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Improving understanding of the 
functional diversity of fisheries by 
exploring the influence of global 
catch reconstruction
Kirsty L. Nash   1,2, Reg A. Watson1,2, Benjamin S. Halpern3,4,5, Elizabeth A. Fulton   1,6  
& Julia L. Blanchard   1,2

Functional diversity is thought to enhance ecosystem resilience, driving research focused on trends 
in the functional composition of fisheries, most recently with new reconstructions of global catch 
data. However, there is currently little understanding of how accounting for unreported catches (e.g. 
small-scale and illegal fisheries, bycatch and discards) influences functional diversity trends in global 
fisheries. We explored how diversity estimates varied among reported and unreported components 
of catch in 2010, and found these components had distinct functional fingerprints. Incorporating 
unreported catches had little impact on global-scale functional diversity patterns. However, at smaller, 
management-relevant scales, the effects of incorporating unreported catches were large (changes in 
functional diversity of up to 46%). Our results suggest there is greater uncertainty about the risks to 
ecosystem integrity and resilience from current fishing patterns than previously recognized. We provide 
recommendations and suggest a research agenda to improve future assessments of functional diversity 
of global fisheries.

The functional roles played by individual species within a community, such as herbivory, pollination and nitro-
gen fixation, and the diversity of these roles, directly support key processes that underpin ecosystem structure, 
dynamics and resilience1. Thus, the functional composition of a community will influence the capacity of an 
ecosystem to recover following disturbance, and the delivery of ecosystem services on which human societies 
rely2, 3. As a result, there are increasing efforts to characterise spatio-temporal patterns in functional composition 
of species from local to global scales2, 4. This research has traditionally used qualitative functional groupings such 
as ‘herbivore’ to explore functional diversity, but more recent studies have been based on a series of categorical 
and continuous traits such as size and depth range, that quantitatively describe the functional role of a species or 
individual by defining its position in a multi-dimensional trait space5.

Most global-scale functional diversity work has focused on terrestrial systems6, or specific marine ecosys-
tems such as coral and rocky reefs7, 8. However, an emerging literature exploring functional patterns using global 
fisheries datasets is supporting broad-scale investigation of functional trends through time and across space9. In 
particular, information arising from these fisheries studies is being used to assess progress towards marine aspects 
of the Convention on Biological Diversity and thus has the potential to influence environmental policy10, 11.

Long-term (1950–2010) data made freely available by the Sea Around Us project (SAUP) provide an inval-
uable record of the composition and tonnage of fisheries catches for Exclusive Economic Zones (EEZ) of the 
world12. SAUP catch data are reconstructed from Food and Agricultural Organization (FAO) fisheries records of 
reported landings from each country. Reported data are supplemented by country-level estimates of unreported 
catch using literature searches and expert elicitation (Fig. 1a) following methodology provided by13, but carried 
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out by a range of country specific research teams. Certainty scores are assigned to reconstructed data to indicate 
qualitative expert assessment of the relative accuracy of the catch estimate derived from the underlying data, 
assumptions and methods used for each sector and country13. The addition of estimated unreported catch (e.g., 
small-scale and illegal fisheries, bycatch, and discards) has proved vital in providing a more complete picture of 
fisheries, for example, highlighting a considerably greater global magnitude (annual peak of 86 vs 130 million 
tonnes) and contrasting trajectory of fish extraction from the oceans than indicated by the FAO database14.

A range of studies are now using these data to explore how fisheries select for specific traits that under-
pin the functional role of fish species, such as size and trophic level15, and how this selection may vary in time 
and space due to shifts in fishing behaviour16, 17. Global fisheries data also improve our understanding of how 
changing environmental conditions, e.g. climate, may drive shifts in the catch of species with specific functional 
traits18, and how functional diversity may buffer the negative impacts of temperature variability on fisheries  
productivity9. Thus, trends in functional diversity of catches reflect fishing selectivity, changes in fishing behav-
iour and technologies, and environmental change18–21. Teasing apart the differential effects of these drivers is 
an important research challenge necessary to inform management of different human activities and impacts on 
community and ecosystem resilience. Our ability to address this challenge is dependent on a clear understanding 
of functional diversity trends in both reported and unreported components of the catch. Adding unreported data 
provides a different picture of the magnitude of fisheries exploitation, indicating a peak in catch 39% (uncertainty 
band from −15 to 90%) greater than previously thought14. But to date there has been no exploration of the impact 
of unreported catches, such as the often overlooked multi-species subsistence and artisanal fisheries (hereafter 
termed ‘small-scale’)22, on broad-scale functional trends. This knowledge is critical because it explores the need 
for robust reconstruction of underreported elements of global fisheries to understand functional trends and sup-
port ecosystem-based fisheries management.

Here, we investigated how the addition of estimated unreported catches to global fisheries data influence 
spatial patterns in functional diversity for a single year, 2010. First, we evaluate functional evenness in catch, 
which indicates how evenly catches are distributed in trait space and thus the relative dominance of certain trait 

Figure 1.  Catch reconstruction process and functional diversity metrics. (a) Sources and flow of information 
used in catch reconstruction process from the reported data, addition of unreported data (including small-scale 
and illegal fisheries, bycatch and discards), and classification of estimated certainty of catch data. Certainty 
scores are based on qualitative expert assessment of the relative accuracy of the catch estimate derived from the 
underlying data, assumptions and methods used for each sector and country, and were developed from a similar 
approach used in the IPCC process. (b) Four examples of catch data displayed in trait space, with tonnage 
caught of each taxon indicated by bubble size. Panels illustrate differences between communities with the same 
number of taxa and total biomass but varying levels of dispersion and evenness. For illustrative purposes, the 
two traits body size and maximum depth are shown. Figure (A) created from information in ref. 13
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combinations or functions. Second, we evaluate functional dispersion, which indicates how catches are spread 
out in trait space and thus the breadth of different trait combinations or functions (Fig. 1b). Specifically, we asked: 
(1) How do functional estimates vary among different groupings within the catch – reported vs. unreported, 
small-scale vs. industrial fishing, and low and high certainty data? (2) How does the addition of these different 
groupings influence spatial patterns in functional diversity of the total catch? (3) What is the impact of using 
either coarse functional groups or finer-scale trait information on the above patterns of functional diversity?

Unreported and reported data, and small-scale and industrial fisheries focus on distinct parts of the catch, 
thus, we hypothesised that these catch groupings would exhibit different functional diversity values within EEZs. 
Due to large variability in fishing practices and habitats among EEZs23, 24, we hypothesised that there was unlikely 
to be coherent broad-scale distinctions in the functional fingerprints of these catch groupings across different 
EEZs. Nonetheless, as unreported elements incorporate different sectors, gears and fishing practices, overall, 
at the global scale, accounting for unreported elements would likely influence functional diversity patterns. 
Functional groups lack the resolution of trait-based analyses, as such we hypothesised that functional diversity 
patterns estimated from functional groups would show less clear functional differences among catch groupings, 
than patterns derived from trait data.

Results
Spatial variation in functional diversity.  There was geographic variation among EEZs in the functional 
evenness (Fig. 2 & Supplementary Fig. S1) and dispersion (Fig. 3 & Supplementary Fig. S2) of different catch 
groupings. However, there do not appear to be clear latitudinal or ocean-specific patterns in either functional 
evenness or functional dispersion. Furthermore, those EEZs reporting a greater proportion of their catch or 
with a greater proportion of industrial catch did not exhibit consistently higher or consistently lower functional 
evenness or dispersion (Supplementary Note 1). It should be noted that there were strong correlations among 
the proportion of reported catch and the proportion of the catch arising from industrial fishing (Supplementary 
Note 2). EEZs with the greatest functional evenness based on fine-scale trait data did not necessarily have the 
highest evenness values when based on coarse functional groups for any catch groupings (dark shading in Fig. 2 
vs Supplementary Fig. S1). Due to the large amount of missing data on certainty classifications (Supplementary 
Note 2), trends arising from data on the certainty classifications are likely to be misleading. As a result, certainty 
classifications were not used in the functional diversity analyses.

Functional fingerprint of catch groupings.  Functional estimates for reported and unreported, and 
industrial and small-scale fisheries were only weakly to moderately positively correlated, as hypothesised 
(Fig. 4a,b; Spearman rank rho = 0.11 to 0.51). Both functional evenness and functional dispersion were signifi-
cantly greater in unreported and small-scale fishery catch components compared to reported and industrial catch 
components for EEZs in 2010 (Table 1; Fig. 4c). This conflicted with our expectations that broad-scale trends in 
functional fingerprints would be masked by large variation in habitat and fishing practices among EEZs. These 
results hold whether estimates were calculated using either fine-scale traits or coarse functional groups (Table 1; 
Fig. 4c).

Figure 2.  Spatial variation in functional evenness. Functional evenness in (ai) reported, (aii) unreported, (bi) 
industrial and (bii) small-scale catches for EEZs in 2010. Estimation of functional evenness based on fine-scale 
trait data and catch identified to species or genus level. Grey shading in EEZs represents missing data, where 
there were either too few functionally distinct taxa to estimate evenness or insufficient data at the species/genus 
level. Maps created in using the ggplot245 package in R46.

http://S1
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Figure 3.  Spatial variation in functional dispersion. Functional evenness in (ai) reported, (aii) unreported, (bi) 
industrial and (bii) small-scale catches for EEZs in 2010. Estimation of functional dispersion based on fine-scale 
trait data and catch identified to species or genus level. Grey shading in EEZs represents missing data, where 
there were either too few functionally distinct taxa to estimate dispersion or insufficient data at the species/
genus level. Maps created in using the ggplot245 package in R46.

Figure 4.  Relationships between functional metrics for different catch groupings. Correlations among estimates 
of functional metrics for (a) unreported vs reported data and (b) small-scale (subsistence and artisanal) vs 
industrial fisheries. (c) Range of values for different catch groupings. In (a) and (b) dotted black line is y = x 
relationship and statistics presented are spearman rank rho values. Triangles, dashed lines and purple shading 
are estimates using trait information, circles, solid lines and red shading are estimates using broad functional 
groups (FG).In (c) in each pair of boxplots, first boxplot represents estimates using broad functional groups and 
second boxplot represents estimates using trait information.  Each data point is an EEZ in 2010.
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Influence of functional fingerprint of catch groupings on patterns in total catch.  Despite the differ-
ences in functional estimates for unreported versus reported data and small-scale versus industrial catches, there were 
strong positive correlations between functional estimates for the total catch, and both reported and industrial sec-
tors (Spearman rank rho = 0.672–0.93, Fig. 5). Most EEZs were comprised primarily of reported and industrial data 
(Supplementary Fig. S7); consequently, adding unreported and small-scale catches to the database has little impact on 
functional diversity estimates across EEZs. Those EEZs showing greatest differences in functional estimates between 
the total catch and either reported or industrial catches were often, but not always, characterised by a smaller proportion 
of reported or industrial data within their total catches (highlighted by shading of symbols in Fig. 5).

Spatial variation in influence of functional fingerprints on patterns in total catch.  At the global 
scale, accounting for unreported data and small-scale fisheries appear to have little impact on functional diver-
sity estimated for the total catch. However, there is geographic variation in the proportions of catch within these 
groupings among EEZs (Supplementary Figs S3 & S4). This variation in proportion of data within different catch 
groupings highlights the extent of reconstruction required in each EEZ, and the relative potential influence of the 
functional fingerprint of different groupings on trends in the total catch.

Global maps of functional metrics show differences between total catch functional metric estimates and those 
for reported and industrial fishing, and were used to highlight specific EEZs where accounting for functional 
estimates of small-scale and unreported data may be particularly important (Figs 6 and 7). Once again, there did 
not appear to be any clear latitudinal or ocean-specific patterns in the magnitude of differences between func-
tional estimates of the total catch and of either reported or industrial catches. Many EEZs showed little difference 
in functional evenness estimates between the total catch and specific groupings within the catch (yellow shading 
in Fig. 6). However, some EEZs showed larger differences, even where a high proportion of catch was reported 
or from the industrial sector. For example, lower functional evenness was observed in reported and industrial 
catches compared to the total catch (positive difference values; orange/red shading in Fig. 6) in the trait based 
analysis for the Desventuradas Islands of Chile (Fig. 6a(i); 70% catch reported & b (i); 99% industrial catch). A 
similar trend was found for reported catches in the functional group based analysis for Greenland (Fig. 6a(ii) 
94% catch reported). In contrast, the functional evenness estimated from reported and industrial data was greater 
than for the total catch (negative difference values; blue shading in Fig. 6) in the trait based analyses for subarctic 
Alaska (Fig. 5a(i); 97% catch reported & b(i); 76% industrial catch).

In general, the difference in functional dispersion estimates between the total catch and different groupings 
was lower than for functional evenness, and many EEZs that showed large differences in functional evenness 
between the total catch and specific groupings did not show large differences in functional dispersion (EEZs with 
paler shading in Fig. 7 than in Fig. 6).

Discussion
Information arising from studies of spatial and temporal patterns in fisheries functional traits and diversity is 
important for understanding the delivery and future vulnerability of ecosystem services, and is currently being 
used to assess progress towards attainment of the Aichi biodiversity targets10, 11. Thus, exploring how reporting 
of fisheries influences our understanding of broad-scale and regional trends in function is critical for ensuring 
robust data are available to support environmental policy. Accounting for unreported catches provides a very dif-
ferent picture of the total amount of fish removed from the world’s oceans than provided by reported data alone14. 
Interestingly, our findings suggest that at a global scale, accounting for unreported catches has little impact on 
patterns in functional diversity. However, this large-scale outcome masks regional variation and locations where 
accounting for unreported catch is essential for understanding trends in functional diversity. Critically, it is at 
these local to regional scales that nearly all fisheries and ecosystem management decisions are made, suggest-
ing that in order to effectively inform on-the-ground management, studies of functional diversity trends should 
account for unreported components of the catch.

The incredible diversity of environmental conditions, habitats and fishing practices among EEZs23, 24 will 
affect the traits and functional diversity of fish caught9, 16, 18, 20. Despite this considerable variability in drivers of 
community composition, it is still possible to discern broad-scale differences in the functional fingerprints of 
reported and unreported, and industrial and small-scale components of fisheries: unreported and small-scale 
catches tend to be more functionally even and more functionally dispersed than reported and industrial catches. 
This finding contrasts with our initial hypothesis, and suggests that there may be more consistent functional 
characteristics of unreported data across EEZs than anticipated. Critically, this outcome suggests that where lit-
tle information is available on the composition of unreported catches, and where uncertainty surrounding the 

Traits Functional groups

A) Functional Evenness

Reported vs. Unreported Z = 4491; P < 0.001 Z = 5392; P < 0.001

Industrial vs. Small-scale Z = 3073; P < 0.001 Z = 2721; P < 0.001

B) Functional Dispersion

Reported vs. Unreported Z = 10653; P = 0.007 Z = 9045; P < 0.001

Industrial vs. Small-scale Z = 8319; P < 0.001 Z = 5837; P < 0.001

Table 1.  Wilcoxon-paired tests comparing median values of functional metrics: A) functional evenness, and B) 
functional dispersion, for unreported vs. reported data and small-scale (subsistence and artisanal) vs. industrial 
fisheries for EEZs in 2010, and when using fine-scale trait data or broad functional groups to estimate metrics.

http://S7
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reconstruction process is high, coarse qualitative estimates of functional diversity in unreported components may 
still be possible.

Despite differences in functional diversity among catch groupings, the impact of unreported and small-scale 
fisheries data on functional estimates for the total catch are relatively small at the global scale. This finding con-
flicted with our initial hypothesis, and appears to be driven, in part, by the high proportion of reported and indus-
trial data within the total catch. Thus, at the global scale, removing unreported and small-scale catch does not 
have a large influence on functional estimates. However, the proportion of catch that is reported varies over time14 
and differs among EEZ’s. For example, the Cocos Keeling Islands have seen a decrease in the percentage of catch 
reported from 67% to 0% between 1950 and 2010, whereas the Barents Sea (Russia) has seen an increase from 
39% to 73% over the same period. Furthermore, at the EEZ scale, the effect of accounting for unreported catches 
had a considerable impact on functional diversity estimates in some locations. Both the spatio-temporal variabil-
ity in reporting of data, and the regional scale impacts of unreported data on functional estimates suggests that it 
is critical to account for unreported components of the catch. Specifically, including unreported catches, such as 
small-scale fisheries, will help clarify temporal trends in functional diversity, improve the precision of estimates 
at global scales and help quantify human impacts on diversity at local to regional scales2, 4, 25, 26. Such efforts are 
critical to inform effective fisheries management focused on supporting ecosystem function.

Coarse-grained functional groupings provide a simple and tractable approach to classifying the roles species 
play. However, this approach may miss subtle, yet potentially important, distinctions among individuals and 

Figure 5.  Correlations among estimates of functional metrics for total catch versus different catch groupings. 
(a) Reported data and (b) industrial catch. Dotted black line is y = x relationship and statistics presented are 
spearman rank rho values. Each data point is an EEZ in 2010. Purple triangles and dashed lines are estimates 
using trait information, red circles and solid lines are estimates using broad functional groups (FG). Shading 
represents proportion of the catch that is either reported or industrial (low values-light shading, high values-
dark shading).
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species27. As a result, there have been moves to use detailed characterisations of species’ functions based on 
life-history and ecological traits, giving a more nuanced appreciation of functional roles5, 28. Although, there were 
differences in the functional diversity estimates between the analyses based on functional group and trait data, 
the overall findings of our study were robust to the type of information used to describe function. These results 
indicate that even when using relatively coarse-grained functional group information it is possible to see differ-
ences in the functional fingerprints of reported and unreported, industrial and small-scale components of the 

Figure 6.  Difference between functional evenness estimates of total catch data and (a) reported and (b) 
industrial data, where metrics are estimated using either (i) detailed trait information or (ii) broad functional 
groups for EEZs in 2010. White shading in EEZs represents missing data, where there were either too few 
functionally distinct taxa to estimate evenness or insufficient data at the species/genus level (trait analysis only). 
Maps created in using the ggplot245 package in R46.

Figure 7.  Difference between functional dispersion estimates of total catch data and (a) reported data and (b) 
industrial data, where metrics are estimated using either (i) detailed trait information or (ii) broad functional 
groups for EEZs in 2010. White shading in EEZs represents missing data, where there were either too few 
functionally distinct taxa to estimate dispersion or insufficient data at the species/genus level (trait analysis 
only). Maps created in using the ggplot245 package in R46.
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catch. This finding contrasts with our initial hypothesis, and suggests that functional groupings already available 
within the SAUP database may be used to explore research questions related to broad-scale trends in functional 
diversity. The advantage of this approach is that it allows usage of the full catch dataset. Functional groups are 
available for both fish and invertebrate species, unlike trait information that is very limited for certain taxa within 
the catch, such as invertebrates, and may only be used with any precision for taxa identified to species or genus 
level. Nonetheless, where studies are focused on trends in particular traits, such as changing trophic level16 or 
temperature tolerance9, rather than functional diversity, more detailed trait information may be appropriate. In 
this context, enrichment of existing trait information for both fish and invertebrates is critical (Recommendation 
1, Table 2). Furthermore, selection of specific traits to incorporate into functional analyses will depend on the 
research question. Sensitivity analyses commonly used in trait and functional diversity studies, such as assessing 
the impact of including specific traits and the degree of pooling within trait categories7, 9, 16 are necessary to ensure 
optimal trait selection and definition.

Understanding the causes and consequences of these changes in functional diversity depends, in part, on 
how functional diversity is measured. Different functional metrics provide distinct and often complementary 
perspectives on trends in functional diversity, therefore, metric choice should be tailored to the research aims2, 5. 
However, certain metrics may be more sensitive to identifying change in particular contexts29. For example, we 
found large differences in functional evenness between the total catch and reported catch for the Desventuradas 
Islands of Chile. However, reported catch is only based on three taxa and is predominantly comprised of a sin-
gle species (Chilean Jack Mackerel), giving a low functional evenness for reported catch. As a result, including 
unreported catches where reported fisheries rely on a small number of target species may have a larger impact on 
evenness than in a diverse reported fishery even if the proportion of unreported catch is low. Similarly, we focused 
on metrics that account for the biomass of exploited taxa. Functional metrics based on presence-absence data, 
such as functional richness, may be more sensitive to identifying changes in the exploitation of comparatively rare 
functions among different catch groupings29. Such an approach would be important if rare functions are identified 
as being particularly vulnerable to fisheries exploitation, and are central to ecosystem function and resilience7, 30.  
For example, a few browsing herbivores are critical for reversing coral to algal regime shifts on coral reefs, yet 
browsers are particularly vulnerable to fishing30.

Additionally, metric selection may depend on how well unreported catches within an EEZ can be assessed, 
specifically with respect to the certainty assigned to a reconstruction. The estimated accuracy of the catch recon-
struction varies spatially13, 22; our findings suggest that where there are difficulties in reconstructing unreported 

Stage Recommendation

Functional analysis

1. Data: Highlight patterns in trait coverage, such as 
variation in space. Enrich trait information available 
from FishBase where possible with other databases 
such as the Ocean Biogeographic Information System 
(http://www.iobis.org/) and the Global Biodiversity 
Information Facility (http://www.gbif.org/).

2. Methods: Careful choice of functional metric. In 
EEZs where there is high proportion of unreported data 
and low confidence in catch reconstruction, functional 
dispersion may be less affected by missing data than 
functional evenness.

3. Methods: Comparison of patterns in functional 
diversity using fisheries-dependent and independent 
data to understand the links between exploitation 
patterns and ecosystem function.

Certainty

4. Data: Increased comprehensiveness of certainty data 
in catch database.

5. Methods: Assessment of differences in functional 
diversity estimates among low and high certainty data.

Reconstruction of 
missing data

6. Data: For each EEZ more detail is needed in 
background documents relating to each step of the 
reconstruction process, such as data sources used and 
assumptions made.

7. Data: Need to enrich data with fleet attributes such as 
gear type so can assess selectivity effects on functional 
diversity.

8. Methods: Simulation testing exploring the effect of 
different reconstruction assumptions and approaches 
versus gear selectivity effects on functional diversity 
estimates.

Reporting

9. Data: Improved taxonomic resolution of FAO catch 
reporting is needed.

10. Methods: Assessment of the impact of temporal 
changes in taxonomic resolution in FAO dataset on 
functional diversity estimates.

Table 2.  Recommendations related to data quality and methodologies to improve the robustness of functional 
analyses based on global fisheries datasets. Shading corresponds to Fig. 1a, black shading represents steps 
beyond those shown in Fig. 1a.

http://www.iobis.org/
http://www.gbif.org/
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catches, certain functional metrics may be less influenced. Specifically, we found that differences between 
total and reported functional dispersion was generally lower across EEZs than differences in evenness, such 
that accounting for unreported catch may be less critical when exploring trends in dispersion than evenness 
(Recommendation 2, Table 2). Thus, investigation into the range of functional roles present in the catch may be 
possible even where reconstruction of unreported catches is challenging, while evaluation of the relative domi-
nance of particular functions may be less robust in this context.

Research exploring patterns in fisheries functional diversity and traits is an expanding literature that 
exploits broad-scale, comprehensive datasets. However, whether these trends reflect corresponding shifts in 
the functional composition of fish communities needs to be assessed16, 31. What fishes are caught is not only 
driven by their abundance within the fish community, but is also related to gear selectivity and fishing capacity, 
targeting capabilities, cultural norms and dietary preferences, regulations, and market conditions16, 23, 32, 33. 
Furthermore, these factors vary regionally and change over time, and may amplify or dampen the underlying 
community trends. The functional diversity of fisheries is an important metric in itself, for example, work by 
Dee et al. highlights functional diversity may buffer the negative impacts of temperature variability in relation 
to fisheries’ yields, thus providing an indication of economic risk and stability9. Nonetheless, understanding the 
links between functional diversity trends in the catch and in the community is essential to make the connec-
tions between patterns in fisheries exploitation and ecosystem function and resilience over time. Future studies 
need to compare functional diversity trends in fisheries-dependent and independent datasets to tease apart 
fishing, habitat and environmental effects on functional diversity patterns34 (Recommendation 3, Table 2), and 
move beyond the understanding of fisheries reporting effects described here. Such work will provide an under-
standing of the broad-scale temporal and spatial drivers of change in functional diversity in both fisheries and 
fish communities.

Exploring spatial variation in the proportion of catch within different groupings was not a core focus of 
our study. Nonetheless, these findings provide an interesting perspective on the contribution of different catch 
groupings in space. Low reporting and limited high certainty data were not characteristics of specific latitudes or 
oceans, and do not correspond to regions with few stock assessments35. This contrasts with patterns of coverage 
in biodiversity datasets on land, where there are strong regional patterns36. Furthermore, although small-scale 
fisheries may be particularly critical for food security in the global south37, there is no apparent latitudinal or 
socioeconomic gradient in the proportion of the catch arising from small-scale fisheries. Understanding these 
patterns, gaps in reporting, and the distribution of specific sectors is critical to be able to explore the potential 
impact on indicators developed from these data. This knowledge also supports more effective and targeted data 
collection aimed at improving data coverage and thus indicator efficacy36.

Quantitative metrics are important for assessing progress against management objectives, whether fisheries 
or conservation oriented. The use of clear metrics is important to regional management but also to track per-
formance against global targets such as the Aichi biodiversity targets or the Sustainable Development Goals11. 
Certainly, the increasing interest in exploring functional diversity trends4, and the extensive temporal and spa-
tial coverage of the SAUP data makes it an attractive data source for quantifying function specific indicators. 
Nevertheless, although we found little impact on global trends of functional diversity of accounting for unre-
ported catches, this outcome does not account for the impact of the recording and reconstruction process on 
derived functional diversity estimates. Each stage in the reporting and reconstruction process affects the tax-
onomic resolution of fisheries data. The process by which different nations report catches to the FAO does not 
promote recording of data at a fine taxonomic resolution13. Furthermore, there are potential biases in the FAO 
data, such as an increase in the diversity of reported taxa over time (Supplementary Fig. S8). Although this trend 
may be driven in part by changing fishing practices17, changes in species identification and reporting may also 
be a contributing factor. SAUP makes significant effort to counteract these issues by sourcing missing data13. 
In supplementing the reported data with information from other sources, the SAUP process of catch recon-
struction may increase the taxonomic resolution of the data, but often with highly variable uncertainty among 
countries. For example, for Angola the taxonomic composition of discards is based on data from Gabon38, 39 
whereas for New Zealand, the literature provided information on 400 species that have been recorded as discards 
in different fisheries within the EEZ40. A key strength of the reconstructed catch data are their comprehensive-
ness. Nonetheless, taxonomic artefacts in the FAO data are overlain by methodological assumptions made at the 
reconstruction phase, such that considerable uncertainty remains regarding the taxonomic identity of certain 
components of the catch12–14. These uncertainties are highlighted on the SAUP website, where it recommends 
that only certain subsets of data are used for trophic or trait-based indicators, based on the degree of taxonomic  
pooling13. Nonetheless, much of the SAUP data has missing certainty data, which refers to the likely accuracy of 
the fisheries data14, making it difficult to assess how data quality influences functional metric estimates. Increasing 
the comprehensiveness of the certainty data is a clear research need (Recommendations 4&5, Table 2). It is now 
critical we explore how the process of reporting and reconstructing global catches influences our understanding 
of functional diversity trends Recommendations 6–10, Table 2). For example, simulation testing of reconstruction 
methods would allow us to explore the effects of this process on functional diversity trends.

In conclusion, we show that different components of the catch such as reported and unreported data, and 
industrial and small-scale sectors have different functional fingerprints. These differences may be discerned 
despite broad-scale variability in fishing practices, habitat and biophysical conditions. The impact of unreported 
catches on functional diversity patterns is scale-dependent, with larger impacts at local to regional scales than 
at a global scale. Critically, management decisions are made at these smaller scales, indicating that accounting 
for unreported fisheries in functional diversity patterns is fundamental to supporting fisheries management. In 
particular, where there is low certainty regarding unreported catches, this may have significant impacts on our 
understanding of the effects of fishing on functional diversity and the knock-on consequences for ecosystem 
structure, function and resilience
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Selection of functional metrics depends on the research aims, but our findings suggest that functional dis-
persion may be less susceptible to missing data such as bycatch and illegal fishing, than functional evenness. 
Therefore, dispersion may provide a more robust metric in EEZs where reconstruction of unreported catches 
is proving challenging. Similarly, basing functional diversity analyses on either coarse functional groupings or 
fine-scale traits depends on the focus of the study, however, at the global scale, unreported catches has similar 
impacts on functional diversity trends regardless of the resolution of the function data. Exploring the influence 
of additional aspects of the catch reporting and reconstruction methods and assumptions on functional diversity 
trends was beyond the scope of this study. However, we provide a series of clear recommendations to build under-
standing in regards to the impact of the reconstruction process on functional diversity patterns. Increasing the 
comprehensiveness of the certainty data associated with the catch information is an important first step.

Methods
Catch data.  The SAUP provides spatially explicit catch data at a range of taxonomic resolutions from species 
up to broad classes such as “marine fin fishes”13. SAUP categorises components of the catch according to report-
ing status, certainty score and fishing sector (Supplementary Table S1A). Reporting status refers to reporting 
of catches in official figures e.g. national and FAO databases (Fig. 1a). Unreported catches are estimated based 
on literature searches, expert opinion and local knowledge. Certainty scores relate to the estimated accuracy of 
the reconstructed catch data13 and is based on qualitative expert assessment of the relative accuracy of the catch 
estimate derived from the underlying data, assumptions and methods used for each sector and country, and was 
developed from a similar approach used in the IPCC process22. Catch data were downloaded from the SAUP 
website for each EEZ in 2010.

Trait data.  The functional roles of species may be described using broad functional groups, or using 
more detailed information on a range of life-history, ecological and behavioural traits2, 5. We explored func-
tional trends using both approaches. Broad functional groups (e.g. Small pelagic) are provided within the 
SAUP data (Supplementary Table S2A). These groupings are available for all taxa, regardless of taxonomic 
resolution and thus functional metrics based on the functional groups were estimated using all the catch 
data. Fine-scale trait data were downloaded from FishBase using rFishBase41, 42. The six traits (habitat, min-
imum depth, maximum depth, trophic level, maximum length, and body shape) were selected to reflect the 
role of a species within the ecosystem (Supplementary Table S2B), and where data were readily available. 
For example, the minimum and maximum temperature range of a species may reflect where a species lives 
and feeds, but these data are poorly represented in FishBase9. In FishBase, trait data are presented at the 
species level. Where trait information was lacking at the species level, genus level averages were used (mean 
for continuous traits and mode for categorical traits)16. Where catch data were recorded at the genus level, 
the average values for species within that genus were used. Catch data recorded at a taxonomic resolution of 
family or lower were not incorporated into the estimate of functional diversity based on fine-scale trait data 
as averaged trait values at these lower resolutions would bias estimates of diversity. The proportion of catch 
in the SAUP database presented at species and genus level varied amongst EEZs (Supplementary Fig. S9). 
An underlying assumption of using a single estimate for each trait for a species is that trait values are fixed 
and do not change for a particular species in time, space or as individuals grow. Thus, spatial trends in func-
tional metrics estimated from these traits are representative of shifts in the composition of the catch16. The 
SAUP catch data cover vertebrate and invertebrate species, but the majority of the global catch is composed 
of fishes (finfish and chondricthyans; Supplementary Fig. S10), and little trait data are available for inverte-
brate species (SeaLifeBase), therefore our analyses focused on fishes only.

Functional diversity.  Functional diversity may be represented by a variety of complementary and overlap-
ping metrics43. We explored functional diversity by estimating functional evenness and functional dispersion 
using the FD package in R44. Functional evenness describes how evenly taxa are distributed in trait space (Fig. 1b). 
Functional dispersion is the distance of each taxon from the central point in trait space occupied by all the sam-
ples, and is strongly correlated with Rao’s Q, another metric commonly used to measure functional diversity44. 
Both metrics were weighted by biomass of each taxon, such that the estimates are influenced by the relative 
prevalence of each taxon in the catch and are not sensitive to outliers. As a result, the estimates were influenced 
little by trait combinations and functional groups that were rarely caught. Functional richness, a metric based on 
presence-absence data, and thus more sensitive to rare functions, was also estimated. However, the results are not 
presented here because this metric is estimated from a convex hull volume produced from the axes returned from 
a principle coordinates analysis (PCoA), and this reduced-space representation produced by the FD package44 
was of low quality (quality of the representation is indicated by an R2 value).

The metrics were estimated using the Gower dissimilarity index, which allows for numeric, ordinal and cate-
gorical traits, and allows for some missing values. All traits were equally weighted. A Cailliez correction factor was 
used to account for negative eigenvalues in the distance matrix. The functional metrics were estimated for every 
EEZ in 2010, first using all the data, then for different components (termed ‘groupings’) of the catch in relation 
to reporting, uncertainty and sector (Supplementary Table S1B). These calculations were repeated using both the 
SAUP functional groups for the whole catch regardless of taxonomic resolution and the finer-scale traits for the 
catch identified to species or genus level (Supplementary Table S3).

Data analysis.  To understand spatial variability in the proportion of catch within different catch group-
ings, proportion data were mapped by EEZ. Spearman rank correlations were used to investigate the relationship 
between the proportion of catch in the different groupings, for example, the correlation between the proportion 
of catch reported and the proportion of the catch caught by the small-scale fishery sector.
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Three steps were used to characterise the functional fingerprint of the different catch groupings and explore 
the relationship between functional metric estimates for catch data within the different groupings: (1) Functional 
estimates were mapped for each of the catch groupings; (2) spearman rank correlations were estimated among 
functional metric estimates for the catch groupings; and (3) Wilcoxon paired tests were used to evaluate differ-
ences in the distributions of functional metric estimates among the different groupings. To explore how the func-
tional fingerprint of the different catch groupings influences the functional patterns of the total catch, spearman 
rank correlations were calculated between the catch groupings and the total catch. These analyses were repeated 
using functional estimates calculated from the functional group data and the fine-scale trait data.

Each EEZ had a different proportion of the catch within reported, high certainty and industrial groupings. To 
understand which EEZs show greater differences in the functional metrics between the total catch and specific 
catch groupings, the difference between total catch functional metric estimates and those for reported and indus-
trial fishing were mapped.

Data availability.  All data used in the study are available for download from the Sea Around Us website 
(seaaroundus.org) and FishBase (fishbase.org).
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