Verification of Phylogenetic Inference Programs Using Metamorphic

Testing

Md. Shaik Sadi!, Fei-Ching Kuo!, Joshua W. K. Ho 2,
Michael A. Charleston®3* and T. Y. Chen'

Faculty of ICT, Swinburne University of Technology, VIC, Australia
2School of Information Technologies, The University of Sydney, Australia
3Centre for Mathematical Biology, The University of Sydney, Australia

4Sydney Institute for Emerging Infectious Diseases and Biosecurity, Australia

March 25, 2011

Abstract

Most phylogenetic inference programs use aligned sequences of characters, typically DNA or amino
acid, to infer evolutionary relationships among taxa. The evolutionary history of a set of taxa is
represented by a tree structure called a phylogenetic tree. A number of methods are available to
estimate these trees, which have been implemented in programs in several languages for automatic
tree estimation. However, it is in most cases impossible to verify the correctness of the tree returned
by these programs, as the correct evolutionary history is generally unknown, and unknowable. This
difficulty is known as the Oracle problem of software testing: there is no Oracle we can approach
for the guaranteed-correct answer. This makes it very challenging to test the phylogenetic inference
programs. Here, we apply Metamorphic Testing (MT) which can ameliorate the Oracle problem to test
the correctness of phylogenetic inference programs. We have used two types of input, namely real and
random, to evaluate the effectiveness of metamorphic testing, and found that metamorphic testing can
detect failures effectively in faulty Phylogenetic inference programs with both types of inputs.

Keywords: verification, software testing, metamorphic testing, Phylogenetic inference programs,

bioinformatics, PHYLIP.

1 Introduction

A fundamental concept in biology is that different taxon evolve from a common origin. The description of
the evolutionary history of a group of taxa is called a phylogeny, and is typically inferred from molecular
sequences of different taxon, and represented as an evolutionary tree or phylogenetic tree. Phylogenetic
inference is used in modern pharmaceuticals research for drug discovery, designing genetically enhanced
organisms, and understanding rapidly mutating viruses [1].

Different statistical and computational methods are available to infer phylogenetic trees. Development
of such methods has been a major research problem of computational phylogenetics for more than 30 years
[1][2]. However, much less attention has been paid to the practice on how these methods are implemented



in software. It is obvious that incorrect implementation of the methods can lead to incorrect data analysis,
and hence false estimation of phylogenetic trees.

We believe that the programs that generate phylogenetic trees are tested much less stringently as they
should be. One main reason for this is that most phylogenetic inference algorithms are computationally
complex, so the “correct” evolutionary history against which we can check the estimated tree is unknown,
not least because it is very computationally expensive to estimate. This issue is known in software testing
as the Oracle problem. In this article, we address the Oracle problem of testing phylogenetic inference
programs by a well-known testing method called Tetamorphic Testing (MT) [3].

A previous study on biological network simulators using MT inspired us to explore its applicability and
effectiveness on phylogenetic inference programs [4]. In this project, we have chosen three phylogenetic
inference programs and tested them with two types of inputs: (i) DNA from existing taxa, and ()
randomly generated sequences.

The rest of the paper is organized as follows: a brief description of the phylogenetic inference programs
we tested is given in Section 2, which is followed by Section 3 containing the details of Metamorphic Testing.
Section 4 contains our proposed metamorphic relations to test the Phylogenetic inference programs. Section
5 describes the experimental set-up and Section 6 is comprised of the experimental results. Section 7
discusses the findings and concludes the paper.

2 Phylogenetic Inference Programs

A number of Phylogenetic software packages namely PHYLIP [5], PAUP [6], MEGA [7], MRBAYES [§],
RAzML [9] etc. are available for generating Phylogenetic trees. We have chosen dnapars, dnapenny and
dnaml programs from PHYLIP version 3.68 for testing. dnapars, dnapenny and dnaml have 8600, 7781 and
9527 lines of code excluding the comment lines, respectively. All the programs are written in programming
language C. The programs present a user menu for users to execute different functionalities of the program.
Different execution options may require different input files. Inputs, outputs and algorithms of these three
programs are described below.

2.1 Inputs

One essential input file called “infile” to dnapars, dnapenny and dnaml programs is the one consisting of
DNA sequences of multiple taxa. For each taxon, the DNA sequence is made by TUPAC characters [10],
where each character is called a “nucleotide”. n taxa and m nucleotides in DNA sequence are presented
by a n % m matrix (n rows and m columns), shown in the input file. The column of nucleotides are called
“site” by the Phylogenetic inference scientists. A sample input file is shown in Figure 1, where 20 is the
number of taxa and 50 is the number of sites as shown in the first line of the file.

For dnaml program, menu options (“U” and “L”) used to accept another input file namely “intree”. The
“Intree” file contains the Phylogenetic tree in newick format (to be further discussed in Section 2.3) [11].
As dnaml program also generates Phylogenetic trees in newick format, the tree shown in Figure 5 can be
an example of intree.

2.2 Program Description

There are several methods to construct Phylogenetic trees, including the maximum parsimony and max-
imum likelihood methods. Different Phylogenetic inference programs implement different methods. The
methods implemented by the chosen programs of this experiment are described in the following subsection.

2.2.1 dnapars and dnapenny

Both dnapars and dnapenny implement the maximum parsimony method to construct Phylogenetic trees.
Based on the given DNA sequences of taxa, these two programs calculate nucleotide changes (or called

2



20 50

spel ATGAGGCTCTGAGGETCCCACTCAGTGTGTGCCGCCGAGCTTCCCCGCGEE
spel AAAGTTTAACCTGACTTGTGCEETAGT TCAGECGECATCAAGGTAGCCANG
spel TTATCAGCCCACGTATAACTGCGTTCATGGETCTTACTGTGCGGCTACATG
spel GECCTCGCCECCECAGAC TTACGETGCACANCACCAGCGARNGGCCCCTA
sped ATTGAGCAGATGGCCGEECAAAMATAATAGGGAGGCCTTCARGTTC TACA
spebd TAAGTAARAGCTGCTCGAATCGATCCC TCCGEAGCTGTTTTCCTCCCTTT
speb CETGCTAGACGCGATGCCGCCTAGCAACCGAATATCCTTCGTCAGCGGGE
spe’ CATGETACCGGC TGAAACAGGTGGTGATTCACGTTTGCGCETACGCCATCA
sped CGCCACTGGTAGGACGATACTAMACT TGCGECAGCTAGETTTTAGECARC
sped CEATTCGGCGCAGTACTCCAGTTCGEACATTTAGCCAGCTCGEGATACTA
speld TCACGGTCTCACGGTGAGGTAGCGAGTACGCTTTGCAGTTATT TACRACAR
spell CCGETATGGTGTGGEAAGC TCTACTGACT TAGAAGGCGCCTTTCCCGCCTA
spelZ TAGACCAGCTTAGTGCTTCCAGGCCTATCTCTCATCTGCCCCACGATCTC
spel3 TACCTTGACCCEEGARAC TARGTCGARAGGTCAACCCEGGACCATCACACCC
speld GGACGEGEEEEACGCCAGCGAATTTTAGAATTATGCGACTTTTCC TGAAGC
spelb TATGCGATCGATGGATGCGARACCTTCC TGAGATGTAACCCTTGCETAGGE
spelb GAARLTCGGCGCAGGAT TEC TAACCAGGACGACAGCTGCTATGGCACACTG
spel? TCAAGGCTCTGEEGCCCCEECCTAGC T TAGATCGATAGCATETACGCICGEC
spels TAGAGCCGGTAAGCGGCCCTTGTCETAGTALAGCARAGGATGGAGCACGT
speld ACATAAATACTTGTTGTGTGGEAACACARMGATCAATCAGARCGCGCTAT

Figure 1: Input file (infile) consisting DNA sequences

evolutionary steps) among sites, to generate Phylogenetic trees. Evolutionary steps calculated for the
entire tree is called the total length, while those calculated for the branch is called the branch length. The
maximum parsimony method aims to minimize the number of evolutionary steps to generate the maximum
parsimony tree. Maximum parsimony tree is a Phylogenetic tree which has least total length. For getting
the maximum parsimony tree, an initial Phylogenetic tree is prepared with the first n taxa of the infile
(n = 3 for dnapars, n = 2 for dnapenny). These programs then read one sequence of DNA at a time and
works out the maximum parsimony tree for the read in data. Read in data means the DNA sequences of
taxa that already read by the program.

In dnapars, before and after adding one taxon to the tree, each pair of adjacent branches swap to get
the maximum parsimony tree. Once all the taxa are added to the tree, sub tree rearrangements are tried
in order to get maximum parsimony tree.

dnapenny uses “branch and bound” algorithm to achieve the maximum parsimony tree [12]. At each
step of tree construction, if the length of a branch exceeds the predefined bound, that branch is not
extended further and other branches are tried. However, this program consumes a lot of computation
time, when dealing with more than ten taxa.

2.2.2 dnaml

dnaml uses the maximum likelihood method. In this method, the evolution of taxa is considered as
a stochastic process in which “evolutionary changes among sites” depends on some set of probabilities
generated by the Markov model [13]. For each set of probabilities generated, the nucleotides are changed
to get the likelihood tree. The Markov model then follows the evolution probabilities to calculate the
likelihood.

2.3 Outputs

dnapars, dnapenny and dnaml attemp to generate tree(s) that best describe the evolutionary history among
taxa. However, these three programs have a common goal, they use different algorithms to generate the tree
that describes the evolutionary history. dnapars and dnapenny aims to construct trees with the shortest
“total length” but dnaml aim to generate trees with the highest “likelihood” against an evolutionary model.
During the process, some values are outputted to the files (a file called “outfile” or a file called “outtree”
or both files). Table 1 summarizes the output values for each of three program.



Table 1: Output description of the programs

Name of the | Tree Total | Branch| Likelihood
program length | length

dnapars yes yes yes no
dnapenny yes yes no no

dnaml yes no yes yes

Figures 2, 3 and 4 illustrate one output tree in outfile of dnapars, dnapenny and dnaml respectively
for the input of Figure 1. These three programs can generate more than one output tree in the outfile but
the total length are same for all trees. Total length 452.00, 465.000 and likelihood -1351.32295 are also
printed in Figures 2, 3 and 4.

FemnEEs spelt
|
| +--—--3pel7
[
| | Frptaaatas sped
1-17 +----8
I R i e speld
Bl +-14
o Fommmme sped
| +--6
| | +--—-spell
| | |
| | | gttt spei
| +--10 |
| | | +-—-spelg
| | | +-16
| Fm=l | | FEEREEE spels
| | | +——1&
| | | [ H===s==s spels
| | | +-13
| rakatal ) +--—--3pe2
| |
| | +-—-—-2pe3
| [
| | | SRR spels
| +--3 +-15
| | +-11 == spell
| | I
| | |; _F==sssns sped
| ——-a |
| | +--—-3pes
| +---5
| | bttt speld
| +--15
| | == spe?
| b bt
| b aiaiat il spel
|
i naiaia il apeld
requires a total of 452 .000

Figure 2: Output tree in outfile by dnapars program

“outtree” file presents the output tree in Newick format. Figure 5 is an example of Newick format of
the tree for dnapars and dnaml programs, where 0.35697, 0.22394, 0.29697 etc. are the branch lengths.
dnapenny does not output branch lengths to the “outtree” file. Figure 6 shows the tree in newick format
for dnapenny in outtree file.

2.4 The Oracle Problem

An oracle in software testing refers to a mechanism that may be used to verify the output of the software:
the correctness of a test output is determined by querying the oracle. In phylogenetics it is not in general
possible to guarantee that the estimated tree is correct, because it is not possible to go back in time and
observe the pattern of speciation, so here we will restrict ourselves to verifying that the estimated tree is

4



recquires a total of qg5. 000

8 trees in all found

pel

3|
+-13
+----19 +--spel
1 1

[FEE— 3 [FRE— apes
+-—-3peb
6
+-—-3pe?
+-—zpels
G 17
+--3pez
1 +--5 +-—sped
! vt B 18
| ! +--spelld
! +-———10
! ! - spell
! +----15
' +-—apeil
BT S SRS 7 +-12
I

Vo
-2 ! mm e 16
o

+-11
1

pelz

+--3peld
14
+-—3pel?

Figure 3: Output tree in outfile by dnapenny program

optimal for some criterion. An oracle for phylogenetic inference programs can therefore be constructed by
manually applying the underlying algorithm when the number of taxa is small. However, with many taxa
it is infeasible to manually verify the correctness of test output. When an oracle to test software cannot
be constructed testing of software thus becomes difficult.

3 Metamorphic Testing

Metamorphic testing is an approach to alleviate the Oracle Problem. This approach does not rely on the
test oracle to verify the output, but rather, checks the expected relations among inputs and outputs of
the program under test. These relations are called Metamorphic Relations (denoted as MRs henceforth).
They are derived based on the properties of the algorithm being implemented. In this testing method,
some initial test inputs called original test inputs are generated, using any existing test case generation
method. According to the derived MRs, new test inputs called follow-up test inputs are generated based
on the original test inputs. The program is executed with both original and follow-up test inputs, and their
outputs are compared according to the MRs. If the comparison of any source and follow-up test cases pair
does not satisfy the corresponding MR then a bug is found. The process of metamorphic testing can be
described as follows: Let t be a original test input of a program P. Use one MR (denoted as R) of program
P to generate one follow up input ¢’ for t. The output of the program P on execution of ¢ and ¢’ are
denoted as P(t) and P(t’) respectively. According to R, P(t) and P(t’) should have some relations among
them. The whole testing process can be automated easily, including the follow-up test case generation and
output comparison [14].

put references at the end of sentences or phrases, so they don’t interrupt the flow

Metamorphic testing can be best understood with an example. Let us consider an electronic circuit
where we can control the resistance of the circuit to monitor the current flow in the circuit. Suppose
the simple relation exists between voltage, current and resistance of V = IR. One MR can be derived
based on this relation as follows: suppose the original input resistance is R and the follow-up resistance
is Ro = 2R, then the follow-up current should satisfy Io = I;/2 where I; and I are the original and

consides
using
“taxon”
and
“taxa”
through

out
Sadi:

added

what
does t

mean?

Sadi:

1 h:
added
methan
ical 1
tation
MT. Hc
this v

works



+5pels

[ +sped

+--5pel

|
|
|
|
|
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| | +speld
|

|

|

+ape?

remember: this is an unrooted tree!

Ln Likelihood = —1351.33295

Figure 4: Output tree in outfile by dnaml program

[spel5:0.35697, (spel?:0.22394, [ (spe8:0.29687, (5peld:0.34924, spe6:0.40599)
:0.16146):0.24778, (spel0:0.15694, (spe2:0.31770, ( (spel6:0,15973, (spelZ:0.36583,
(5pel13:0,38917,5pe9:0.25417) :0.10000) :0,20097) :0.17655, (spe3:0.22729,
[((5pel5:0.35514,5pe11:0.30968) :0.16075, 5ped4:0.37515) :0.17567, (5pe5:0.18911,
({spel9:0,31587, (spe7:0.421218,spel:0.27764) :0.11297) :0,19444) :0.18317) :0.19235)
:0.14579) :0,17364) :0.23142) :0.18000) :0.17056) :0.15345, spe0:0.30727) ;

Figure 5: Output tree in newick format in outtree file for dnapars and dnaml

follow-up output current respectively.

In current flow resistance circuit the value of Iy is compared with I; to check identity relation. This
particular example shows how an identity relation can be used to define an MR. Identity relation are mostly
used by numerical programs but it is worth to note that MRs are not restricted to identity relations only,
they can take any form [15].

Metamorphic testing employs some relations between the input and output of a program for testing,
so this testing method does not require the oracle.

4 Metamorphic Relations

By analysing the property of the chosen algorithms for Phylogenetic inference programs, we have defined
some relevant metamorphic relations to test the programs. As dnapars and dnapenny implement the
method of maximum parsimony, one set of metamorphic relations were generated for both programs. On
the other hand, we developed two different metamorphic relations for dnaml.

We will represent the DNA sequences of the input as a matrix X in this section to facilitate the
discussion of the MRs. For n taxa and m sites, matrix X = {:cij |1<i<n, 1<j< m}, where T is a
nucleotide from the IUPAC character set (denoted as US). In this study we let US = {A, T, C, G} because
A, T, C, G are the most common characters encountered in real DNA sequences. An example input X is
given in Figure 7.

We use X and X’ to denote the original and the follow-up inputs, respectively when describing MRs.
We also use T and T” to represent a set of original and follow-up output trees for dnapars and dnapenny
and t and ' are used to denote the corresponding total lengths. For dnaml, | and I’ represent original and
follow-up likelihood, respectively.

you b
1/4

some 1
son:
relation
V=IR
also

check «
http:/ /1



tsped, (((((({{{spelld,spel) , spel), (spet,spe?) ), (spels,sped) ), ([ (spel,
speli), (spell, (spell,speld) ) ), (3peld, spelo) ) ) ,sped) , sped) , spell),
[speld,spel™?) )]

Figure 6: Output tree in newick format in outtree file in dnapenny

11 12 .. ATCGAAGCAA
X = To1 T22 ... = | AGCGATGTTG
ete.

Figure 7: Matrix format of DNA sequences

4.1 Metamorphic Relation for dnapars and dnapenny

We have borrowed some terminologies from Phylogenetic inference community to explain our MRs. These
terminologies are summarized below.

Sites that are highly conserved among all sequences or sites that contain the same nucleotide in all
sequences (e.g., site 1, 4 and 5 in Figure 7 ) are called conserved sites or parsimony-uninformative
sites. If all the nucleotides of a site are different then the site is called hypervariable sites (e.g., site 10
in Figure 7). The sites that are mostly conserved except for a change in one sequence (i.e. sites that have
two type of nucleotides, one occur multiple times and the other one occur only one time in the sequence)
are called singleton sites [7] (e.g., sites 3, 6 and 7 in Figure 7). All other sites provide some useful
information for constructing a Phylogenetic tree, and therefore are called parsimony-informative sites
(e.g., sites 2, 8 and 9 in Figure 7). We use these useful information to define our MRs for dnapars and
dnapenny. The MRs for dnapars and dnapenny are discussed below.

MR1: If we generate a follow-up input X’ by swapping two sites (the columns) in the original input
X (see example below), then the set of original and follow-up output trees T"and 7" are identical and their
corresponding total lengths ¢ and ' are equal.

Example: The follow-up input X', by interchanging column 3 and 8 of original input X in Figure 7

looks like:
ATCGAACCAA

ACTGATCCTG
ACTGATACTT
ATCGATCTAC
this won’t compile: you have to put in units for the column widths, not just “p0.009”:
0.009 what? textwidth? sadi: added the unit
Output Comparison : T =T and t = t'.

X' =

MR2: If we add k (k>0) number of uninformative sites into the original input X to generate a follow-up
input X’ (see example below), then the set of original and follow-up output trees 7" and T" are identical and
their corresponding total lengths ¢ and ¢’ are equal. Additions of uninformative sites are order independent
and can be placed after any site of the original input X.

Example: We add five (k=5) uninformative sites (consisting of nucleotide character A) into the

original input X in Figure 7 to generate follow-up input X':
ATCGAAGCAAAAAAA

AGCGATGTAAAAATG
AGCGATATAAAAATT
ATTGATGCAAAAAAC
Output Comparison : T =T and t = t'.

X' =



MR3: If we remove some uninformative sites from the original input X to generate a follow-up in-
put X’ (see example below), then the set of original and follow-up output trees T' and T” are identical and
their corresponding total lengths ¢ and ' are equal.

Example: We can see that there are three uninformative sites (sites 1, 4 and 5) in the original test
input X in Figure 7. If we remove the two uninformative sites (sites 1 and 5) from the original input X

in Figure 7 and generate X', X’ looks like:
TCGAGCAA

GCGTGTTG
GCGTATTT
TTGTGCAC
Output Comparison : T =T and t =t/

X' =

MRA4: If we double the length of DNA sequences in the original input X by the concatenation of each
DNA sequence with itself to generate follow-up input X’ (see example below), then the set of original and
follow-up trees T' and T” are identical and the follow- up total length ¢’ is double of the original total length
t. This MR is only true for input alignment with n = 4z where z is a integer number.

Example: The follow-up input X’ by concatenating the DNA sequence of with itself at the end in the
original input X in Figure 7 is:

ATCGAAGCAAATCCAACCAA
X/ — AGCGATGTTCACCCATCTTG

AGCGATATTTACCCATATTT

ATTGATGCACATTCATCCAC
Output Comparison : T'=T" and 2t =t

MRS5: If we add some hypervariable sites into the original test input X to generate a follow-up in-
put X’ (see example below), then the set of original and follow-up output trees T and 7" are identical.
Hypersensitive site(s) can be placed after any site of the original input X.
Example: We add two hypersensitive sites to the original input X in Figure 7 to generate follow-up
input X’:
ATCGAAGCATAA
AGCGATGTTCTG
AGCGATATCGTT
ATTGATGCCAAC
Output Comparison : T =T'

X' =

MR6: If we apply the same transformation to change every character in every DNA sequence, for example
(A—T, T—G, G—C, C—A), in the original input X to generate follow-up input X’ (see example below),
then the set of original and follow-up trees T' and T" are identical and their corresponding total lengths ¢
and t’ are equal.
Example: We create a follow-up input X’ from original input X in Figure 7 by changing (A—G,
T—C, G—A, C-T):
GCTAGGATGG
GATAGCACCA
GATAGCGCCC
GCCAGCATGT
Output Comparison : T'=T" and t = t'.

X' =

MRT: If we add a duplicate DNA sequences of any taxon in the original input X to create the follow-up
input X’ (see example below). Then- 1. the trees of original and follow-up output sets, T" and 7" respec-
tively, should differ only for the duplicate taxa such that in the follow-up output tree, the duplicates are
grouped together in a sub tree, and 2. The total lengths of original and follow-up trees ¢t and ¢’ should be
same and the output is independent on where the duplicate DNA sequence is placed.

8



Example: Follow-up input X’ is given below by adding the duplicate DNA sequence of first taxon
(first row) before the third row of original input X in Figure 7.
ATCCAACCAA
AGCGATGTTG
X'=| ATCCAACCAA
AGCGATATTT
ATTGATGCAC
Output Comparison : In 7’, taxon having same DNA sequence will be grouped together in a sub
tree. Except the sub tree of the duplicate taxon having same DNA sequence, T and T” are the same, and
the total lengths of original and follow-up outputs ¢ and ¢’ are the same. For the X’ of MR7 we can say
that taxon of the first and third row will group together in a sub tree and the tree structure of the taxon
of second, fourth and fifth row is same in 7" and 7”. what does this mean?.Sadi: simplified it

4.2 Metamorphic Relation for dnaml

For running the original and follow-up test inputs on dnaml we have used two input files, called “infile”
(DNA sequence file) and “intree” (containing Phylogenetic trees of the DNA sequences). The “outtree”
file generated by the dnaml program using the default option and only infile, is used as original intree
file by renaming as “intree” for these two MRs. For the first MR infile is same for original and follow-up
test inputs but intrees are different. For the second MR intree is same in both original and follow-up test
inputs and infiles are different.

For ease of discussion we will use the original input X in Figure 7. The intree file of X is denoted as
original intree S and is given below:

(seq4:0.06250(seq3:0.16250,seq2:0.06250) :0.25000,seql1:0.26250) ;

We will also use S’ for denoting follow-up intree.
MR ML1: If we generate a tree by swapping two taxa of any sub tree in the bottom layer of the original
intree file S where the two taxa must share one immediate ancestor and append the newly generated tree
to the original intree file to generate follow-up intree file S’, the set of original and follow-up output trees
T and T” and their corresponding likelihoods [ and [ are identical.

Example: We swap seq2 and seq3 in the original intree S to generate a modified tree and append the
modified tree with S to generate follow-up intree S”:

(seq4:0.06250, (seq3:0.16250,seq2:0.06250) : 0.25000,seql1:0.26250) ;
(seq4:0.06250, (seq2:0.06250,seq3:0.16250) : 0.25000,seq1:0.26250) ;

Output Comaprison: 7' =T" and [ = I'.

MR ML2 : This MR is similar to MR6 defined to test dnapars and dnapenny in the last subsection. If
we generate the follow-up input as mentioned in MR6 and also use intree, the sets of follow-up and original
output tree are identical and their corresponding likelihoods are equal.

Example: Same as MRG6.

Output Comparison : T =T and [ =['.

5 Experiment Setup

In the experiment, the original and follow-up inputs generation as well as original and follow-up outputs
verification were conducted automatically. The automated process was implemented using C#.



5.1 Input Selection

As mentioned in Section 3 the original test input of MT can be generated using existing test case selection
methods. For testing Phylogenetic inference programs, we have considered two types of test inputs namely
real and random. The real DNA sequences of different taxon are obtained from TreeFam [16]. On the
other hand, some DNA sequences were randomly generated which we denote as random input. To select
one type of input to be used as original input of MT, we have used 500 test inputs of each type and
measured different types of code coverage of the chosen three programs of this study. Code coverage is a
measurement of the portion of the code that is executed by a test input and one of the strong criterion to
measure the effectiveness of a test input.

We have used LCOV, a very renowned tool, to measure the coverage of real and random test inputs
for the chosen Phylogenetic inference programs. The coverage result of the three programs for both type
of test inputs are given in the Table 2.

Table 2: Coverage Results of Real and Random test suit

Program | Coverage | Real(%) | Random(%)
Lines 38.2 38.1
dnapars Functions | 33.5 33.5
Branches | 25.7 25.6
Lines 38.1 20.3
dnapenny | Functions | 33.5 16.9
Branches | 25.6 11.3
Lines 24.0 23.9
dnaml Functions | 20.1 20.1
Branches | 12.3 12.2

From the coverage results we found that both type of inputs cover almost same proportion of statements,
functions as well as branches for dnapars and dnaml programs. Although dnapenny shows exception to
this, we have decided to use both type of inputs for testing to measure the effectiveness of MT. Same test
inputs were used for testing all the three programs.

5.2 Output Comparison

The linear representations of the resulting trees of original and follow-up outputs are compared using string
matching. At first we discarded the branch lengths to match the structure of original and follow-up output
trees. Each tree of the original output is matched against all the trees of the follow-up output. We have
focused on the tree structure and the total length in this paper for testing.

5.3 Mutation Analysis

To measure the effectiveness of metamorphic testing to test dnapars, dnapenny and dnaml, mutation
analysis was conducted [17]. Mutants are faulty program versions generated by seeding faults in the
original version of a program. In mutation analysis, if the output of original and mutant programs for
same test input differs, then the fault in the mutant program is revealed. On the other hand, if same output
is produced by original and mutant program on same test input, the mutant is said to be equivalent mutant
of the original program. Some very simple mutation operators are used to generate the mutants for our
experiment. Mutants were generated randomly by using an automated Perl script. The script can generate
mutants by mutating one statement at a time.

10



The PHYLIP package uses many source code files to make the executable files. As dnapars, dnapenny
and dnaml all use seq.c and phylip.c file, we decided to generate the mutants by modifying these two files.
However, most part of the code in phylip.c is related to exception handling. So we left the file unchanged
and used seq.c file for generating mutants. At first a number of mutants were generated by mutating seq.c.
We have randomly selected one program among the three to start our experiment with. The randomly
selected first program was dnapars and we ran the program with the mutated seq.c files. We have analysed
and excluded those mutants which are equivalent to original programs. The mutant having same result in
original version with ten thousand test inputs, is considered as equivalent mutant. We have also exclude
those mutants that have obvious errors include giving exception during execution, not generating any
output tree, falling in infinite loops, having printing mistake in the output, printing negative length and
so on. At last ten mutants listed in Table 3 were selected for our analysis.

Table 3: Mutants for dnapars

Faulty File | Line | Original Statement Faulty Statement

Pro- | Name| No.

gram

M1 seq.c | 738 | ns =1 <<G; ns = 1 <<C;

M2 | seq.c | 2807 | if (i ==)) if (i!=j)

M3 | seq.c | 565 | if (ally[alias[i - 1] - 1] != alias][i - 1]) if (ally[alias[i - 1] - 1] >= alias[i - 1])
M4 | seq.c | 1115 | for (i = a; i <b; i++) for 1 =a;i<=Db;i++)

M5 seq.c | 567 | j=1i4+1; j=i-1

M6 | seq.c | 992 | for (i = (long)A; i <= (long)O; i++) for (i = (long)A; i >(long)O; i++)

M7 | seq.c | 575 | itemp = alias[i - 1]; itemp = alias[i + 1];

M8 | seq.c | 1137 | for (j = (long)A; j <= (long)O; j++) for (j = (long)A; j >= (long)0O; j++)

M9 | seq.c | 1077 | else p->numsteps[i] += weightli]; else p->numsteps[i] -= weight/[i];

M10 | seq.c | 1182 | for (j = (long)A; j <= (long)O; j++) for (j = (long)A; j >(long)O; j++)

We have randomly selected dnapenny as our second program for analysis. We noticed that the execution
of dnapenny program does not follow the faulty path of M2, M4, M6, M8, M9 and M10 in Table 3. So
along with having M1, M3, M5 and M7, we generated six more mutants for dnapenny by mutating seq.c
file. The six new mutants (along with M1, M3, M5 and M7) used for testing dnapenny program are given
in Table 4.

Since seq.c file is commonly used by all the three programs, the mutants generated for dnapars and
dnapenny by mutating seq.c file, was executed for dnaml as well. A new set of five mutants were generated
for dnaml, as the faulty path of any mutant was not followed executing the program. As the two defined
metamorphic relations for testing dnaml are related to the permutations of the taxon in a sub tree as
well as permutation of character (represented as characters i.e A, C, G, T) in input DNA sequences, for
generating mutants for this program we have targeted the methods that work on the characters of DNA
sequences. We have randomly selected one such method for generating mutants. The mutants listed in
Table 8 are used for testing dnaml program.

6 Experiment Result

We have generated 1000 original test inputs (500 with real DNA sequences and 500 with randomly gener-
ated DNA sequences) for testing the programs. For seven MRs of dnapars and dnapenny (7*1000)= 7000
follow-up test inputs were generated respectively for each program. To test 10 mutants of each of the two

11



Table 4: New mutants for dnapenny

Faulty File Line#4 Original Statement Faulty Statement

Pro- | Name

gram

MI11 | seq.c | 959 | if (p->base[i] == 0) { if (p->base[i] 1= 0) {

M12 | seq.c | 566 |if (j <=1) if (j >1i)

M13 | seq.c | 1277 | if (p->back == pl) if (p->back != pl)

M14 | seq.c | 726 | for (i = 0;1 <spp; i++) { for (i=0;1>= spp; i++) {

M15 | seq.c | 1278 | else if (p->back == p2) else if (p->back != p2)

M16 | seq.c | 1479 | if (other == *root) if (other != *root)

Table 5: Mu