in Fig. 3. The second column indicates how the fitted slope can be translated into an estimate of b, though for the MLE method b is

estimated directly. Statistics relate to the resulting estimates of b (or slope for Llinmethod), with the final column giving the percentage of simulations

for which the estimate is below the true value of b = �2. See the end of theResults for theMLEbinmethod

Method Slope represents 5%quantile Median Mean 95%quantile Percentage below�2

Llin – �0�02 �0�01 �0�01 �0�01 0

LT b �2�88 �2�42 �2�44 �2�09 99

LTplus1 b �2�66 �2�20 �2�23 �1�90 82

LBmiz b + 1 �2�11 �2�00 �2�00 �1�89 47

LBbiom b + 2 �2�11 �1�99 �1�99 �1�89 45

LBNbiom b + 1 �2�11 �1�99 �1�99 �1�89 45

LCD b + 1 �2�08 �2�01 �2�01 �1�95 59

MLE b �2�05 �1�99 �2�00 �1�94 44

MLEbin b �2�05 �2�00 �2�00 �1�94 46

−0·2 −0·1 0·1

S
am

pl
e 

nu
m

be
r

0
10

0
20

0
30

0

0%

−20 −100·0 0·2 20

(b) LT
99%

−6 −5 −4 −3 −2 −1

0 10

0 1

S
am

pl
e 

nu
m

be
r

0
10

0
20

0
30

0

100%

−2·6 −2·4 −2·2 −2·0 −1·8 −1·6

(d) LBmiz
90%

−2·6 −2·4 −2·2 −2·0 −1·8 −1·6

S
am

pl
e 

nu
m

be
r

0
10

0
20

0
30

0

90%

−2·6 −2·4 −2·2 −2·0 −1·8 −1·6

(f) LBNbiom
90%

−2·6 −2·4 −2·2 −2·0 −1·8 −1·6

S
am

pl
e 

nu
m

be
r

0
10

0
20

0
30

0

6%

−2·6 −2·4 −2·2 −2·0 −1·8 −1·6

95%

Estimate of b

Llin(a)

LTplus1(c)

LBbiom(e)

MLE(h) LCD(g)

Fig. 4. Confidence intervals (horizontal lines)

of b obtained for eachmethod (panels a–h) for

subsamples of the 10 000 simulated data sets

(with xmax ¼ 1000) used in Fig. 3. For each

numbered subsample on the y-axis, the 95%

confidence interval of b obtained using the

respective method is plotted as a horizontal

line, which is coloured grey if the interval

includes the true value of b = �2 (given by the

vertical red line) or blue if it does not. Simula-

tions are sorted in ascending order of their

lower bound. The percentage for each method

gives the observed coverage, namely the per-

centage of all 10 000 simulated data sets for

which the 95% confidence interval contains

the true value of b; by definition, this should

ideally be 95%. Horizontal axes are the same

for (d–h), and (a) shows confidence intervals

of the slope.
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Thus, overall we find the MLE method to be the only one that

produces reliable estimators of the uncertainty of b.

SENSIT IV ITY ANALYSES – ROBUSTNESS OF THE MLE

METHOD

In the Appendix S1, we modify the MLE method to fix xmax

across the 10 000 data sets rather than estimating it individu-

ally for each data set, which gives only minor numerical differ-

ences in results. We also repeat our main simulations with

b = �2�5, b = �1�5 and b = �0�5 instead of b = �2, and with

a ten-fold increase in sample size to n = 10 000. The conclu-

sions for most methods are sensitive to the value of b or n (e.g.

the LBNbiom method performs worse with b = �2�5). How-

ever, only the conclusions for the MLE method are robust –
estimates of b are accurate and confidence intervals are reliable

(observed coverage of 94%or 95%), unlike for other methods.

We also find our results and conclusions are not dependent on

the seed used for the random-number generator.

MLEb in METHOD FOR BINNED DATA

Sometimes data (or model output, Thorpe et al. 2015) are only

available in binned form.We extend theMLEmethod for such

data sets to give the MLEbin method (adapted from Edwards

et al. 2007 and Edwards 2011; see Appendix S1). We test it

using the same 10 000 simulated data sets as earlier, but first

binning each data set (using bin breaks at 1, 2, 4, 8, ...) and then

applying the method to the counts in each bin. The MLEbin

method appears as accurate as the MLE method (Table 2 and

Fig. 5). Sensitivity analyses (e.g. regarding binning) will be con-

ducted in future work. Researchers can adapt our code for

their particular data sets and also investigate different binning

protocols for data that require binning when being collected.

Discussion

We have expanded upon White et al.’s (2007) recommenda-

tion to think of size spectra in terms of ISDs, because it places

such work in the context of probability densities. Our results

show that the slopes of size spectra arising from commonly

usedmethods cannot be interpreted as equivalent since they do

not all directly estimate the exponent b of the ISD and that the

methods estimate b with different levels of accuracy. We rec-

ommend the MLE method for estimating b and its confidence

intervals, since only its performance was robust under sensitiv-

ity analyses. This is in contrast to Vidondo et al.’s (1997) rec-

ommendation to use the LCD method over the MLE method

(based on unpublished simulations for unbounded power laws).

TheMLEmethod avoids binning and regression. Binning in

general can be problematic (e.g. if a data set has no body

masses <10 g but the lowest bin is defined as 8–16 g), and the

choice of bin widths can affect the estimated slope (Vidondo

et al. 1997). Regression-based methods are problematic

because the intercept and the slope implicitly determine xmin,

which can erroneously be greater than some data values

(James, Plank & Edwards 2011). They also assume that the

errors in the logarithmic counts for each bin have the same

variance, which may not be justified. Although regression can

be understood in a likelihood context, this is different to explic-

itly using a likelihood-basedmethod (Edwards et al. 2012).

However, researchers are used to seeing biomass size spectra

in the form of log–log plots of the normalized biomass in loga-

rithmic bins, as in Fig. 2f. Thus, we recommend presenting

results as the two plots in Fig. 6 – a biomass size spectrum and

an abundance size spectrum, with theMLE estimate for b (and

bounds of the 95% confidence interval) used in (4) for biomass

and (3) for abundance. Only the abundance plot would be

appropriate for length data.

Rice (2000) called for an objective way to determine whether

differences among values of a community metric are meaning-

ful. The calculation of reliable confidence intervals for b will

allow this. Furthermore, quantifying the uncertainty in b

should improve the quality of advice to fisheries or ecosystem

managers, because without uncertainty numerical results can

give a misleading impression of accuracy. Uncertainty can be

accounted for when investigating changes in b (e.g. using

weighted linear regression) that could represent steepening of

the size spectra in response to fishing.

We can only partially determine the consequences of our

results for previous conclusions. For example, Dulvy et al.
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the simulated data sets; (a) as in Fig. 3 and (b) as in Fig. 4. Confidence
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(2004) found a significant relationship between size-spectrum

slopes and fishing intensity across 13 fishing grounds. The

slopes were all between �0�04 and �0�01, derived using the

LTplus1 method. However, Fig. 3c suggests that such a small

change in size-spectrum slope could be an artefact of the

LTplus1 method. In general, previously calculated slopes must

be interpreted with respect to themethod used.

We have used a bounded power-law distribution for the

ISD since power laws are commonly used models for size spec-

tra (Platt &Denman 1978; Boudreau&Dickie 1992; Andersen

& Beyer 2006). However, we echo Vidondo et al.’s (1997)

warning that there will be data sets for which power-law distri-

butions are not appropriate. Dynamic models of size spectra in

marine communities predict non-power-law size distributions

at the level of individual species (Hartvig, Andersen & Beyer

2011; Jacobsen, Gislason & Andersen 2014; Law, Plank &

Kolding 2014), although the aggregate community ISD may

be closer to a power law (Andersen & Beyer 2006). We have

compared different methods for estimating the exponent b on

the common assumption that the ISD is a power law. In applica-

tions, the validity of this assumption could be investigated

using goodness-of-fit tests and Akaike Information Criteria

(e.g. Edwards et al. 2007; Edwards 2011).

We have not considered measurement errors here – these

may dominate sampling errors when the sample size is suffi-

ciently large. The likelihood method can be explicitly adapted

to account for measurement errors using the convolution

approach of Koen & Kondlo (2009). Further simulations

could test how well all methods cope with data that are subject

to measurement error. To account for measurement resolution

(e.g. if body masses are recorded to the nearest gram, then a

10 g mass really represents a true body mass in the range 9�5–
10�5 g), the MLEbin method can be used. Our current results

(and R code) have application in ecology beyond size spectra,

since power-law distributions arise in several areas (White,

Enquist &Green 2008).

Our take-home messages are as follows: (i) size spectra

should be formally expressed in terms of individual size distri-

butions, (ii) the MLE method should be used to estimate the

ISD exponent b and its confidence intervals, and (iii) there is

no need to bin data, but if data are only available in binned

form, then the MLEbin method can be used and tested. We

hope that these will be adopted and applied in size-spectra

research. To facilitate this, we have formalized the mathemat-

ics used to analyse size spectra, tested the methods and pro-

vided usable R code for researchers.
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