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Abstract

Background: The learning active subnetworks problem involves finding subnetworks of a bio-molecular network
that are active in a particular condition. Many approaches integrate observation data (e.g., gene expression) with the
network topology to find candidate subnetworks. Increasingly, pathway databases contain additional annotation
information that can be mined to improve prediction accuracy, e.g., interaction mechanism (e.g., transcription,
microRNA, cleavage) annotations. We introduce a mechanism-based approach to active subnetwork recovery which
exploits such annotations. We suggest that neighboring interactions in a network tend to be co-activated in a way
that depends on the “correlation” of their mechanism annotations. e.g., neighboring phosphorylation and
de-phosphorylation interactions may be more likely to be co-activated than neighboring phosphorylation and
covalent bonding interactions.

Results: Our method iteratively learns the mechanism correlations and finds the most likely active subnetwork. We
use a probabilistic graphical model with a Markov Random Field component which creates dependencies between
the states (active or non-active) of neighboring interactions, that incorporates a mechanism-based component to the
function. We apply a heuristic-based EM-based algorithm suitable for the problem. We validated our method’s
performance using simulated data in networks downloaded from GeneGO against the same approach without the
mechanism-based component, and two other existing methods. We validated our methods performance in correctly
recovering (1) the true interaction states, and (2) global network properties of the original network against these other
methods. We applied our method to networks generated from time-course gene expression studies in angiogenesis
and lung organogenesis and validated the findings from a biological perspective against current literature.

Conclusions: The advantage of our mechanism-based approach is best seen in networks composed of connected
regions with a large number of interactions annotated with a subset of mechanisms, e.g., a regulatory region of
transcription interactions, or a cleavage cascade region. When applied to real datasets, our method recovered novel
and biologically meaningful putative interactions, e.g., interactions from an integrin signaling pathway using the
angiogenesis dataset, and a group of regulatory microRNA interactions in an organogenesis network.
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Background

One aim of systems biology is to map high-throughput
OMICs data or a list of genes to known pathways, as
well as discover novel networks of interactions. Advanced
integrated platforms such as Metacore from GeneGo Inc,
Ingenuity Pathway Analysis (Ingenuity Systems, www.
ingenuity.com), or GeneSpring Pathway Analyzer (Agilent
Technologies) provide tools to allow such discoveries
by mining large proprietary, often manually annotated,
databases for networks of interactions enriched for
genes/proteins in the user’s input gene list. The details
relating to each interaction are supported by evidence in
scientific literature. Such details allow the interactions to
be categorized in different ways, such as effects (posi-
tive, negative, or “other”), mechanism of the interaction
(e.g., binding, cleavage, phosphorylation, microRNA reg-
ulation etc.), and directionality.

However, the resulting network does not always accu-
rately reflect the cellular events occurring in the condition
from which the high-throughput experiment is taken. The
interactions stored in Metacore are known to exist in a
specific set of conditions in certain organisms - not nec-
essarily under the users experimental conditions. Most
programs provide an option to filter the network interac-
tions by particular disease, tissue or species, but this limits
the ability to discover new potential interactions not pre-
viously associated with the user’s disease/tissue/species,
which are revealed in the user’s experiment.

On the other hand, if filtering is not used, the resulting
network will contain many false positives, i.e., interac-
tions not truly present in the user’s experimental condi-
tions. Furthermore, the input gene list used to generate
the network is simply a list, and does not encapsulate all
the information in the researcher’s expression data, such
as time series variation. In summary;, it is likely that only
a subset of interactions produced in the generated net-
work are active - forming an active subnetwork of the
interaction network.

Active subnetwork problem description and background
Ideker et al. [1] introduced a framework for identifica-
tion of active subnetworks from an original network. This
framework entails a problem that searches for connected
regions of a molecular interaction network that show sig-
nificant changes in expression over a particular subset of
the conditions.

Many researchers have since investigated this problem.
Ultimately, the methods developed to solve this problem
involve two parts:

o the scoring function: how do you score a connected
region of genes and interactions that reflects the
likelihood that the region is active?
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¢ the search method: how do you search among the
connected regions for the regions with the highest
scoring function (a global optimization problem)?

In Ideker’s work, the method proposed uses the sta-
tistical scores of individual genes obtained from gene
expression data to derive an overall statistical score for
every candidate subnetwork and uses simulated annealing
to search from high-scoring subnetworks.

Ideker et al. showed that the second step in the
problem, that is, searching for a connected subnetwork
with the highest score is an NP-hard problem. Since
then, various efforts have attempted to use heuristics to
address the problem, including simulated annealing [1,2],
local greedy search [3-6] and mathematical programming
based methods [7,8].

Ideker’s method treats each gene’s contribution to the
scoring function as fixed, because its differential expres-
sion (DE) status is determined only once. An alternative
approach to active subnetwork searching is to adjust the
classification of whether a gene is DE or not, according
to the classification of its neighbors in an active subnet-
work. By looking at the local neighborhood of a gene, and
the expression levels of these genes, we can adjust what
we consider to be true differential expression. By using
an iterative approach, one can find an active subnetwork
based on the genes adjusted DE classification.

Wei and Li [9] adopt such an approach. They use an
iterative algorithm to assign a binary value to each gene
in the original network that reflects the true DE state of
the gene. Genes assigned to a true DE state belong to the
active subnetwork, while the remainder of the genes do
not belong to this subnetwork. In each iteration, a gene
is assigned to a state by comparing the posterior prob-
ability of each state assignment (true DE or not). The
posterior probability of a state is the product of the like-
lihood of observing the expression data given the state
(a “noise model” - see later), and a prior probability of
the state. A Markov Random Field (MRF) [10] is used
to create the prior probabilities by exploiting dependen-
cies between state assignments of neighboring genes in
the network. Global parameters used in the noise model
and MRF are updated at each iteration based on cur-
rent state assignments using an iterated conditional mode
algorithm [11].

Some methods have attempted to use observations on
edges in their scoring function [2]. The advantage of edge-
based methods is that returning a list of proteins (nodes)
does not tell you anything about which interactions are
active in the condition. Node-based methods rely on con-
necting all interactions in the original network that exist
between the active nodes. In fact, nodes can be connected
through multiple alternate interactions, and through indi-
rect paths. It is useful to know exactly which interactions
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are active in the condition, and responsible for carrying
out the biological function of interest.

One measure of edge strength is the correlation of gene
expression between the two adjacent nodes [12,13]. Qiu
et al. developed a tool RegMOD which classifies genes
as “active” or “not active” using a support vector regres-
sion method where a diffusion kernel matrix specifies the
relationship between adjacent genes using the Pearson
correlation between gene’s expression levels [14].

Ma et al. claim to be the first to use both node and
edge-based measures in the scoring function [15]. In par-
ticular, they use the F-statistic to measure gene differential
expression, and an expected conditional F statistic (ECF)
to measure gene-gene differential correlation across mul-
tiple observations between groups.

In a related study, Jaimovich et al. [16] predict ground
truth state of protein-protein interactions (PPIs) from
large PPI databases. They use protein interaction and cel-
lular location assay data as noisy observation data of the
ground truth state of each interaction (present or not). A
relational markov network is used to create dependencies
between neighboring interactions.

Function annotation in protein-protein interaction networks:
A parallel problem domain

We now describe another problem domain in the area
of biological network characterization which has arisen
in parallel to the active subnetwork problem. Researchers
working in each problem domain have generated tools and
algorithms used by researchers in the other domain. This
other problem domain concerns the annotation of previ-
ously unannotated proteins in protein-protein interaction
(PPI) networks. Problems in this domain focus on opti-
mizing the assignment of function labels to proteins with
unknown function in a PPI. Solutions to this problem can
also involve use of a scoring function that scores the like-
lihood of assigning a label to a given protein, and a search
method to find the optimal assignment over all proteins in
the network.

Deng et al. use a scoring function which employs a
Markov Random Field that creates a dependency between
neighboring proteins. The likelihood of protein being
given a particular label assignment (e.g., label “A”)
depends on the number of proteins assigned to that label
in a local neighborhood in the PPI [17]. Letovsky and
Kasif developed a protein labeling algorithm for a par-
tially unlabeled PPI network by using a binomial model
of the probability based on the local neighborhood, and a
Markov Random Field belief propagation algorithm [18].

In an improvement to the work of Deng et al., Lee et al.
(the same team of researchers) modified the scoring func-
tion and used a multivariate logistic regression approach.
In the new function, the likelihood of assigning a given
protein to a label (e.g., label “A”) depends on multiple
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factors, where a factor is created for each label in the set
of possible protein function labels. The factor reflects the
number of proteins in the local neighborhood assigned to
the particular label (e.g., label “i”), weighted by a unique
parameter for the two labels (e.g., a parameter for label
“A” with label “i”) [19].

Comparison of methods in two problem domains

We have described how MRFs have been used in the pro-
tein function identification problem domain [17,19], as
well as in the active subnetwork problem domain [9,20]
to reflect relationships between neighboring genes and
proteins in biological networks. Lee’s modification of
the protein label assignment MRF model to incorporate
multiple factors that reflect the varying influence of neigh-
boring protein label assignments according to the two
labels in question, has not yet been extended to the active
subnetwork problem. There is a good biological motiva-
tion in the active subnetwork problem space to exploit
such multivariate techniques, as we describe shortly.

A novel approach to discovering functional active
subnetworks with a mechanism-dependent scoring function
Method summary

Our work builds on the above literature to learn active
subnetworks, where we specify that the probability that
an interaction is assigned to the “active” state depends on
the state of each neighbor interaction and and where the
level of dependence varies according to the mechanism
assigned to the two interactions. This work can be seen
therefore as a modification of the work of Wei and Li to
incorporate some of the advances made by Lee et al., with
respect to weighting each neighbor’s influence according
to pre-defined label assignments, rather than treating each
neighbor as equally influential.

We use the controlled vocabulary provided by GeneGO
Inc. to specify the mechanism labels in our problem. Table
1 states the symbols used in Metacore and this paper for
the interaction mechanisms in Metacore.

Our program written in the R language [21] reads in
a network of interactions from Cytoscape [22] generated
SIF file, as well as the Cytoscape annotation files which
specify the interaction mechanism for each interaction in
the SIF file. Our program also reads in a vector of corre-
lation coeflicients, considered to be a noisy observation
of the true state of the interaction in that experiment, or
can alternatively calculate the correlation vector from an
input gene expression matrix. The algorithm assigns states
(active or non-active) to the interactions in the network.
The algorithm uses a probabilistic graphical model which
incorporates both a noise model and a MRF over the inter-
actions in the network to learn a final system state, which
is described in section “A probabilistic graphical model
framework”.
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Table 1 Metacore mechanisms and symbols

Mechanism Description
symbol
B Binding - compound binds the enzyme or receptor
C Cleavage
(@Y Covalent Modification
+P Phosphorylation
-P Dephosphorylation
T Transformation
n Transport
z Catalysis
TR Transcription regulation
M MicroRNA binding

In this manuscript, we have used networks generated by
Metacore from a list of differentially expressed genes. The
networks are imported into Cytoscape using the plugin
CytoscapeNetPlugin.jar, where the SIF files are exported.
However, any Cytoscape network with edge labels con-
taining mechanism annotations can be read into R and
used in our algorithm.

The MRF uses parameters to express the dependence of
an interaction’s state assignment on its neighbor’s state.
While Wei and Li use a single parameter to express this
dependence (the “single parameter approach”) [9], we
learn the value of multiple parameters, where a parameter
exists for each unique pair of mechanisms. The parameter
expresses the relationship between a pair of neighboring
interactions annotated with this pair. With a larger set of
parameters, a more complex function is used to model
the dependence of each interaction on a local neighbor-
hood in the network. We iteratively learn this larger set
of parameters and infer the state of interactions, to con-
verge to an active subnetwork. We call this approach a “full
parameter” approach.

We compare this approach to the single parameter
approach and Ideker’s JActiveModules using artificially
created original networks with simulated data. We then
apply the single and full parameter approaches to learn
active subnetworks from real expression data, and dis-
cuss how the full parameter approach highlights different
functional aspects of the active subnetwork for closer
consideration by biological scientists.

We now justify why we believe it is appropriate to split
up the parameter to weight a neighbor’s influence accord-
ing to its mechanism in the active subnetwork problem
domain.

Assumptions about mechanism-mechanism pairs in active
subnetworks

In this work, we assume that interaction mechanisms
are correlated with other interactions mechanisms in
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active subnetworks, which we refer to as mechanism-
mechanism (M-M) correlation here, and define more for-
mally later. The level of correlation varies according to the
two mechanisms involved.

To justify this assumption, we first consider hypothetical
regions of a network made up of a subset of mecha-
nisms, using evidence and citations of such regions in real
biological networks.

1. A phosphorylation pathway that contains a series or
“cascade” of phosphorylation and de-phosphorylation
interactions. In such a cascade, interactions
with mechanisms Phosphorylation (+P) or De-
phosphorylation (-P) are typically physically located
next to or close to one another. We would therefore
expect there to be a high mechanism-mechanism cor-
relation for the mechanism pairs {+P, +P}, {—P, —P},
and potentially {+P, —P}. That is, we assume
if part of the signaling cascade is active in a given
condition, it is likely that the remaining interactions
in the cascade are also active in the condition. As
an example, the ERK1/2 cascade is highly conserved,
and depending on the input stimulus and cell
type, regulates various cellular processes such as pro-
liferation, differentiation, and cell cycle progression
[23]. In order for the cellular processes to be properly
carried out, all phosphorylation steps in the pathway
must be carried out; i.e., in order for ERK 1/2 to
relocate to the nucleus and phosphorylate its nuclear
targets, all previous phosphorylation steps must have
occurred.

2. A large protein complex made up of multiple protein
subunits that bind together through a binding
mechanism (B). The formation of proteins from
multiple subunits is prolific throughout biology, and
genes corresponding to protein complex subunits
are often coexpressed in a condition [13]. As
one example, fibrin is glycoprotein made up of three
pairs of non-identical polypeptide chains: which
are the fibrinogen alpha, beta and gamma subunits.
Here, we expect a large mechanism-mechanism
correlation for the mechanism pair {B, B}.

3. A cleavage cascade that contains a series of cleavage
(C) steps. For example, the blood coagulation process
involves the activation of multiple coagulation
factors, which through a cascade of protein cleavage
events, converge on thrombin, which in turn cleaves
fibrinogen to generate a network of cross-linked
fibrin that is involved in blood coagulation [24].

We would expect a large mechanism-mechanism
correlation for the mechanism pair {C, C}.

4. A transcription regulatory region in which a tran-
scription factor (TF) regulates multiple targets via a
transcription mechanism (TR). Typically, a particular



Lichtenstein et al. BMC Bioinformatics 2013, 14:59
http://www.biomedcentral.com/1471-2105/14/59

TF becomes biologically activated (e.g., through

a mutation or phosphorylation event), locates to

the nucleus, and is sufficiently expressed to regulate
multiple potential gene targets. This would reflect the
well documented 1-many behavior of TF bindings in
biological conditions. See for example Yu et al. [25]
who showed that target genes of a regulator tend to
be co-expressed, and that the level of co-expression
is higher when multiple transcription factors are
involved. We also know that transcription regulatory
cascades appear in transcription regulatory networks
[26]. We therefore expect a high correlation

for the {TR, TR} mechanism pair in an active
subnetwork with transcription regulatory regions.

5. A transcription region involving microRNA (miRNA)
activity. miRNAs are a 22-23nt RNA transcript which
are known to target mRNA and either break down
the transcript, or prevent its translation to a protein
[27,28]. The mechanism annotation is (M). It has been
shown that miRNAs often play a role in controlling
mRNA transcript levels by participating in simple
and complex circuits [29] such as single-input motifs
(SIMs) (one miRNA to multiple targets) and multiple-
input motifs (MIMs) (multiple miRNAs bind to
multiple targets to provide a coordinated regulation of
targets) [30,31]. Because miRNAs participate in SIMs
and MIMs we expect high correlation for the pair
{M, M} in an active subnetwork where miRNAs are
functional.

6. A complex regulatory circuit made up of miRNAs
and TF activity. For example, it has been shown that
miRNAs can bind to the gene target of a TF, or to
the TF itself, in a feed-forward loop [32,33]. In such
a region interactions with TR mechanisms neighbor
interactions with M binding mechanisms, and
we expect an active subnetwork containing such a
region to have high a correlation for the pair {TR, M}.

We seek to find active subnetworks by using the
assumption that true biological networks are likely to con-
tain regions that are largely, (though not entirely), made
up of interactions belonging to a subset of mechanisms.
The mechanisms group together to carry out a meaning-
ful biological function within the region. We have justified
this assumption in this section, by providing multiple
examples with evidence of such mechanism groupings in
several canonical GeneGO Pathway Maps.

M-M pair rich active subnetworks

We predict our method will have the greatest predictive
accuracy in recovering active subnetworks which meet
certain properties. First, we provide some definitions. We
define an M-M pair as a set of two mechanisms in IM.
If n= |IM]|, there are %‘Ll) possible M-M pairs allowing
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pairs of the same mechanism. First, we divide M-M pairs
into two types: correlated M-M pairs and non-correlated
M-M pairs. We now define an interaction-interaction pair
(I-I pair) as a pair of neighboring interactions in the net-
work. Consider one of the possible M-M pairs, which we
call M1-M2 for convenience. We say an I-I pair is labeled
M1-M2 if one interaction from the pair is labeled M1
(i.e., has an annotated mechanism M1), and the other
interaction is labeled M2 (i.e., has an assigned mecha-
nism M2). Further, each interaction in an I-I pair has a
true activity state in the original network: active or non-
active. (It is this state that we try to recover in the active
subnetwork recovery problem.)

We now describe the properties of the original network
that will generate good results with the full parame-
ter approach. Each pair M1-M2 in the set of correlated
M-M pairs should meet the following criteria. Consider
only I-I pairs labeled M1-M2 in the network. This set
of interactions should be enriched for I-I pairs where
the two interactions are in the same activity state. This
means, among I-I pairs labeled M1-M2, the number of
pairs where both interactions in the pair are active, or
both interactions are not active, should occur more fre-
quently than expected by random assignment of activity
state to interactions. Specifically, the network should have
a greater number of I-I pairs labeled M1-M2 that are in
the same state relative to the number I-I pairs labeled
M1-M2 in different states (i.e. one interaction is active,
and the other not active). Such a finding suggests I-I pairs
labeled M1-M2 are co-activated; that is, when one inter-
action labeled M1 is active in a condition, its neighbor
labeled M2 is also likely to be active. These pairs will have
a high mechanism-mechanism correlation.

For a pair M1-M2 in the set of non-correlated pairs,
the network should have a similar number of I-I pairs
labeled M1-M2 in different states relative to the num-
ber of I-I pairs labeled M1-M2 in the same state. I-1
pairs labeled M1-M2 in this scenario are not co-activated
in the condition, and are not expected to have a high
mechanism-mechanism correlation.

If the original network has these properties, we describe
the active subnetwork as an “M-M pair rich active subnet-
work” Such a network produces a range of mechanism-
mechanism correlations, allowing the full parameter
method to fine-tune the dependencies of interaction
activity states on a neighbor’s activity state, according to
the mechanisms assigned to the interactions.

When viewing only the active or non-active part of
the original network (the active subnetwork), it should
appear to contain regions with many I-I pairs labeled with
M1-M2, if M1-M2 is a correlated M-M pair. Figure 1
show an example of an M-M pair rich active subnetwork
in a Blood Coagulation Pathway Map downloaded from
GeneGO Inc.
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Figure 1 Part of blood coagulation pathway downloaded from GeneGO Inc. Interactions are colored by mechanism; grey for binding (B),
green for cleavage (C) and blue for transformation (TR). Solid lines indicate active interactions (the active subnetwork), while dotted lines indicate
the remaining non-active interactions. The figure highlights a region of the active subnetwork rich in interactions of pairs {C,C}, {C, T} and {T, T}.In
the active subnetwork, Thrombin cleaves two protein receptors (PAR1 and PAR4). These receptors then transform G-protein alpha-13, enabling it to
effect the blood coagulation process further. On the contrary, there is no strong correlation for the pair {B, T}, as about the same number of |-l pairs
with this label are in the same state (e.g., G-protein alpha-q (B) LARG (active), LARG (T) RhoA (active)), as in a different state (e.g.,, PAR4 (T) G-protein

In our solution, we will see that mechanism-mechanism
correlations for each M-M pair are not known and are
learned from the data in the form of parameters. Hav-
ing provided the background and justification for our
approach, we now introduce our solution to the active
subnetwork problem.

Methods

A probabilistic graphical model framework

We use a probabilistic graphical model framework to
address our problem of finding active subnetworks within
networks generated with GeneGO Metacore tool from an
uploaded experimental dataset. The probabilistic graphi-
cal model contains two components. The first component
describes the likelihood of observing the correlation of
expression profiles between edges in the network given
the state (active or non-active) of all the interactions
in the network (the Noise Model). The second compo-
nent creates dependencies between the states of neigh-
boring interactions in the physical network (the MRF
component).

Random variables, parameters and assumptions

Notation

We use the following notation. We use capital letters
to denote RVs (eg X) and lower case letters denote a
particular realization (or observation) of a RV (e.g., x).
Subscripted letters denote a particular RV from a class of
RVs (e.g., X1). Bold font denotes a vector of RVs belong-
ing to the same class (e.g., X = {X1, X2...X,;}). A horizontal
bar over a value denotes a RV is not equal to this value

(e.g., x =j denotes x is not equal to j). For a set of vari-
ables, a horizontal bar over a RV denotes all variables in
the set except this RV (e.g., for the set S, S;) implies all
RVs in S except i.The size of a vector (or set) is denoted by
I (g 1XI):

Network and graphical model definitions

We define the original network as a graph G = (V,])
with a set of components v; € V and a set of interactions
I;j € I between components v; and v;. Y = (Y1, ¥2..Y)) is
a vector of RVs comprising the time-course gene expres-
sion profiles for p genes in the original network. Each
Y; € Y is itself a vector of size n * ¢t of observations
for each node v; in the network with #n replicates taken
over t time points during the time course. Each inter-
action I;; is pre-assigned by Metacore to an interaction
mechanism, which we denote by IM(/,,,), where IM(Z,,) €
{B,C,CM,+P,—P,T,Tn, Z, Tr, M}.

To construct the graphical model, we convert inter-
actions in I to random variables. In the graphical
model, there are several classes of random variables. Q =
(Q1,15 - Q1,ny5 Q2,1~--Q2,n2~-Qg,ng) is a vector of latent dis-
crete RVs, where Q,,, is the RV corresponding to inter-
action I, in the original network, and #; is the final
neighbor of source node v;. We refer to IM(Q,,,) to spec-
ify the interaction mechanism of the random variable Q,,,
in the graphical model.

Each entry Q,,, in Q specifies a probability distribution
over each state in the state space. Each ¢, corresponds
to a state assignment (or realization) of Q. q thus speci-
fies the full system realization for all the interactions in the
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putative network. The state space of Q,,, may be large as
we shall see, however, the distribution for Q,, only spec-
ifies non-zero probabilities for two states, the active or
non-active state. We use A(Q,,,) = 1 to denote the event
that Q,,, is in the active state and A(Q,,,) = 0 to denote
the event that Q,,, is in the non-active state.

R comprises the set of sample correlation statistics cal-
culated from the expression data Y. R,,, is an observed RV
in the graphical model and corresponds to the Spearman
correlation between expression variables (Y, and V) over
a single time-course experiment.

Model parameters
The parameters in this model can be thought of as latent
variables. The parameters include:

® O - A distributional parameter used to determine the
likelihood of values in R given the current system
realization.

e W - A set of parameters which describe the
relationship between adjacent RVs in the MRF
component of the graphical model which creates a
dependency between the state of neighboring
interactions in the putative network.

Model assumptions
We create the following model assumptions:

e Each sample correlation r,, between RVs Y, and Y,
is calculated using the Spearman correlation
coefficient and thus there are no assumptions on the
distribution of Y, or Y,,.

e Each RV Q,, is coupled to other RVs in Q via the
MRF Cq. The parameters of the MRF are learned and
specified in W.
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Graphical model representation
We define the graphical model formally as a probabil-
ity distribution p which factorizes over a graph. The
nodes in the graphical model comprise the RVs defined
in “Network and graphical model definitions” correspond-
ing to interactions in the original network and parame-
ters defined in section “Model parameters” The edges of
the graphical model describe conditional independence
properties between the RVs in accordance with graphical
model theory.

Figure 2 contains a diagram of two different types of
cliques within the graphical model.

The noise model specifies the conditional likelihood
that RV R, , is equal to its observed value r,, given the
state of parent variable Q,,,:

Ly = LRy = Yuplquy) (1)

The MRF component creates a dependency between
Q. and a local neighborhood of interactions denoted
by 9,,,. The MRF specifies the conditional probability of
state assignment ¢,,, given a potential function v,,. The
potential function v, is a function of the state realiza-
tion of the local neighborhood denoted by g;,, and the
parameter set W.

m(Quy = quy) X exp(Vuy(Guys Gouys ¥)) (2)

We describe the joint likelihood function when we
describe the learning and inference algorithms.

Noise model
We now define the conditional likelihood function used
to express the clique potential i for cliques in the noise

(a) Noise sensor component

participates in a noise model clique, and multiple cliques in the MRF.

Figure 2 The two components of the graphical model comprise (a) a noise model, and (b) a Markov Random Field (MRF). The graph
contains a directed component (noisy sensor) and an undirected component which represents the MRF. The figure shows cliques in the graphical
model for an example RV Q.. The noise model specifies that the observed RV R, is independent of all other RVs except its parent Q. The MRF
states that the marginal likelihood of Qy, is independent of all other RVs in the graphical model except Q;, and Q, k. Each interaction RV in Q

(b) MRF component
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model. We provide an explicit formula for the conditional
likelihood term in equation 1.

The conditional likelihood term reflects the likelihood
of observing the correlation data R given the system state.
For noise model clique for example RV Q,,, this is a
statistical test on RV R,,,. We consider the two alterna-
tive hypotheses on Q,, for k € {0,1}, corresponding
to whether the RV is assigned to the active state (k=1)
or non-active state (k=0). Assigning the interaction to a
state, is like assigning the interaction to a class. Each class
k consists of a population of interactions. The popula-
tion can be described by a correlation coefficient popu-
lation parameter pi, which expresses the mean level of
correlation between adjacent genes, for interactions in
class k.

The null hypothesis is: Hy : A(Qy,y) = 0;i.e., I, is not
active in the experimental condition, A(Q,,) is in class
k=0. For interactions in class k=0, we assume R,,, is sam-
pled from a population with parameter pg—o =0. That is,
for interactions in this population, there is, on average, no
correlation of expression between two genes adjacent to
the interaction.

The alternative hypothesis H; is: A(Q,,,) = 1, i.e., the
interaction between nodes u and v is active in the experi-
mental condition. For interactions in class k=1, we assume
the correlation is centered on some number py—; > 0
i.e., there is, on average, some correlation of expression
between the two adjacent genes over the time-course. The
assumption is if the genes tend to be co-activated at the
same time points, it is likely that the interaction is active.

The likelihood function seeks to find the probability of
obtaining the sample correlation coefficient, ie., R,, =
v, for each alternative hypothesis.

We use a Fisher transformation in R package psych
[34] to generate a new RV Z,, from R,,,, where Z,, is a
normally distributed RV.

The Fisher transformation is:

1 1
Z = —log —+ T o artanh(r)
2 1—r

Zy,,y is approximately normally distributed with mean
that is Fisher transform of population CC py for k € {0, 1},
and standard error 4/n — 3 for sample size n.
14+ px 1
1—pr Jn—3

We first consider the case k=1. We do not know popula-
tion parameter py—1, however assume we have an estimate
of this parameter r,, with corresponding Fisher transfor-
mation z.

In our model, equation 1 becomes:

1
Z’v./\/(alog

1

lu,v =Pr(Zyy < zuy|Zuy ~ N(M = Zo,8d = ﬁ

3)
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The transformed likelihood function is a distribution
function which has the property that whenr,, = ry, [, =
Pr(Z,, < z4lA(Q,, = 1)) = 05. [,, increases as r,,
exceeds ry, and decreases in the other direction. There-
fore, the larger the value of r,, relative to r,, the greater
the value of the likelihood term.

For Hy : A(Q,,y) = 0, we convert r,, to a t statistic £,
and perform a one-tailed t test. Equation 1 becomes:

lu,v = u(Tyy > tuylA(Qyy) = 0) ~ T(tu,w df =n-2).
(4)

If rup = 0, then [, = u(Tyy > 0lA(Quy = 0)) =
0.5. [, now decreases as r,, increases above 0. There-
fore, the smaller the value of r,,, relative to 0, the greater
the value of the conditional likelihood term in calculating
H(A(Qyy) = 0).

These tests apply where we assume a positive corre-
lation of expression for Hj, i.e., p; > 0. For negative
correlation r,, < 0, we use the absolute value of the
correlation coefficient |z, |.

Thus ® = {ry} and the parameter r, is com-
puted using a maximum likelihood estimator discussed in
Section “M-step”.

The MRF component
We apply MRF modeling tools developed in the field of
Vision Analysis (see [35]) to this problem.

As stated in equation 2, we define a probability term for
each Q,,, as proportionate to exp(y,,,), where the poten-
tial function v, depends only on the state of the local
neighborhood of interactions 9, denoted by gy,,,.

The single parameter and full parameter approaches
both define the local neighborhood 9,,, as the set of inter-
actions which are immediate neighbors in the physical
network. Both approaches specify the potential function
Y over cliques of size 1 and 2 in the graphical model. How-
ever, the single parameter and full parameter approach
define ¥, differently.

Potential function dependent on neighbor state only
We use the c-color coding distribution [11] that assigns
random variables to one of a discrete set of colors of size
c. The Ising model is a special case of the c-color coding
distribution for c=2 colors, the active state A(Q,,,) = 1
and the non-active state A(Q,,,) = 0.

The Gibbs total energy function is defined over all pair-
site cliques (cliques of size 1- and 2-), as

P(q; ¥) o exp(yono + y1n1 — Bno1) (5)

where ngy is the number of interactions with state 0,
n; is the number of interactions with state 1, and ng;
is the number of interactions with different states, and
¥ = (Y0, ¥1, B)- There is a normalization constant omitted
from this equation.
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The conditional probability of a RV Q,,, taking a given
state k € {0, 1} is:

w(Guy = K|V, qau,y) < exp(¥)

where

¥ = vk — Buy(k) (6)

where nu,v(/_() denotes the number of neighbors of Q,,,
having a state # k.

Vv = {y0,y1,B} and the parameters in ¥ are com-
puted with a maximum likelihood estimator discussed in
section “M-step”.

Potential function as a fully parametric model dependent on
neighbor state and mechanism

In the full parameter approach the potential function v
now depends on the state and mechanisms of the neigh-
bors of Q,,,. Each interaction can be active or inactive, but
will also be assigned a mechanism imported from Meta-
core which exists in the original network, denoted IM,
ie., IM ={B,C,CM,+P,—P, T, Tn, Z, Tr, M}. Each inter-
action can therefore be in 2 [IM| states. Lets call this new
state space IM state, e.g.,

IM _state = {By, Co, CMo, +Po, —Po, To, Tho, Zo, Tro, Mo,
By, C1, CMy, +P1, —P1, Th, Ty, Z1, Tr1, M1}

The model now requires the c-color method for ¢ > 2.

We reduce the state space for each interaction as fol-
lows. We first introduce some terminology. For each state
in the state space k € IM _state, we can describe state “k”
as having an interaction mechanism component denoted
“IM(k)” and an activity level component denoted “A(k)”.
Similarly, we described RV Q,,, assigned to state k as hav-
ing the same two components. For example, if g,,, = B,
it consists of IM(Qy,) = B and A(Q,,) = 0. Metacore
makes a hard assignment of a mechanism to each inter-
action I, in the original network. This means that its
corresponding RV Q,,, in practice can only ever be in two
states for k € IM_state, which are the active and non-
active states where the interaction mechanism component
of k is the annotated value of that mechanism in the
knowledge database; i.e., IM(k) = IM(I,,),A(k) = 1and
IM(k) = IM(,,),A(k) = 0.In graphical model and prob-
ability language, this means that the conditional likelihood
n(Qyy = k) = 0 where IM (k) # IM(Qy,). For example,
if IM(Qy,y) = M (a MicroRNA binding interaction), then
w(Quy = My) € (0,1) and u(Qy,y = Mp) € (0,1), and
w(Quy = Bo) = n(Quy = B1) = u(Quy = +Pp)... = 0.
This reduces the non-zero state space for each interaction
and therefore the number of conditional likelihood terms
we must calculate for the RVs in Q.

Under the full parameter model, we have parameters yx
for each state k in /M _state and parameters B ; for each
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pair of states k and / € IM_state. This would give a total
energy function:

vk =y

1<k<I<|IM state|

wg W) ocexp( Y

1<k<|IM _state|

Brinx1)

(7)

where ny is the number of interactions in state k, and ny;
is the number of distinct neighbor pairs colored (k, /).
The conditional likelihood function is:

m(Quy = kI, Gou,y) X exp(¥)

where

V=v— Y By ®)

leIM _state

where Bir; = Bk and 1,,,(J) is the number of neighbors of
Qu,v having state 1.

Many of the networks we are examining are smaller than
1000 nodes, and the original network is fairly sparse (small
number of edges). Learning parameters from such small
training data could lead to over-fitting the parameters, so
we reduce the number of parameters by setting By ; to zero
where k and 1 have different activity state components,
i.e.,, A(k) # A(l). The remaining non-zero f terms there-
fore include only terms where states k and | possess the
same activity state components.

In the reduced parameter format, we say ¥ = {y;,, 85}
fora € {0,1},s € IM, t € IM and equation 8 becomes:

Y= Vsa — Z Bs,t M (E2) %)

telM

where 1,,,(t;) is the number of neighbors of node Q,,,
with mechanism t not in state a.

The parameters in W are computed with a maximum
likelihood estimator discussed in section “M-step”

EM inference and learning

We implemented the inference and learning algorithm
using the expectation-maximization (“EM”) algorithm to
find the value of latent variables in our model [36,37].
The EM algorithm has the advantage that each step of
the algorithm increases the complete data log likelihood
function (see [38]). In the work of Wei and Li [9], the infer-
ence step in the EM algorithm is performed with iterative
conditional mode (ICM) algorithm [39].

In the EM algorithm, we try to find the state of latent
variables A(Q,,,) € {0,1} which maximizes the expected
value of the complete data log likelihood function.

The expected complete data log likelihood function
combines the noise model with the MRF component
as follows:
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F = E(log u(A(Q), RI¥, ®)|R, ¥, ®)
=log [] [] #®AWQu =jl®,¥)

(u,v)€Qj€{0,1}
>0 > [log(n(RIA(Quy) = j, ©))
(u,1)€Q je(0,1}
1(A(Quy) = /1Qa,,» ¥)
Zk w(AQyy) = k|Q8,”; w)

X 11(A(Quy) = /IR, ¥, 0)

(10)

+ log( )]

where Qj,, is a vector of RVs, where each RV corresponds
to the state of an interaction in the set of neighbours 9,
ie, Qg,, is a vector over all the possible states of the
neighbors of Q,,, current estimates of {®, ¥} denoted
as {©, ¥}, and wAQyy) = j|R,\i/,(:)) is the posterior
marginal probability of A(Q,,,) calculated with previous
parameter estimates.

The EM algorithm iterates calculating the posterior
marginal distributions with maximizing the complete data
log likelihood function to find the values of parameters
{®, W} which optimize the function.

Expected value
In the inference step (the E-step), we calculate the
posterior distribution of the latent variables given by
n(A(Quy) IR, ©, V).

With only a single parameter, calculation of the poste-
rior distribution for latent variable Q,,, becomes (consid-
ering only the MRF component):

(A Quy) = j1Qoy,» V)
= Y. exp—Bxlga, =i x nAgs,))

Do,y eQau,v

(11)

where gy, , is a possible realization of RV vector Qj, ,, and
g3, = jl is the number of interactions not in state j in the
set realization g3, .

To simplify the calculation, we use a heuristic modifica-
tion of belief propagation adopted by Letovsky and Kasif
[18]. Instead of summing over each possible neighbour
realization, we calculate the expected number of neigh-
bors in state j by using current values of the posterior
distribution 1 (A(Q)). These values are used to calculate a
new posterior calculation for ©(A(Qy,y)).

w(AQuy) =1Q,,, V) =exp( — B x E, ) (12)

where

E, =Y wAQ® =) (13)

i€0y,y
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ie., , Eju.v
actions in active state j based on current posterior
distribution.

Calculation of the posterior distribution for the full
parameter model modifies equation 12 so that y,8 and
E;, , become vectors, and the energy function appears as

in equation 9.

is the expected number of neighboring inter-

M-step
In the M step we estimate parameters {¥, ®} by maximiz-
ing the expected complete data log likelihood function in
equation 10.
To find the maximum likelihood estimate (MLE) for
= {ry}, we set the partial derivative of the complete data
log likelihood function to zero, i.e., F= w
0, and the ¥ term cancels out. Thus the expected log

likelihood term becomes for ®:

MLo = Y > log(n(RIA(Quy) =/ ©))

(u,v)€Q je{0,1}
* (W(A(Qyy) = jIR, ¥, ©)

(14)

Given ©® contains r, which only appears in the max-
imum likelihood term when j=1, we can set maximum
likelihood for ® = r,,.

1
MLo = ) 1og(1(Zuy = ZuylN (20 ——=))
()eQ vn=3
x L(A(Quy) = 1|R, ¥, ©) (15)

Another option is to rank the probability (rank
w(AQyy) = 1R, U, 0)) to weight the likelihood function.
This can provide a more stable estimate when many RVs
have large probabilities, by providing the largest weight to
those z,,, values with the highest ranked probabilities.

To find the max likelihood assignment of W, taking the
partial derivative with respect to W, the ® terms cancel
out. Maximum likelihood estimation of the parameters
in W must take into account the partition function. Solv-
ing maximum likelihood becomes intractable, and thus
we use we use pseudo-likelihood (PL) approach[40]. The
pseudo likelihood term is:

Z Z 1 ( M(A(Qu,v) = j|E7u‘V; \I‘)
og — -
(u,V)GQjE{O,l} Zk M(A(Qu,v) - klEku,v’ \IJ)

X 1 (A(Quy) = jIR, ¥, ©)

PLy =
(16)

where w(A(Qyy) = jIE; i’ , W) is set out in equation 12.

The learning and inference algorithm is as follows,
where the while loop is iterated until convergence of
interaction state assignment is reached.
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Algorithm 1 EM ALGORITHM FOR ACTIVE SUBNETWORK RECOVERY WITH HEURISTIC E-STEP (R)

1 letPjforj € {0,1} be a vector of probabilities,where each p;, , € P; is equal to the likelihood
that observed RV R,,, = r,,, given hidden variable state assignment A(Q,,,) = j, and initial

parameter ©.
while (not converged) do {
for each (Q,, € Q) do {

for each (j € {0,1}) do {

. Calculate E}M )

| :

}
Calculate @ as the MLE of ® given P; (Eq. 15)

. Calculate U = argmax(PLq,)(P],E ) (Eq 16)
10 . foreach(Q,, €Q)d

O CONION UL W

11 . . foreach (/ € {0, 1}) do {

12 . . . CalculateP;,, with W and ® and E; (Eq. 12)
13 . . )

14 . )

15 )

using current values of P; (Eq. 13)

Results and discussion

Validation using simulated correlation data for GeneGO
pathway maps

To validate the performance of our model, we used known
pathways downloaded as GeneGO Pathway Maps, from
which we create active interactions as described below.
Our aim is to recover the set of interactions in the original
active subnetwork(s), starting with the original network
and simulated correlation data for simulations k € N.
We term the set of interactions in the original active sub-
network I*. We use four different algorithms to recover a
set of active interactions for a simulation k Ag; Ay € L
We evaluate the success of each of the four algorithms in
comparing Ay to I*.

The algorithms evaluated are the single parameter
model (see section “Potential function dependent on
neighbor state only”), the full parameter model (see
section “Potential function as a fully parametric model
dependent on neighbor state and mechanism”), JAc-
tiveModules [1] and a “maximum likelihood approach”
JActiveModules Cytoscape plugin is popular, widely
used and often used for comparison purposes by other
active subnetwork researchers (e.g., see [14]);. The
maximum likelihood approach uses only the maximum
likelihood configuration of states from optimizing the
likelihood function from the noise model specified in
equation 3. This method uses no prior information
from a MRFE.

Generation of original active subnetworks

To generate the active subnetworks, we recreate a
GeneGO Pathway Map canonical Pathway Map using
the Build Networks tool on the map Network Objects
in Metacore with the Direct Interactions algorithm.
This contains the “pathway interactions” We then
expand the pathway network with Metacore tools to add

other “expanded interactions’, to form the final original
network G.

We then generate the true active subnetwork within the
original network as follows. We first describe the charac-
teristics of network where we expect large performance
gains to be observed using the full parameter approach
over the single parameter approach.

Formally, we require that:

1. for some mechanism-mechanism pairs
(e.g., {M, TR}, interactions of the first mechanism
have on average, of their neighbors of the second
mechanism, a greater number are in the same activity
state as the subject interaction than in a different
activity state, and vice-versa (“correlated pairs”); and

2. for other mechanism- mechanism pairs (e.g., {M, B},
interactions of the first mechanism, have on average,
of their neighbors of the second mechanism, a
greater number which are in a different activity state,
and vice-versa. (“non-correlated pairs”)

We export this original network to Cytoscape and into
R. For simplicity, we reduced the number of interaction
mechanisms to |[M|=3, filtering interactions not belong-
ing to these mechanisms. We created two classes of inter-
actions, where we assume interactions within each class
may work in concert to achieve a biological process or
molecular function. Thus, for each of our simulations, one
class had two mechanisms, while the second class had
only one mechanism. e.g., assume an original network has
‘M = {M, TR, B}, class 1 is {M, TR} and class 2 is {B}.

Beginning with the pathway interactions, we assign
interactions in the first class {M, TR} to the active state
with a 90% probability, and those in the second class {B} to
the active state with a 10% probability. From the expanded
interactions, we assign interactions in the second class
(e.g., B) to the active state with a 90% probability, while
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interactions in the first class are assigned with a 10% prob-
ability. (the “90/10” rule). This creates a network with the
desired mechanism-mechanism correlations.

We created N simulations, where for simulation k, we
simulated expression correlation data rg, using a Fisher
transformation from a normally distributed random vari-
able (see section “Noise model”), where active interaction
in I* have a mean of 0.7, while the remaining non-active
interactions have a mean of 0.

We initialized our program with a vector of initial inter-
action states o, by performing a statistical test on the
simulated correlation data.

To generate results for simulation k, we input ry and
G (the original network), and generated a final system
realization qg, corresponding to a set of active interactions
Af in the original network. We then compare Ay against I*
to evaluate the performance of the 4 algorithms in terms
of sensitivity, specificity and overall percentage correct.

The validation approach is described in a step-wise
process diagram in Figure 3.

GeneGO pathway maps used in simulations

We performed the simulation experiments using three
GeneGO Pathway Maps: VEGF signaling and activation
(VEGF Sig), Cell adhesion:Integrin mediated cell adhesion
and migration (Cell adhesion), and Blood Coagulation.
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Additional files 1, 2 and 3 contain the GeneGO represen-
tation of these Pathway Maps.

We created the original active subnetworks from
the GeneGO Pathway Maps using the 90/10 rule as
described in “Validation using simulated correlation data
for GeneGO pathway maps”. This created original net-
works with the following specifications. For the VEGF
network: 1065 interactions (635 active) IM = {M, B, TR},
active interactions remaining active with 90% probabil-
ity (class 1) : {M, TR}; non-active interactions becoming
active with 90% probability (class 2): {B}; i.e., we postu-
lated the active subnetwork containing a region with high
transcription and microRNA activity in the first instance,
and region with high binding activity in the second.

For the cell adhesion network: 344 interactions (200
active); IM = {+P, —P, TR}, active interactions remain-
ing active with 90% probability (class 1):{+P, —P}; non-
active interactions becoming active with 90% probability
(class 2): {TR}; i.e., we postulated an active subnetwork
containing a region with much phosphorylation and de-
phosphorylation activity, and a region with regulatory
interactions.

For the blood coagulation network: 94 interactions (71
active); IM = {C,B,+P}, active interactions remaining
active with 90% probability (class 1):{C, B}; non-active
interactions becoming active with 90% probability (class

Step 1: create

Step 3: vary the network
according to the 90/10
rule to create an original

Step 2: grow the

network of network in

active Metacore by
interactions expanding

from GeneGO around individual
Pathway Map. nodes.

active subnetwork
with active interactions

A

@

— network of

Step 4: Repeat
for kin 1: N:
simulate sample

data rk & recover

active sub-

interactions Ak.

Figure 3 Validation approach: Step 1: Create an original network from a canonical GeneGO Pathway Map. These initial Pathway Interactions
begin as active interactions (solid lines). Step 2: Expand the network by adding direct interaction to create new regions of Non-Pathway Interactions
considered to be non-active (dotted lines). Step 3: Vary the network to create /* using the 90/10 rule. Notice that interactions in the class {TR} mostly
remain active among Pathway Interactions, whereas interactions in the class {+P, Z} mostly remain active among the Non-Pathway Interactions.
Step 4: Create simulation data ry and recover active interactions Ak via the black box (algorithm under evaluation).
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2): {+P}; i.e., we postulated an active subnetwork contain-
ing a region with binding activity and a region with high
cleavage activity.

Parameter initialization

When generating results, we initialized W as (yp = 1,
y1 = 1, B = 2) for the single parameter model. For the full
parameter model, we set all y;, for s € IM,a € {0, 1} val-
ues to be 1, while B, for s € IM,t € IM were set to 2 for
s = t to set slight encouragement for a pair of neighbor-
ing interactions of the same mechanism to be in the same
state, and to O otherwise.

Method comparison and evaluation

The single parameter approach as implemented by Wei
and Li, and JActiveModules, are node based methods.
They are designed to find active subnetworks in a gene
or protein network when the gene expression signal
is observed and is a feature of the nodes in the net-
work. However, as described, our method is designed
to find active subnetworks when a strong correlation of
expression over time between two neighboring genes is
observed, and this correlation is a feature of the interac-
tions in the network. Therefore, the scoring function in
our method contains an edge-based measure.

Therefore, to provide a fair comparison of our method
to the single parameter approach, and JActiveModules, we
convert their scoring function to an edge-based measure.
For the single parameter approach, we simply reimple-
ment the algorithm to create a neighborhood function
over edges rather than nodes as described above in
section “The MRF component” In the case of Jactive-
Modules, we convert the edges in the network to nodes,
and nodes to edges. That is, each interaction in the orig-
inal network becomes a node with a correlation score
associated with that node. It is then easy enough to run
JActiveModules on the new graph. For the p values, we do
a statistical test on the N=5 simulated r¢ values, using n=5
for the number of time points (samples) (as above).

In JActiveModules, we run the module finder over all p
values from all N=5 simulations. We use simulated anneal-
ing as a search method with default parameter values. We
switched off “regional scoring” because this feature avoids
finding regions active in the case where several of a hubs
genes are switched on. Our simulated dataset assumes

Table 2 Sensitivity of interaction finding TP/(TP+FN)
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precisely this scenario: that is, that hubs are very influen-
tial on target nodes, and therefore we want the state of one
hub target to influence the state of another hub target.

We run JActiveModules module finder 3 times. For each
run, we merge the resulting significant modules (modules
with a Z—score > 3) into a single module. We export the 3
resulting modules and load the resulting subnetworks into
R for performance analysis.

When we ran the full parameter approach for the cell
adhesion and blood coagulation pathways, we used only
two bias parameters for yx where k € {0, 1} correspond-
ing to the active and non-active states of the network. We
limited the number of bias parameters to avoid overfitting,
since the two networks were much smaller than the VEGF
signaling network, and so do not need separate overall
active state weightings per mechanism.

One simulation in each of the cell adhesion and the
blood coagulation pathways resulted in runaway rein-
forcement where all interactions were switched to the one
state. We excluded these simulations from our summary
of results below. Also, one simulation did not converge
in the cell adhesion pathway in the maximum number of
iterations, so we excluded this simulation also. (As EM
is guaranteed to converge, it would have converged with
a larger maximum number of iterations.) For the blood
coagulation network, we used the rank weight variation
when calculating the maximum likelihood estimate for the
noise function (see Section “M-step”.

Tables 2, 3 and 4 contain details of the sensitiv-
ity,specificity and percentage correct for the methods and
pathways.

When comparing the full parameter and single parame-
ter models to the maximum likelihood approach, we must
consider the noise in the simulated correlation data, which
depends on the sample size n. When n is small, there is a
large variation in the simulated correlation values for each
interaction. In this case, the correlation statistic is less
indicative of the true interaction state, and incorporating
the local neighborhood activity states via the MRF compo-
nent becomes more important. When n is large, the simu-
lated correlation values more accurately reflect the activity
state of interactions in the original network, and a statis-
tical test on the correlation will provide a good indication
of whether the interaction is active (regardless of neigh-
boring interactions). In this scenario, we might expect the

Sensitivity TP/(TP+FN)
Pathway FP-EM SP-EM ML JActiveModules
VEGF signaling and activation 87.83(4.04) 83.40(2.93) 73.55(1.39) 45.63(1.30)
Cell adhesion 83.33(7.28) 78.6(5.83) 75.2(4.30) 84.83(0.29)
Blood coagulation 94.01(2.40) 95.07(2.70) 78.87(5.27) 84.98(4.30)
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Table 3 Specificity of interaction finding (TN/(TN+FP))
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Specificity (TN/(TN+FP))
Pathway FP-EM SP-EM ML JActiveModules
VEGF signaling and activation 72.37(1.85) 69.14(6.49) 7297 (1.51) 9460 (1.00)
Cell adhesion 84.72(7.10) 75.69(5.75) 73.19(2.23) 84.49(1.4)
Blood coagulation 64.13(4.16) 43.47(17.75) 71.30(5.83) 85.51(6.64)

maximum likelihood performance will improve. However,
we used n=5 in our simulations, which is a reasonable esti-
mate of the number of samples often used in biological
experiments.

For the VEGF signaling and activation network, we
found that with respect to total correct interactions recov-
ered, the full parameter approach was by far the most
successful (mean of 82.01% correct), followed by the single-
parameter approach (mean of 78.03% correct), followed
by the Maximum Likelihood approach (mean of 74.36%
correct), followed by JActiveModules (mean of 64.10%
correct). On the other hand, for the Cell adhesion net-
work, JActiveModules was slightly more successful than
(but comparable to) the full parameter approach in recov-
ering total correct interactions, with means of 84.69% and
83.91% correct respectively. Possibly, the smaller size of
the network (384 interactions compared with the VEGF
signaling network size of 1065 interactions), meant that
there was a shortage of interactions belonging to each M-
M pair used to train the model. The full parameter model
was however more successful than the single parameter
model and the maximum likelihood approach. Similar
results are seen in the Blood Coagulation Network.

While results are comparable to JActiveModules, the
use of the MRF-based approach presents additional
advantages in that parameter values can be analyzed to
identify mechanism correlations in the network. Further,
when MRF is teamed with other tools such as a diffusion
kernel [8], the accuracy may improve further, bringing
advantages of both a model-based approach, efficiency
and excellent accuracy.

Comparison of global and local feature properties of
networks

We are interested in comparing how well the methods
were able to recover network characteristics of the original
active (or non-active) subnetwork.

We are most interested in seeing the advantage of incor-
porating a feature that searches for mechanism-enriched
regions into active subnetwork finding algorithms. The
fairest way to see this advantage is to compare char-
acteristics of networks generated by an algorithm that
incorporates this feature (the full parameter approach) to
networks generated by the same algorithm without this
feature (the single parameter approach). Specifically, does
the full parameter approach more successfully recover
topological characteristics present in the original active
subnetwork than the single parameter approach? There-
fore, we do not further analyze the characteristics of
networks generated by JActiveModules or the Maximum
Likelihood approach.

We use the Cytoscape plugin NetworkAnalyzer [41] to
analyze global characteristics of the networks generated
from the full parameter and single parameter approaches,
and compared these to the characteristics of the original
active subnetwork. We considered networks formed from
interactions that were identified as active in at least 80% of
the simulations (4/5).

We use the VEGF signaling and activation network to
perform our analysis. Because of the way we artificially
created the active subnetwork from the original network,
most of the active subnetwork is made up of interac-
tions of the binding mechanism (B), while the non-active
subnetwork contains many interactions of all mechanism
(B, TR and M). We therefore looked at both the active
subnetworks recovered, and the non-active subnetworks
recovered, which we considered to be active under other
conditions and therefore still of interest.

For the active subnetworks, we first considered the
betweenness centrality characteristics. The betweenness
centrality (BC) of a node reflects the amount of control
that this node exerts over other nodes in the network. The
original active subnetwork contained a node for Entrez
Gene ID 5295 (PI3K reg class IA) which had the highest

Table 4 Percentage correct of interaction finding ((TP+TN)/total)

Percentage correct ((TP+TN)/total)

Pathway FP-EM SP-EM ML JAactiveModules
VEGF signaling and activation 82.01(2.23) 78.03(0.63) 73.33(142) 64.10 (1.10)
Cell adhesion 83.91(3.10) 77.38(541) 74.36(2.78) 84.69(0.44)
Blood coagulation 86.71(1.06) 82.44(2.81) 77.02(2.97) 85.11(2.81)
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BC value in the original network (BC: 0.24). The active
subnetwork recovered by the full parameter approach
has a BC of 0.20, while the active subnetwork recovered
from the single parameter has a BC of 0.15 for the same
node. The BC measure favors nodes that join dense com-
munities, thus as expected by theory, the full parameter
approach is better able to recover the dense regions of the
original active-subnetwork (i.e., those dense in neighbor-
ing interactions of particular mechanisms), and is better
able to recover properties of the nodes that connect these
regions.

Similarly, stress centrality (SC) measures the number of
shortest paths through the node. A node has a high stress
if it is traversed by a high number of shortest paths. Entrez
Gene ID 5295 also has the highest SC value in the orig-
inal active subnetwork (SC:16335). The parameter value
was recovered closely by the full parameter approach
(SC:17209), while the single parameter approach network
had a SC of (SC:4711) for the same node.

We also looked at the clustering coefficient (CC) of
the 3 active subnetworks. The CC of a node is a mea-
sure of how well connected neighbors of a the node are.
The CC distribution gives the distribution of the average
of CC values for all nodes with k neighbors. A CC dis-
tribution that follows a strong power law (i.e., the CC
value of a node drops off quickly with the number of
neighbors of the node) can also indicate the subnetwork
contains many dense regions, connected by individual
nodes. Fitting a power law creates a linear relationship
between the CC value against the number of neighbors
of a node. The R-squared value measures the correlation
between the two variables. After fitting a power law to
the CC distribution, we found the original active subnet-
work had an R-squared value of 0.775, the full parameter
approach had an R-squared value of 0.646 and the single
parameter approach had an R-squared value of 0.539. That
is, the full parameter approach was better able to capture
the modular nature of the original active subnetwork.

We then examined some characteristics of the non-
active subnetwork, which contained interactions of type
B, TR and M, and was thus in part a regulatory network.
An important topological property of a biological network
is out-degree distribution, since this can provide evidence
of hubs. Analysis of out-degree distribution revealed
Entrez ID 4790 (NF-kB) was the node with the largest out-
degree in the network (out-degree of 31). The active sub-
network recovered using the full parameter approach has
an out-degree of 35 while the single parameter approach
network has out-degree 18 for the same node. While the
full parameter method switched too many adjacent inter-
actions of NF-kB to the non-active state, it achieved the
out-degree value closest to the value of the node in the
original non-active subnetwork. Similarly, node 407035
(microRNA 31) has out-degree 16 in the original network,
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17 in the full parameter approach network, and 14 in the
single parameter approach network.

Similarly, node with Entrez ID 6401 (e-selectin) has in-
degree of 16 in the original active subnetwork, which is
the highest in-degree in the original network. The same
node has in-degree 16 in the full parameter approach net-
work and in-degree 12 in the single parameter approach
network. Thus the full parameter approach was better
able to capture the nature of the multi-input regulation of
e-selectin.

With regard to stress centrality (SC) parameters in the
non-active network, the original network had 6 nodes
in the bucket containing the nodes with the largest SC
values, i.e, SC values above 103, while the full param-
eter approach network had 5 nodes in this bucket, and
the single parameter approach network had 0 nodes in
this bucket. Again, the full parameter approach is best
able to capture the nature of modular regions, which
require the presence of “stressed” nodes, through which
other nodes pass. Looking at some nodes with large SC
values, c-myc (Entrez ID 4609) has SC of 3211 in the
original network, SC 3234 in the full parameter network,
and only SC of 735 in the single parameter network.
Showing a similar pattern, c-Jun/Fos (Entrez ID 3725)
has an SC of 3327 in the original network, 2162 in the
full parameter network, and only SC of 243 in the single
parameter network.

The Cytoscape files containing the full analysis of net-
works generated by both methods for both pathways are
available upon request to the authors.

Application to angiogenesis model

Hahn et al. previously reported on studies involving
microarray-based gene expression profiling and analysis
of endothelial cells plated on a well-characterized three-
dimensional collagen gel model of in vitro angiogene-
sis (“the 3D model”) [42]. Gene expression levels were
detected at times = 0.5, 3, 6, 24 hours after stimulation
using microarray technology. We call this set of exper-
iments the “mRNA angiogenesis array”. The mRNA
angiogenesis array data is available at NCBI Gene Expres-
sion Omnibus [43] (Accession GSE779).

Subsequently, the angiogenesis 3D model experiment
was repeated with a miRNA array and expression lev-
els recorded at times = 0.5, 3, 6, 12, 24 hours (unpub-
lished observations, Gamble JG). We call this the “miRNA
angiogenesis array”.

We uploaded the gene list from the mRNA angio-
genesis array and the miRNA angiogenesis array to
Metacore and generated a network using the Build Net-
works tool with the Analyze network algorithm. We
expanded this network to include interactions that belong
to canonical Pathway Maps known to regulate the angio-
genesis program. We included maps corresponding to



Lichtenstein et al. BMC Bioinformatics 2013, 14:59
http://www.biomedcentral.com/1471-2105/14/59

integrin-mediated pathways because vascular integrins
are essential regulators and mediators of physiological
and pathological angiogenesis [44,45]. The maps used
are “cytoskeleton remodeling Integrin outside-in signal-
ing” and “Cell adhesion Integrin mediated cell adhe-
sion and migration” We named the network “Original
Angiogenesis Network’, and imported the network into
Cytoscape and R.

We then generated correlation scores for the data. As
there were only four experimental time points consis-
tent between the gene array and the microRNA array, we
generated a correlation score artificially.

Specifically, we created a list of significant genes in R
using the topTable command in the limma gene expres-
sion package [46] for each time point, 0.5, 3 hr, 6 hr and
12 hr (regardless of whether the gene was over or under-
expressed significantly at that time point). We then gen-
erated the artificial correlation score to each interaction
based on the following criteria:

1. If neither gene was significantly expressed at any
time point, score : 0

2. If at least one gene was significantly expressed at any
time point:

e Create a binary vector for each gene specifying
whether it had significant expression at times
0.5, 3 hr, 6 hr, 24 hr.

e DPerform a binary “and” operation on the two
vectors.

e Let subscore=length of the number of 1s in the
result (i.e., number of common time points
where the two genes either side of the
interaction are co-expressed significantly).

e Otherwise, interaction score : 0.4 +
subscore/(5*2) - i.e., equally spaced between 0.4
and 0.8.

As we artificially generated correlation scores described
above, the application of our algorithm to this dataset
merely gives us an indication of which interactions are
active, and cannot be considered to be a statistical appli-
cation.

We ran the single parameter and the full parameter
algorithms on the Original Angiogenesis Network using
the artificial correlation scores. We identified interac-
tions recovered as active under the full parameter but
not the single parameter approach (“FP extra interac-
tions”), and those recovered as active under the single
parameter but not the full parameter approach (“SP extra
interactions”). We uploaded the full set of active inter-
actions, and the extra interactions, for both algorith-
mic approaches to Metacore for further analysis. There
were 12 FP extra interactions and 9 SP extra interactions
in total.
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Many of the interactions recovered by the two meth-
ods appeared in signaling cascades common to GeneGO
Pathway Maps that are active during the angiogene-
sis process. The relevant GeneGo Pathway Maps con-
tain pathways that regulate the cell adhesion process
via the integrins. The GeneGO Pathway Maps we con-
sidered are: Cell Adhesion - ECM Remodeling; Cell
Adhesion-Integrin-mediated adhesion and migration, and
Cytoskeleton Remodeling-Integrin Outside-In Signaling.
Integrins are heterodimeric adhesion receptors composed
of alpha- and beta-subunits. It is known that at least
18 distinct alpha subunits and 8 or more beta subunits
lead to generation of 24 alpha/beta heterodimeric recep-
tors. Most integrins recognize extracellular matrix (ECM)
proteins, such as Laminin, Fibronectin, Vitronectin and
Collagen (types I, Il and IV) [47].

Looking at the FP extra interactions, only the full param-
eter approach recovered the interaction “ITGB B Talin”
(beta integrin unit binding to Talin). Talin binding to
integrin beta tails is a common element of the signal-
ing cascades in the aforementioned Pathway Maps that
control integrin activation. The binding step causes the
integrin receptors to change conformation and increase
binding affinity to ECM proteins. Collagen binding to
integrins is part of the cytoskeleton remodeling. While
both full parameter and single parameter approaches
detected binding of Collagen II to alpha-2/beta-1 integrin,
only the full parameter approach detected Collagen IV
binding to the same integrin.

Looking further downstream in the Cytoskeleton
Remodeling-Integrin Outside-In Signaling pathway, both
approaches failed to recover the phosphorylation of
MEK1(MAP2K1) and MEK2(MAP2K2) by c-Raf-1, or the
subsequent phosphorylation by both kinases of ERK1/2.
This cascade leads to the activation of the c-Jun/c-Fos
complex transcription factor that is required for cell
proliferation. However, the full parameter approach did
detect Tcf(Lef) activation of Cyclin-D1, which is required
for cell cycle activation. There were several additional
transcription regulation (TR) interactions detected for
Tcf(Lef) in the full parameter method but not the sin-
gle parameter method, which is consistent with the large
parameter value learned for M-M pair “TR-TR” (5.04).
The activation of Tcf(Lef) together with the learned
strong correlation for TR-TR, indicating such interac-
tions tend to be co-regulated, meant that other Tcf(Lef)
target interactions were detected including SOX2 and
hsa-let-7c.

Further, only the full parameter method detected the
interaction ARP2/3 — ActinCytoskeleton, which is
required to activate actin polymerization [48]. Only the
full parameter method recovered the interaction CRK —
RACI. Activation of Racl leads to membrane ruffles, for-
mation of lamellipodia and cell migration [49]. The only
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interaction recovered by the single parameter approach in
the cell adhesion and cytoskeleton remodeling pathways
was GSK3 activation of beta-catenin. In all, the full param-
eter approach was more successful at recovering interac-
tions within this group of GeneGO Pathway Maps, while
the extra interactions recovered by the single parameter
approach do not belong to any particular pathway. The
large value for M-M pair parameter for “B-B” (2.63) meant
the full parameter approach had a tendency to keep the
binding interactions which characterise integrin binding
to ECM proteins in the same state as one-another, allow-
ing recovery of more active binding interactions in this
pathway.

Recent evidence suggests the miR-29 family consisting
of miR-29a, miR-29b and miR-29c are antiangiogenic [50].
Both approaches recovered miR-29 targeting of beta inte-
grin subunit (ITGB1) in the active subnetwork. The Orig-
inal Angiogenesis Network also contained an interaction
from the GeneGO database showing miR-29b targeting of
collagen IV gene COL4A1 [51,52]. This interaction was
not recovered by either the single parameter or full param-
eter approach. We might have thought the full parameter
approach would detect this interaction, since miR-29b is
already considered to be active in its role in inhibiting
the pro-angiogenic integrins. However, in this situation,
there was no evidence of gene expression of the collagen
genes in our input gene list, and thus possibly the low arti-
ficial correlation score (the noise component) was more
influential than the local neighborhood influence (MRF
component) in this circumstance.
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Figure 4 contains the interactions from GeneGO Path-
way Map: Cytoskeleton Remodeling - Integrin Inside Out
Signaling, overlaid with the extra interactions detected
using the full parameter approach.

Application to mouse organogenesis data

In order to test our method using actual Spearman cor-
relation values in the likelihood function, rather than our
artificial scoring system used on the angiogenesis data,
we applied the method to data from a developmental
mouse lung organogenesis study [53], downloaded from
NCBI Gene Expression Omnibus (GEO) [43], Accession
GSE20954 and GSE21052. As the experiments were per-
formed using Affymetrix chips with known 45,000 probes
(mRNA data) as opposed to the home made chips, we
had expression data matching nearly all Network Objects
in the Metacore networks, not only the so-called seed
nodes. Secondly, we had a stronger signal when calculat-
ing Spearman correlation coefficients across interaction
expression data.

To create a set of mRNA and miRNA genes to upload
to Metacore in our list we wished to identify miRNAs
and mRNAs that were expected to regulate the same pro-
cesses. In particular, we wanted late-onset genes that had
high expression in the adulthood stage, so we could com-
pare our own biological analysis of resulting networks
with the biological analysis of similar gene sets in the orig-
inal network. In this work, cluster 6 mRNAs and cluster
1 miRNAs were considered to be late onset genes. For
the miRNA array, we used the clusters generated by [53]
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(provided to us by the authors) and selected miRNA clus-
ter 1, which also had a peak late onset adulthood among
member miRNAs.

To closely reproduce their results, we clustered the
11220 mRNA probes identified as active in [53]. We
selected a subset using decideTests in the limma package
in R in the contrast PN30.adult-PN10 as active. We then
clustered the Affymetrix probe expression values over the
7 time points using hierarchical clustering in R (hclust).
We created a representative expression profile for each
cluster by finding the mean expression value of all probes
in the cluster at each time point (see Additional file 4).
Among our clusters, the representative profile for cluster
2 (containing 850 probes) showed a peak at the late adult-
hood time. We converted the probe IDs to Entrez Gene
IDs using tools in the package GEOQuery [54] and limma
[46]. We then input the two sets of late onset genes for
the miRNA and mRNA clusters into Metacore and used
the Build Networks tool with the “Analyze network” algo-
rithm to create a network in Metacore, which we called
“Original Mouse Lung Organogenesis (MLO) Network”.

Some difficulties arose in creating a correlation score
for each interaction because Metacore network interac-
tions are between Network Objects which map to mul-
tiple Entrez Gene IDs, which in turn map to multiple
Affymetrix probe IDs. As the expression data is matched
to Affymetrix probe IDs, some choice was required when
selecting which probes’ expression data should be used
to create a correlation score for an interaction between
two Network Objects. First, we created a correlation
matrix for the Entrez IDs, and where there were mul-
tiple probes matching one Entrez Gene ID, we selected
the probe, which had the largest mean correlation score
against each other probe in the network. That is, we cal-
culated the probes correlation with all the other probes
matching genes in the network, and selected the probe
with the largest mean value to represent the Entrez ID.
When creating a correlation vector to match the inter-
action between two Network Objects, where there were
multiple Entrez Gene IDs matching the Network Object,
we took the mean of the correlation values to represent
the interaction.

We exported the Original MLO Network from Meta-
core into Cytoscape and into R. The resulting network
had 99 unique nodes and 106 interactions. We imported
the correlation data into R and ran the single and full
parameter approaches on the data, using the rank weight
estimate. We adjusted the noise model slightly, since we
now had correlation values < 0, and so we tested the
absolute value of the correlation coefficient.

Both the full parameter and the single parameter
approaches found some interactions present in the
Cytoskeleton Remodeling - Keratin Filaments Pathway
Map. This map shows the components of the intermediate
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filaments cytoskeletal system, that interact with actin and
microtubule filament systems to control cell assembly.
Binding proteins such as Plectin 1 and Desmoplakin
coordinate the interconnection of the three filament
systems by binding to filament systems. For example,
Plectin 1 binds to Keratin 5/14 complex in the Pathway
Map and the Metacore network [55]. Kinases including
CDK1 (p34) regulate the activity of these binding proteins
and IFs. In particular, only the full parameter approach
recovered CDK1(p34) inhibition of Plectin 1 [56] by
phosphorylation and also via inhibition of GRB2 which
binds to Plectin 1 [57]. These interaction are present in
the Cytoskeleton Intermediate Filaments process network
and the Keratin Pathway Map.

The full parameter approach also switched on a clus-
ter of phosphorylation interactions by the two kinases
TRPM6 and TRPM?7 of the myosin superfamily, includ-
ing MYH14, MYH9 and MYH10. All three myosin Net-
work Objects were found to be regulated by both kinases.
Myosins are actin-based motor proteins that function
in the generation of mechanical force in eukaryotic
cells. Non-muscle myosin heavy chain proteins (MYH9,
MYH10, MYH14) are involved in control of cytokinesis,
cell motility and maintenance of cell shape. The three
myosins are a group relation of MYHC (see in the figure).
MYHC functions in skeletal muscle contraction. Interest-
ingly, smooth muscle contraction was found to be an over-
regulated category for cluster6 (late onset mRNAs) in the
study of Dong et. al, and thus this finding is consistent
with the findings in the original study.

The single parameter approach only detected the inter-
action TPRM6 phosphorylation of MYH14, while as
mentioned the full parameter approach recovered 7 phos-
phorylation interactions of the myosin proteins in this
cluster. The reason for the more successful detection of
the phosphorylation of the myosin proteins by the kinases
can be found by examining the parameter for mechanism-
mechanism pair {+P,+P} which was found to be the
moderately high value of 0.85.

In the Original MLO Network, there were many addi-
tional miRNA interactions recovered as active in the full
parameter approach, that were not recovered by the single
parameter approach. These interactions are: “microRNA
30b” — “LIN-28" (“M”), “microRNA 26b” — “CPEB2”
(“M”), “microRNA 223" — “Galpha(q)-specific peptide
GPCRs, CCR1” (“M”), “microRNA 223" — “PLEKHM1”
(“M”), “microRNA 34bx” — “WNT3” (“M”), “microRNA
34b%” — “Rab-3” (“M”), “microRNA 667" — “MYH14”
(“M”) and “microRNA 24-1%" — “TTLL4” (“M”). The
mechanism-mechanism parameter for the {M, M} pair is
0.75, again a moderately high value.

A potential interaction worth further exploration is the
regulation by microRNA 24-1x of TTLL4, which is a
polyglutamylase that preferentially modifies beta-tubulin
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and therefore regulates the formation of microtubules that
control cytoskeleton stability and dynamics. A further
interaction of interest is miRNA 34b x — WNTS3, as the
p53-miR34 * network is known to regulate the canonical
Wnt signaling pathway in organ development and human
cancer [58].

Some of the interactions annotated in Metacore of
mechanism “M” are supported by sequence based predic-
tions and are therefore low trust interactions. They do
not appear in GeneGO Pathway Maps or other canoni-
cal pathways. For example, “microRNA 667" — “MYH14”
(“M”) and “microRNA 24-1x” — “TTLL4” (“M”) are both
low trust interactions in the GeneGO knowledge base,
but are recovered using the full parameter approach. By
highlighting low trust interactions using the full param-
eter approach, we are able to guide the user to possible
new interactions active in their data which regulate known
processes and pathways.

Figure 5 shows interactions in the Original MLO
Network identified as active using the full parameter
approach, which were not identified as active using the
single parameter approach.

Conclusions

We developed and implemented a method to find active
subnetworks in a condition from an original network gen-
erated by Metacore. Our method is unique in that it
learns the value of distinct parameters that express the
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relationship between a pair of interactions based on the
two respective mechanisms of the pair. We compared our
method to a previously published method, which was a
simpler, more general, method using only a single parame-
ter to express such dependencies, as well as to the popular
active subnetwork recovery tool JActiveModules, and a
straightforward maximum likelihood tool.

Our method was validated against these methods using
original networks generated from GeneGO canonical
Pathway Maps. We found our method have better per-
formance than these three methods among networks
meeting certain criteria, which we describe as M-M Pair
Rich Active Subnetworks (described in section “M-M pair
rich active subnetworks”). We applied our method to two
sets of experimental data which both consisted of match-
ing mRNA and microRNA time-course expression data.
We were able to find interactions belonging to biological
pathways consistent with the experimental study in the
full parameter approach, that were not detected with the
single parameter approach.

Advantages of the full parameter approach

The full parameter method has several advantages over
the single parameter approach. First, it is an edge-based
method (rather than a node-based method) which gives
it some advantages over node-based methods. Node-
based methods do not provide information as to which
interactions from the original network participate in the
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condition. This is typically inferred by connecting the
active nodes [1]. Edge-based methods provide additional
information regarding which paths are active between
nodes, and therefore describe exactly how the active sub-
network executes its functions. Second, analyzing a set of
active nodes can provide an understanding of enriched
functional categories of genes [59]. However, if we accu-
rately know the active interactions, we can analyze net-
work properties such as global topology properties, and
local properties such as the presence of functional local
components (motifs).

The second advantage is that we apply a heuristic-EM
algorithm for this probabilistic problem with a latent vari-
able approach, which is a superior optimization method
to the method invoking the ICM inference algorithm used
in [35]. Third, as emphasized, we incorporate multiple
finely-tuned mechanism-based parameters in the scoring
function. Indeed, our literature search suggests we are the
first to design an active subnetwork scoring function that
incorporates a neighborhood influence factor that varies
according to a neighbor’s biological type or function.

Advantages of using M-M Pair correlation parameters

The incorporation of multiple parameters to model
mechanism-mechanism pair effects provides many bene-
fits. The first, is the potential for greater predictive accu-
racy so long as the complexity of the multi-parameter
model does not lead to over-fitting. This method will
have the greatest predictive accuracy in recovering active
subnetworks in M-M Pair Rich Active Subnetworks. Our
method when applied to such networks will recover a wide
range of parameter values, with larger values expected for
pairs with corresponding I-I interactions that occur in the
same region of the active subnetwork.

A second benefit of using the model-based approach is
the parameters representing the mechanism-mechanism
correlations provide insight into the biological function of
the active subnetwork. If the active subnetwork is respon-
sible for carrying out a biological function (e.g., adhering
cells in the creation of new blood vessels), this function
may broken up into parts (e.g., regulatory, signaling, pro-
tein binding), where those parts are executed through
regions containing only a small set of all possible mech-
anisms. For example, in the Original Angiogenesis Net-
work, a large parameter value for {TR — TR} pair (5.04)
cluster of neighboring Transcription Factor interactions
outgoing from Tcf(Lef) were found to be active by the
full parameter approach. This suggests the existence of
a region of the network responsible for carrying out a
regulatory function.

Limitations and future work
There are several limitations to our approach. One lim-
itation is that increasing the number of parameters may
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lead to overfitting in cases where the network only
has a small number of I-I pairs corresponding to the
mechanism-mechanism pair for that parameter. This can
be overcome by filtering the network to only include inter-
actions belonging to mechanism-mechanism pairs that
have a minimum number of corresponding I-I pairs in the
network.

Another limitation is that our noise model currently
relies on calculating the similarity of gene expression
between two components as a measure of the likelihood
of an interaction, regardless of its mechanism. Some inter-
actions belong to mechanisms which occur at the protein
level, and it would be more appropriate to use other data
sources such as protein-protein interaction data, or bind-
ing assay data. For other interactions which occur at the
transcription level, RNA sequence or array data is perhaps
more appropriate.

A further limitation of our work is that it assumes
that the genes matching interacting Network Objects will
be positively or negatively correlated in their differen-
tial expression (i.e., activated and inhibited together)
in the one condition, regardless of the annotated effect
of that interaction (inhibitive or activating). This can be
improved in future versions of our algorithm, by requiring
a positive correlation for activating interactions and neg-
ative correlation for inhibitive interactions. Future work
could also model expected expression behavior of genes
in simple 3-node network motifs, where such motifs are
properly annotated, such as in GeneGO Metacore. For
example, competitive binding versus co-operative bind-
ing could be modeled. Competitive interaction between
two transcription factors, may mean that when one factor
is active, the other is less likely to be active. This would
improve accuracy over our current model which treats
all neighboring transcription factor - target interactions
equally.

Finally, a problem lies in that the algorithm cur-
rently learns parameters expressing a correlation between
mechanism-mechanism pairs across the entire network.
Sometimes, correlations differ according to context,
i.e.,, subcellular localization, regional function etc. A
future improvement may limit the use of global param-
eters to local regions, i.e., only apply a parameter for
B-B mechanisms to a region of the network identified as
protein binding.

This work is a first attempt at learning global rules
expressing correlations between mechanism-mechanism
pairs, and future fine-tuning of this work would be a
welcome extension.

Additional files

Additional file 1: GeneGO Pathway Map: VEGF Signaling and
Activation.
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Additional file 2: GeneGO Pathway Map: Cell Adhesion and
Migration.

Additional file 3: GeneGO Pathway Map: Blood Coagulation.

Additional file 4: Clusters of mRNA Affymetrix probes. Clusters of
11220 mRNA Affymetrix probes from mouse organogenesis data set
filtered by those with a significant contrast from PN30-PN10. The y-axis
shows the mean expression value of all probes in the cluster, at each time
point (x-axis).
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