
Verification of Phylogenetic Inference Programs Using Metamorphic

Testing

Md. Shaik Sadi1, Fei-Ching Kuo1, Joshua W. K. Ho 2,

Michael A. Charleston2,3,4 and T. Y. Chen1

1Faculty of ICT, Swinburne University of Technology, VIC, Australia
2School of Information Technologies, The University of Sydney, Australia
3Centre for Mathematical Biology, The University of Sydney, Australia

4Sydney Institute for Emerging Infectious Diseases and Biosecurity, Australia

March 25, 2011

Abstract

Most phylogenetic inference programs use aligned sequences of characters, typically DNA or amino

acid, to infer evolutionary relationships among taxa. The evolutionary history of a set of taxa is

represented by a tree structure called a phylogenetic tree. A number of methods are available to

estimate these trees, which have been implemented in programs in several languages for automatic

tree estimation. However, it is in most cases impossible to verify the correctness of the tree returned

by these programs, as the correct evolutionary history is generally unknown, and unknowable. This

difficulty is known as the Oracle problem of software testing: there is no Oracle we can approach

for the guaranteed-correct answer. This makes it very challenging to test the phylogenetic inference

programs. Here, we apply Metamorphic Testing (MT) which can ameliorate the Oracle problem to test

the correctness of phylogenetic inference programs. We have used two types of input, namely real and

random, to evaluate the effectiveness of metamorphic testing, and found that metamorphic testing can

detect failures effectively in faulty Phylogenetic inference programs with both types of inputs.

Keywords: verification, software testing, metamorphic testing, Phylogenetic inference programs,

bioinformatics, PHYLIP.

1 Introduction

A fundamental concept in biology is that different taxon evolve from a common origin. The description of
the evolutionary history of a group of taxa is called a phylogeny, and is typically inferred from molecular
sequences of different taxon, and represented as an evolutionary tree or phylogenetic tree. Phylogenetic
inference is used in modern pharmaceuticals research for drug discovery, designing genetically enhanced
organisms, and understanding rapidly mutating viruses [1].

Different statistical and computational methods are available to infer phylogenetic trees. Development
of such methods has been a major research problem of computational phylogenetics for more than 30 years
[1][2]. However, much less attention has been paid to the practice on how these methods are implemented

1

in software. It is obvious that incorrect implementation of the methods can lead to incorrect data analysis,
and hence false estimation of phylogenetic trees.

We believe that the programs that generate phylogenetic trees are tested much less stringently as they
should be. One main reason for this is that most phylogenetic inference algorithms are computationally
complex, so the “correct” evolutionary history against which we can check the estimated tree is unknown,
not least because it is very computationally expensive to estimate. This issue is known in software testing
as the Oracle problem. In this article, we address the Oracle problem of testing phylogenetic inference
programs by a well-known testing method called Tetamorphic Testing (MT) [3].

A previous study on biological network simulators using MT inspired us to explore its applicability and
effectiveness on phylogenetic inference programs [4]. In this project, we have chosen three phylogenetic
inference programs and tested them with two types of inputs: (i) DNA from existing taxa, and (ii)
randomly generated sequences.

The rest of the paper is organized as follows: a brief description of the phylogenetic inference programs
we tested is given in Section 2, which is followed by Section 3 containing the details of Metamorphic Testing.
Section 4 contains our proposed metamorphic relations to test the Phylogenetic inference programs. Section
5 describes the experimental set-up and Section 6 is comprised of the experimental results. Section 7
discusses the findings and concludes the paper.

2 Phylogenetic Inference Programs

A number of Phylogenetic software packages namely PHYLIP [5], PAUP [6], MEGA [7], MRBAYES [8],
RAxML [9] etc. are available for generating Phylogenetic trees. We have chosen dnapars, dnapenny and
dnaml programs from PHYLIP version 3.68 for testing. dnapars, dnapenny and dnaml have 8600, 7781 and
9527 lines of code excluding the comment lines, respectively. All the programs are written in programming
language C. The programs present a user menu for users to execute different functionalities of the program.
Different execution options may require different input files. Inputs, outputs and algorithms of these three
programs are described below.

2.1 Inputs

One essential input file called “infile” to dnapars, dnapenny and dnaml programs is the one consisting of
DNA sequences of multiple taxa. For each taxon, the DNA sequence is made by IUPAC characters [10],
where each character is called a “nucleotide”. n taxa and m nucleotides in DNA sequence are presented
by a n ∗m matrix (n rows and m columns), shown in the input file. The column of nucleotides are called
“site” by the Phylogenetic inference scientists. A sample input file is shown in Figure 1, where 20 is the
number of taxa and 50 is the number of sites as shown in the first line of the file.

For dnaml program, menu options (“U” and “L”) used to accept another input file namely “intree”. The
“intree” file contains the Phylogenetic tree in newick format (to be further discussed in Section 2.3) [11].
As dnaml program also generates Phylogenetic trees in newick format, the tree shown in Figure 5 can be
an example of intree.

2.2 Program Description

There are several methods to construct Phylogenetic trees, including the maximum parsimony and max-
imum likelihood methods. Different Phylogenetic inference programs implement different methods. The
methods implemented by the chosen programs of this experiment are described in the following subsection.

2.2.1 dnapars and dnapenny

Both dnapars and dnapenny implement the maximum parsimony method to construct Phylogenetic trees.
Based on the given DNA sequences of taxa, these two programs calculate nucleotide changes (or called

2

Figure 1: Input file (infile) consisting DNA sequences

evolutionary steps) among sites, to generate Phylogenetic trees. Evolutionary steps calculated for the
entire tree is called the total length, while those calculated for the branch is called the branch length. The
maximum parsimony method aims to minimize the number of evolutionary steps to generate the maximum
parsimony tree. Maximum parsimony tree is a Phylogenetic tree which has least total length. For getting
the maximum parsimony tree, an initial Phylogenetic tree is prepared with the first n taxa of the infile
(n = 3 for dnapars, n = 2 for dnapenny). These programs then read one sequence of DNA at a time and
works out the maximum parsimony tree for the read in data. Read in data means the DNA sequences of
taxa that already read by the program.

In dnapars, before and after adding one taxon to the tree, each pair of adjacent branches swap to get
the maximum parsimony tree. Once all the taxa are added to the tree, sub tree rearrangements are tried
in order to get maximum parsimony tree.

dnapenny uses “branch and bound” algorithm to achieve the maximum parsimony tree [12]. At each
step of tree construction, if the length of a branch exceeds the predefined bound, that branch is not
extended further and other branches are tried. However, this program consumes a lot of computation
time, when dealing with more than ten taxa.

2.2.2 dnaml

dnaml uses the maximum likelihood method. In this method, the evolution of taxa is considered as
a stochastic process in which “evolutionary changes among sites” depends on some set of probabilities
generated by the Markov model [13]. For each set of probabilities generated, the nucleotides are changed
to get the likelihood tree. The Markov model then follows the evolution probabilities to calculate the
likelihood.

2.3 Outputs

dnapars, dnapenny and dnaml attemp to generate tree(s) that best describe the evolutionary history among
taxa. However, these three programs have a common goal, they use different algorithms to generate the tree
that describes the evolutionary history. dnapars and dnapenny aims to construct trees with the shortest
“total length” but dnaml aim to generate trees with the highest “likelihood” against an evolutionary model.
During the process, some values are outputted to the files (a file called “outfile” or a file called“outtree”
or both files). Table 1 summarizes the output values for each of three program.

3

Table 1: Output description of the programs

Name of the

program

Tree Total

length

Branch

length

Likelihood

dnapars yes yes yes no

dnapenny yes yes no no

dnaml yes no yes yes

Figures 2, 3 and 4 illustrate one output tree in outfile of dnapars, dnapenny and dnaml respectively
for the input of Figure 1. These three programs can generate more than one output tree in the outfile but
the total length are same for all trees. Total length 452.00, 465.000 and likelihood -1351.32295 are also
printed in Figures 2, 3 and 4.

Figure 2: Output tree in outfile by dnapars program

“outtree” file presents the output tree in Newick format. Figure 5 is an example of Newick format of
the tree for dnapars and dnaml programs, where 0.35697, 0.22394, 0.29697 etc. are the branch lengths.
dnapenny does not output branch lengths to the “outtree” file. Figure 6 shows the tree in newick format
for dnapenny in outtree file.

2.4 The Oracle Problem

An oracle in software testing refers to a mechanism that may be used to verify the output of the software:
the correctness of a test output is determined by querying the oracle. In phylogenetics it is not in general
possible to guarantee that the estimated tree is correct, because it is not possible to go back in time and
observe the pattern of speciation, so here we will restrict ourselves to verifying that the estimated tree is

4

Figure 3: Output tree in outfile by dnapenny program

optimal for some criterion. An oracle for phylogenetic inference programs can therefore be constructed by
manually applying the underlying algorithm when the number of taxa is small. However, with many taxa
it is infeasible to manually verify the correctness of test output. When an oracle to test software cannot
be constructed testing of software thus becomes difficult. consider

using

“taxon”

and

“taxa”

through-

out
Sadi:

added

3 Metamorphic Testing

Metamorphic testing is an approach to alleviate the Oracle Problem. This approach does not rely on the
test oracle to verify the output, but rather, checks the expected relations among inputs and outputs of
the program under test. These relations are called Metamorphic Relations (denoted as MRs henceforth).
They are derived based on the properties of the algorithm being implemented. In this testing method,
some initial test inputs called original test inputs are generated, using any existing test case generation
method. According to the derived MRs, new test inputs called follow-up test inputs are generated based
on the original test inputs. The program is executed with both original and follow-up test inputs, and their
outputs are compared according to the MRs. If the comparison of any source and follow-up test cases pair
does not satisfy the corresponding MR then a bug is found. The process of metamorphic testing can be
described as follows: Let t be a original test input of a program P. Use one MR (denoted as R) of program
P to generate one follow up input t’ for t. The output of the program P on execution of t and t’ are
denoted as P(t) and P(t’) respectively. According to R, P(t) and P(t’) should have some relations among
them. The whole testing process can be automated easily, including the follow-up test case generation and what

does this

mean?
Sadi:

I have

added

methamat-

ical no-

tation of

MT. Hope

this will

works

output comparison [14].
put references at the end of sentences or phrases, so they don’t interrupt the flow
Metamorphic testing can be best understood with an example. Let us consider an electronic circuit

where we can control the resistance of the circuit to monitor the current flow in the circuit. Suppose
the simple relation exists between voltage, current and resistance of V = IR. One MR can be derived
based on this relation as follows: suppose the original input resistance is R1 and the follow-up resistance
is R2 = 2R1, then the follow-up current should satisfy I2 = I1/2 where I1 and I2 are the original and

5

Figure 4: Output tree in outfile by dnaml program

Figure 5: Output tree in newick format in outtree file for dnapars and dnaml

follow-up output current respectively. you had

I/4 for

some rea-

son: the

relation is

V = IR
also

check out

http://forum.allaboutcircuits.com/showthread.php?t=11674

In current flow resistance circuit the value of I2 is compared with I1 to check identity relation. This
particular example shows how an identity relation can be used to define an MR. Identity relation are mostly
used by numerical programs but it is worth to note that MRs are not restricted to identity relations only,
they can take any form [15].

Metamorphic testing employs some relations between the input and output of a program for testing,
so this testing method does not require the oracle.

4 Metamorphic Relations

By analysing the property of the chosen algorithms for Phylogenetic inference programs, we have defined
some relevant metamorphic relations to test the programs. As dnapars and dnapenny implement the
method of maximum parsimony, one set of metamorphic relations were generated for both programs. On
the other hand, we developed two different metamorphic relations for dnaml.

We will represent the DNA sequences of the input as a matrix X in this section to facilitate the
discussion of the MRs. For n taxa and m sites, matrix X = {xij |1≤i≤n, 1≤j≤ m}, where xij is a
nucleotide from the IUPAC character set (denoted as US). In this study we let US = {A, T, C,G} because
A, T, C, G are the most common characters encountered in real DNA sequences. An example input X is
given in Figure 7.

We use X and X ′ to denote the original and the follow-up inputs, respectively when describing MRs.
We also use T and T ′ to represent a set of original and follow-up output trees for dnapars and dnapenny
and t and t′ are used to denote the corresponding total lengths. For dnaml, l and l′ represent original and
follow-up likelihood, respectively.

6

Figure 6: Output tree in newick format in outtree file in dnapenny

X =


x11 x12 . . .

x21 x22 . . .
...

...
. . .

 =


ATCGAAGCAA

AGCGATGTTG

etc.


Figure 7: Matrix format of DNA sequences

4.1 Metamorphic Relation for dnapars and dnapenny

We have borrowed some terminologies from Phylogenetic inference community to explain our MRs. These
terminologies are summarized below.

Sites that are highly conserved among all sequences or sites that contain the same nucleotide in all
sequences (e.g., site 1, 4 and 5 in Figure 7) are called conserved sites or parsimony-uninformative
sites. If all the nucleotides of a site are different then the site is called hypervariable sites (e.g., site 10
in Figure 7). The sites that are mostly conserved except for a change in one sequence (i.e. sites that have
two type of nucleotides, one occur multiple times and the other one occur only one time in the sequence)
are called singleton sites [7] (e.g., sites 3, 6 and 7 in Figure 7). All other sites provide some useful
information for constructing a Phylogenetic tree, and therefore are called parsimony-informative sites
(e.g., sites 2, 8 and 9 in Figure 7). We use these useful information to define our MRs for dnapars and
dnapenny. The MRs for dnapars and dnapenny are discussed below.

MR1: If we generate a follow-up input X ′ by swapping two sites (the columns) in the original input
X (see example below), then the set of original and follow-up output trees T and T ′ are identical and their
corresponding total lengths t and t′ are equal.

Example: The follow-up input X ′, by interchanging column 3 and 8 of original input X in Figure 7
looks like:

X′ =


A T C G A A G C A A
A G T G A T G C T G
A G T G A T A C T T
A T C G A T G T A C


this won’t compile: you have to put in units for the column widths, not just “p0.009”:

0.009 what? textwidth? sadi: added the unit
Output Comparison : T = T ′ and t = t′.

MR2: If we add k (k>0) number of uninformative sites into the original input X to generate a follow-up
input X ′ (see example below), then the set of original and follow-up output trees T and T ′ are identical and
their corresponding total lengths t and t′ are equal. Additions of uninformative sites are order independent
and can be placed after any site of the original input X.

Example: We add five (k=5) uninformative sites (consisting of nucleotide character A) into the
original input X in Figure 7 to generate follow-up input X ′:

X′ =


A T C G A A G C A A A A A A A
A G C G A T G T A A A A A T G
A G C G A T A T A A A A A T T
A T T G A T G C A A A A A A C


Output Comparison : T = T ′ and t = t′.

7

MR3: If we remove some uninformative sites from the original input X to generate a follow-up in-
put X ′ (see example below), then the set of original and follow-up output trees T and T ′ are identical and
their corresponding total lengths t and t′ are equal.

Example: We can see that there are three uninformative sites (sites 1, 4 and 5) in the original test
input X in Figure 7. If we remove the two uninformative sites (sites 1 and 5) from the original input X
in Figure 7 and generate X ′, X ′ looks like:

X′ =


T C G A G C A A
G C G T G T T G
G C G T A T T T
T T G T G C A C


Output Comparison : T = T ′ and t = t′

MR4: If we double the length of DNA sequences in the original input X by the concatenation of each
DNA sequence with itself to generate follow-up input X ′ (see example below), then the set of original and
follow-up trees T and T ′ are identical and the follow- up total length t′ is double of the original total length
t. This MR is only true for input alignment with n = 4z where z is a integer number.

Example: The follow-up input X ′ by concatenating the DNA sequence of with itself at the end in the
original input X in Figure 7 is:

X′ =


A T C G A A G C A A A T C G A A G C A A
A G C G A T G T T G A G C G A T G T T G
A G C G A T A T T T A G C G A T A T T T
A T T G A T G C A C A T T G A T G C A C


Output Comparison : T = T ′ and 2t = t′

MR5: If we add some hypervariable sites into the original test input X to generate a follow-up in-
put X ′ (see example below), then the set of original and follow-up output trees T and T ′ are identical.
Hypersensitive site(s) can be placed after any site of the original input X.

Example: We add two hypersensitive sites to the original input X in Figure 7 to generate follow-up
input X’:

X′ =


A T C G A A G C A T A A
A G C G A T G T T C T G
A G C G A T A T C G T T
A T T G A T G C G A A C


Output Comparison : T = T ′

MR6: If we apply the same transformation to change every character in every DNA sequence, for example
(A→T, T→G, G→C, C→A), in the original input X to generate follow-up input X ′ (see example below),
then the set of original and follow-up trees T and T ′ are identical and their corresponding total lengths t
and t′ are equal.

Example: We create a follow-up input X ′ from original input X in Figure 7 by changing (A→G,
T→C, G→A, C→T):

X′ =


G C T A G G A T G G
G A T A G C A C C A
G A T A G C G C C C
G C C A G C A T G T


Output Comparison : T = T ′ and t = t′.

MR7: If we add a duplicate DNA sequences of any taxon in the original input X to create the follow-up
input X ′ (see example below). Then- 1. the trees of original and follow-up output sets, T and T ′ respec-
tively, should differ only for the duplicate taxa such that in the follow-up output tree, the duplicates are
grouped together in a sub tree, and 2. The total lengths of original and follow-up trees t and t′ should be
same and the output is independent on where the duplicate DNA sequence is placed.

8

Example: Follow-up input X ′ is given below by adding the duplicate DNA sequence of first taxon
(first row) before the third row of original input X in Figure 7.

X′ =


A T C G A A G C A A
A G C G A T G T T G
A T C G A A G C A A
A G C G A T A T T T
A T T G A T G C A C


Output Comparison : In T ′, taxon having same DNA sequence will be grouped together in a sub

tree. Except the sub tree of the duplicate taxon having same DNA sequence, T and T ′ are the same, and
the total lengths of original and follow-up outputs t and t′ are the same. For the X ′ of MR7 we can say
that taxon of the first and third row will group together in a sub tree and the tree structure of the taxon
of second, fourth and fifth row is same in T and T ′. what does this mean?.Sadi: simplified it

4.2 Metamorphic Relation for dnaml

For running the original and follow-up test inputs on dnaml we have used two input files, called “infile”
(DNA sequence file) and “intree” (containing Phylogenetic trees of the DNA sequences). The “outtree”
file generated by the dnaml program using the default option and only infile, is used as original intree
file by renaming as “intree” for these two MRs. For the first MR infile is same for original and follow-up
test inputs but intrees are different. For the second MR intree is same in both original and follow-up test
inputs and infiles are different.

For ease of discussion we will use the original input X in Figure 7. The intree file of X is denoted as
original intree S and is given below:

(seq4:0.06250(seq3:0.16250,seq2:0.06250):0.25000,seq1:0.26250);

We will also use S′ for denoting follow-up intree.
MR ML1: If we generate a tree by swapping two taxa of any sub tree in the bottom layer of the original
intree file S where the two taxa must share one immediate ancestor and append the newly generated tree
to the original intree file to generate follow-up intree file S′, the set of original and follow-up output trees
T and T ′ and their corresponding likelihoods l and l′ are identical.

Example: We swap seq2 and seq3 in the original intree S to generate a modified tree and append the
modified tree with S to generate follow-up intree S′:

(seq4:0.06250,(seq3:0.16250,seq2:0.06250):0.25000,seq1:0.26250);

(seq4:0.06250,(seq2:0.06250,seq3:0.16250):0.25000,seq1:0.26250);

Output Comaprison: T = T ′ and l = l′.

MR ML2 : This MR is similar to MR6 defined to test dnapars and dnapenny in the last subsection. If
we generate the follow-up input as mentioned in MR6 and also use intree, the sets of follow-up and original
output tree are identical and their corresponding likelihoods are equal.

Example: Same as MR6.
Output Comparison : T = T ′ and l = l′.

5 Experiment Setup

In the experiment, the original and follow-up inputs generation as well as original and follow-up outputs
verification were conducted automatically. The automated process was implemented using C#.

9

5.1 Input Selection

As mentioned in Section 3 the original test input of MT can be generated using existing test case selection
methods. For testing Phylogenetic inference programs, we have considered two types of test inputs namely
real and random. The real DNA sequences of different taxon are obtained from TreeFam [16]. On the
other hand, some DNA sequences were randomly generated which we denote as random input. To select
one type of input to be used as original input of MT, we have used 500 test inputs of each type and
measured different types of code coverage of the chosen three programs of this study. Code coverage is a
measurement of the portion of the code that is executed by a test input and one of the strong criterion to
measure the effectiveness of a test input.

We have used LCOV, a very renowned tool, to measure the coverage of real and random test inputs
for the chosen Phylogenetic inference programs. The coverage result of the three programs for both type
of test inputs are given in the Table 2.

Table 2: Coverage Results of Real and Random test suit

Program Coverage Real(%) Random(%)

dnapars

Lines 38.2 38.1

Functions 33.5 33.5

Branches 25.7 25.6

dnapenny

Lines 38.1 20.3

Functions 33.5 16.9

Branches 25.6 11.3

dnaml

Lines 24.0 23.9

Functions 20.1 20.1

Branches 12.3 12.2

From the coverage results we found that both type of inputs cover almost same proportion of statements,
functions as well as branches for dnapars and dnaml programs. Although dnapenny shows exception to
this, we have decided to use both type of inputs for testing to measure the effectiveness of MT. Same test
inputs were used for testing all the three programs.

5.2 Output Comparison

The linear representations of the resulting trees of original and follow-up outputs are compared using string
matching. At first we discarded the branch lengths to match the structure of original and follow-up output
trees. Each tree of the original output is matched against all the trees of the follow-up output. We have
focused on the tree structure and the total length in this paper for testing.

5.3 Mutation Analysis

To measure the effectiveness of metamorphic testing to test dnapars, dnapenny and dnaml, mutation
analysis was conducted [17]. Mutants are faulty program versions generated by seeding faults in the
original version of a program. In mutation analysis, if the output of original and mutant programs for
same test input differs, then the fault in the mutant program is revealed. On the other hand, if same output
is produced by original and mutant program on same test input, the mutant is said to be equivalent mutant
of the original program. Some very simple mutation operators are used to generate the mutants for our
experiment. Mutants were generated randomly by using an automated Perl script. The script can generate
mutants by mutating one statement at a time.

10

The PHYLIP package uses many source code files to make the executable files. As dnapars, dnapenny
and dnaml all use seq.c and phylip.c file, we decided to generate the mutants by modifying these two files.
However, most part of the code in phylip.c is related to exception handling. So we left the file unchanged
and used seq.c file for generating mutants. At first a number of mutants were generated by mutating seq.c.
We have randomly selected one program among the three to start our experiment with. The randomly
selected first program was dnapars and we ran the program with the mutated seq.c files. We have analysed
and excluded those mutants which are equivalent to original programs. The mutant having same result in
original version with ten thousand test inputs, is considered as equivalent mutant. We have also exclude
those mutants that have obvious errors include giving exception during execution, not generating any
output tree, falling in infinite loops, having printing mistake in the output, printing negative length and
so on. At last ten mutants listed in Table 3 were selected for our analysis.

Table 3: Mutants for dnapars

Faulty

Pro-

gram

File

Name

Line

No.

Original Statement Faulty Statement

M1 seq.c 738 ns = 1 <<G; ns = 1 <<C;

M2 seq.c 2807 if (i == j) if (i != j)

M3 seq.c 565 if (ally[alias[i - 1] - 1] != alias[i - 1]) if (ally[alias[i - 1] - 1] >= alias[i - 1])

M4 seq.c 1115 for (i = a; i <b; i++) for (i = a; i <= b; i++)

M5 seq.c 567 j = i + 1; j = i - 1;

M6 seq.c 992 for (i = (long)A; i <= (long)O; i++) for (i = (long)A; i >(long)O; i++)

M7 seq.c 575 itemp = alias[i - 1]; itemp = alias[i + 1];

M8 seq.c 1137 for (j = (long)A; j <= (long)O; j++) for (j = (long)A; j >= (long)O; j++)

M9 seq.c 1077 else p->numsteps[i] += weight[i]; else p->numsteps[i] -= weight[i];

M10 seq.c 1182 for (j = (long)A; j <= (long)O; j++) for (j = (long)A; j >(long)O; j++)

We have randomly selected dnapenny as our second program for analysis. We noticed that the execution
of dnapenny program does not follow the faulty path of M2, M4, M6, M8, M9 and M10 in Table 3. So
along with having M1, M3, M5 and M7, we generated six more mutants for dnapenny by mutating seq.c
file. The six new mutants (along with M1, M3, M5 and M7) used for testing dnapenny program are given
in Table 4.

Since seq.c file is commonly used by all the three programs, the mutants generated for dnapars and
dnapenny by mutating seq.c file, was executed for dnaml as well. A new set of five mutants were generated
for dnaml, as the faulty path of any mutant was not followed executing the program. As the two defined
metamorphic relations for testing dnaml are related to the permutations of the taxon in a sub tree as
well as permutation of character (represented as characters i.e A, C, G, T) in input DNA sequences, for
generating mutants for this program we have targeted the methods that work on the characters of DNA
sequences. We have randomly selected one such method for generating mutants. The mutants listed in
Table 8 are used for testing dnaml program.

6 Experiment Result

We have generated 1000 original test inputs (500 with real DNA sequences and 500 with randomly gener-
ated DNA sequences) for testing the programs. For seven MRs of dnapars and dnapenny (7*1000)= 7000
follow-up test inputs were generated respectively for each program. To test 10 mutants of each of the two

11

Table 4: New mutants for dnapenny

Faulty

Pro-

gram

File

Name

Line# Original Statement Faulty Statement

M11 seq.c 959 if (p->base[i] == 0) { if (p->base[i] != 0) {
M12 seq.c 566 if (j <= i) if (j >i)

M13 seq.c 1277 if (p->back == p1) if (p->back != p1)

M14 seq.c 726 for (i = 0; i <spp; i++) { for (i = 0; i >= spp; i++) {
M15 seq.c 1278 else if (p->back == p2) else if (p->back != p2)

M16 seq.c 1479 if (other == *root) if (other != *root)

Table 5: Mutants for dnaml

Faulty

Pro-

gram

File

Name

Line# Original Statement Faulty Statement

M17 seq.c 464 sumg += w * (*freqg) * treenode[i] ->x

[j][0][(long)G - (long) A] / sum;

sumg -= w * (*freqg) * treenode[i] ->x

[j][0][(long) G - (long) A] / sum;

M18 seq.c 460 sum += (*freqg) * treenode[i] ->x

[j][0][(long)G - (long)A];

sum -= (*freqg) * treenode[i] ->x

[j][0][(long) G - (long) A];

M19 seq.c 465 sumt += w * (*freqt) * treenode[i] ->x

[j][0][(long) T - (long) A] / sum;

sumt -= w * (*freqt) * treenode [i] ->x

[j][0][(long) T - (long) A] / sum;

M20 seq.c 461 sum += (*freqt) * treenode[i] ->x

[j][0][(long) T - (long) A];

sum -= (*freqt) * treenode [i] ->x

[j][0][(long) T - (long) A];

M21 seq.c 468 sum = suma + sumc + sumg + sumt; sum = suma -sumc + sumg + sumt;

programs a total of (10*7*1000) 70000 original and follow-up test input pairs were executed. Same original
test inputs were used for testing dnaml. For the five mutants and two MRs of dnaml a total (5*2*1000)
10000 original and follow-up test input pairs were executed.

6.1 dnapars Result:

The result of applying MT on the ten mutants of dnapars is summarized in Table 6. From the result we
have found that most of the mutants are detected by MR7. We have also found that MR1 could only
reveal failure in M3.

Among the 70000 test input pairs 18232 (26.05%) violated the MRs and hence revealed failure. As we
have used both real DNA sequences and randomly generated DNA sequences, we measured the effectiveness
of test inputs separately. With real DNA sequences 8753 (25.01%) test inputs revealed failure and with
randomly generated DNA sequences 9479 (27.08%) test inputs revealed the failure.

A close inspection of the results of applying MT on this program reveals two opposite scenario- while
M7 is detected by MR2 with random input only, M9, on the other hand, was detected by MR5 with real
input only. However, analysing the overall result we have found that all MRs detected more failures with
random inputs with an exception of MR4 which performed better with real inputs.

12

Since M11, M12, M13, M14, M15 and M16 in Table 4 and all the mutants of dnaml in Table 8 are
generated by altering seq.c file and seq.c is used by dnapars as well, we have executed these mutants for
dnapars. We have found that M12 was detected by MR1-MR6 and M16 was detected by MR7 only. M11,
M13, M14 and M15 produced obvious errors with original test case for dnapars.

Table 6: Metamorphic testing result of mutants of dnapars program

MRs types M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

MR1
Real 0 0 127 0 0 0 0 0 0 0

Random 0 0 172 0 0 0 0 0 0 0

MR2
Real 0 0 455 6 17 500 0 0 0 500

Random 0 0 490 39 158 500 32 0 0 500

MR3
Real 0 475 478 43 263 496 122 0 0 0

Random 0 500 481 65 225 500 131 0 0 0

MR4
Real 0 0 465 2 374 0 66 0 0 0

Random 0 0 493 3 500 0 76 0 0 0

MR5
Real 0 0 40 243 12 0 0 0 7 0

Random 0 0 66 102 13 0 0 0 0 0

MR6
Real 489 0 492 0 410 0 66 0 0 496

Random 497 0 499 0 492 0 113 0 0 500

MR7
Real 0 500 227 232 168 267 39 192 205 279

Random 0 500 236 336 213 252 41 301 189 264

6.2 dnapenny Result:

The testing result of dnapenny using MT on ten mutants is given in Table 7. From the result we have
found that MR1 could only reveal failure in M3. Among the total original and follow-up test input pair
17603 (25.15%) revealed failure. 8273 (23.64%) real test input pair and 9330 (26.66%) random test input
pair revealed failure.

Analysing the results of testing dnapenny, we have found that All MRs perform better in revealing
failure with random test inputs.

Since seq.c file is common, the mutants of dnaml were executed for dnapenny. The faulty path of any
of those mutants was not executed by the test inputs and as such none of those five mutants of dnaml
were detected by the MRs of dnapenny.

6.3 dnaml Result:

Testing result of dnaml using MT on five mutants is given in Table 8. From the result we have found that
MR b is effective for all the mutants. No mutant was detected by MR ML1. Among the total test inputs
2500 (50%) real test inputs and 2496 (49.92%) random test inputs revealed failure.

For this program we have seen that almost same numbers of mutants were detected by both real and
random test inputs.

13

Table 7: Metamorphic testing result of mutants of dnapenny program

MRs types M1 M3 M5 M7 M11 M12 M13 M14 M15 M16

MR1
Real 0 89 0 0 0 0 0 0 0 0

Random 0 178 0 0 0 0 0 0 0 0

MR2
Real 0 450 17 0 500 0 0 500 0 0

Random 0 469 131 21 500 32 0 500 0 0

MR3
Real 0 466 245 121 496 21 0 496 0 0

Random 0 468 223 128 500 87 0 500 0 0

MR4
Real 0 465 374 66 0 79 0 0 0 0

Random 0 493 500 76 0 74 0 0 0 0

MR5
Real 12 84 12 0 0 0 0 0 0 0

Random 6 184 42 2 0 14 0 0 0 0

MR6
Real 490 477 388 64 0 67 0 0 0 0

Random 488 488 479 108 0 87 0 0 0 0

MR7
Real 0 210 161 26 500 30 465 500 400 2

Random 0 236 234 39 500 18 500 500 500 25

Table 8: Metamorphic testing result of mutants of dnaml program

MRs types M17 M18 M19 M20 M21

MR a
Real 0 0 0 0 0

Random 0 0 0 0 0

MR b
Real 500 500 500 500 500

Random 500 500 500 496 500

7 Discussion and Conclusion

As mentioned earlier, Phylogenetic inference programs such as dnapars, dnapenny and dnaml suffer from
oracle problem. To our knowledge, there is no effective way of testing the correctness of such programs.
Our approach of applying MT to test mutant versions of three example Phylogenetic inference programs
showed promising fault detection rate. The results illustrate that this innovative testing method can be
useful in detecting faults and hence can alleviate the drawback of oracle problem in testing this kind of
programs. Thus MT can be an effective method for testing Phylogenetic inference programs.

From the results of testing all the three programs with MT, we found that different MRs detect faults
in different mutants. This phenomenon suggests that, defining more MRs is helpful to detect different
type of faults. While executing the programs with one MR, the faulty statement may not be executed
and hence the fault may remain unnoticed. Employing a variety of MRs to test a program will thus be
beneficial to detect different faults.

In our experiment we have used both real DNA sequences and randomly generated DNA sequences.
A coverage analysis of the programs with both types of inputs showed that both real and random inputs
cover very close percentages of lines, functions and branches of three programs. In the case of dnapars and
dnapenny, fault detection rate was high for random test inputs than real test inputs. However, The fault
detection rate in both types of test inputs was almost same for dnaml. In our analysis neither type of test
input outperforms the other in detecting faults. Furthermore, in some cases some mutants were detected

14

by MRs with one type of input only. Based on the analysis we can suggest the Phylogenetic inference
scientists to test Phylogenetic inference programs with both types of test inputs.

In process of MT, defining the MRs require some kind of background knowledge on the theory of the
program. As scientist put overwhelming focus on the theory, designing MRs make the task easier for them
[18]. As such it is most likely that MT will be accepted more enthusiastically by the Phylogenetic inference
scientist community.

With MT, we can reveal failures using a number of MRs but we can not detect the faulty statement.
As a future works, we will isolate the bug by getting the execution trace of the source and follow-up test
inputs of MT.

A number of Phylogenetic inference software has been implemented since the last three decades. Un-
fortunately no established test tool has been developed to test these kinds of software. For the purpose of
this paper we have used only three programs. In future we plan to make an automated general MT tool
for testing Phylogenetic inference programs.

Acknowledgement

We would like to acknowledge the support given to this project by an Australian Research Council Dis-
covery Grant (ARC DP*******).

References

[1] B. M. E. Moret, D. A. Bader, and T. Warnow, High-performance algorithm engineering for computa-
tional phylogenetics, ser. Lecture Notes in Computer Science, 2001, vol. 2074, pp. 1012–1021.

[2] N. Friedman, M. Ninio, I. Pe’er, and T. Pupko, “A structural em algorithm for phylogenetic inference,”
Journal of Computational Biology, vol. 9, pp. 331–353, 2002.

[3] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: a new approach for generating
next test cases,” Department of Computer Science, Hong Kong University of Science and Technology,
Hong Kong, Tech. Rep. HKUST-CS98-01, 1998.

[4] T. Y. Chen, J. W. K. Ho, H. Liu, and X. Xie, “An innovative approach for testing bioinformatics
programs using metamorphic testing,” BMC Bioinformatics, vol. 10, p. 24, 2009.

[5] PHYLIP. [Online]. Available: http://evolution.genetics.washington.edu/phylip/doc/main.html

[6] D. L. Swofford, PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.
Sunderland, Massachusetts: Sinauer Associates, 2003.

[7] S. Kumar, M. Nei, J. Dudley, and K. Tamura, “MEGA: a biologist-centric software for evolutionary
analysis of DNA and protein sequences.” Briefings in bioinformatics, vol. 9, no. 4, pp. 299–306, Jul.
2008. [Online]. Available: http://dx.doi.org/10.1093/bib/bbn017

[8] J. P. Huelsenbeck and F. Ronquist, “MRBAYES: Bayesian inference of phylogenetic trees.”
Bioinformatics (Oxford, England), vol. 17, no. 8, pp. 754–755, Aug. 2001. [Online]. Available:
http://dx.doi.org/10.1093/bioinformatics/17.8.754

[9] A. Stamatakis, T. Ludwig, and H. Meier, “RAxML-III: a fast program for maximum likelihood-based
inference of large phylogenetic trees,” Bioinformatics, vol. 21, no. 4, pp. 456–463, Feb. 2005. [Online].
Available: http://dx.doi.org/10.1093/bioinformatics/bti191

[10] Nomenclature committee of the international union of biochemistry (nc-iub). [Online]. Available:
http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html

15

[11] [Online]. Available: http://evolution.genetics.washington.edu/phylip/newicktree.html

[12] M. D. Hendy and D. Penny, “Branch and bound algorithms to determine minimal evolutionary trees,”
Mathematical Biosciences, vol. 59, pp. 277–290, 1982.

[13] J. Felsenstein and G. A. Churchill, “A hidden markov model approach to variation among sites in rate
of evolution molecular biology and evolution,” Molecular Biology and Evolution, vol. 13, pp. 93–104,
1996.

[14] C. Murphy, K. Shen, and G. E. Kaiser, “Automatic system testing of programs without test oracles,”
in ISSTA, 2009, pp. 189–200.

[15] W. J. Cody, Software Manual for the Elementary Functions (Prentice-Hall series in computational
mathematics). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1980.

[16] H. Li, A. Coghlan, J. Ruan, L. J. J. Coin, J.-K. K. Hériché, L. Osmotherly, R. Li, T. Liu, Z. Zhang,
L. Bolund, G. K.-S. K. Wong, W. Zheng, P. Dehal, J. Wang, and R. Durbin, “TreeFam: a curated
database of phylogenetic trees of animal gene families.” Nucleic acids research, vol. 34, no. Database
issue, Jan. 2006. [Online]. Available: http://dx.doi.org/10.1093/nar/gkj118

[17] M. R. Woodward and K. Halewood, “From weak to strong, dead or alive? an analysis of some
mutationtesting issues,” in Proceedings of the 2nd Workshop on Software Testing, Verification, and
Analysis (TVA’88), Banff Albert, Canada, July 1988, pp. 152–158.

[18] R. Sanders and D. Kelly, “Dealing with risk in scientific software development,” IEEE Software,
vol. 25, pp. 21–28, 2008.

16

