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 1 

ABSTRACT 2 

Objectives: To describe prevalence of osteophytes (OPs) detected only by 3 

magnetic resonance imaging (MRI) but not by standard X-ray in older adults and 4 

to evaluate longitudinal associations with knee pain and structural changes.  5 

Methods: 837 participants (mean age 62 years, 50% female) were randomly 6 

selected from the local community at baseline. T1- or T2-weighted fat suppressed 7 

MRI was used to assess knee OPs, cartilage volume, cartilage defects and bone 8 

marrow lesions (BMLs) at baseline and after 2.6 years. OPs detected only by MRI 9 

but not by standard X-ray were defined as MRI-detected early OPs (MRI-OPs for 10 

short). OPs detected by both MRI and X-ray were defined as established-OPs. 11 

Knees without MRI- or X-ray-detected OPs were defined as no-OPs.   12 

Results: The prevalence of MRI-OPs was 75% while the prevalence of 13 

established-OPs was 10% and no-OPs was 15% in total knee at baseline. 14 

Compared with no-OPs, participants with MRI-OPs and/or established-OPs had 15 

greater cartilage volume loss, increased cartilage defects and increased BMLs 16 

over 2.6 year. Participants with no-OPs, MRI- early OPs and established-OPs 17 

showed dose-response relationships with OA structural progression (p for trend 18 

<0.01). Surprisingly, presence of medial tibiofemoral MRI-OPs predicted a 19 

decrease in knee pain over 5 years, while established-OPs predicted an increase 20 

in total knee pain, after adjustment for relevant covariates.  21 

Conclusion: MRI-detected early OPs are associated with knee structural changes 22 

in a dose response manner. Unexpectedly, they have opposite associations with 23 

pain suggesting MRI-detected early OPs prior to knee pain development. 24 

Introduction 25 
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Knee osteoarthritis (OA) is a leading cause of pain and disability [1]. 1 

Symptomatic knee OA is estimated to occur in 10% of men and 13% of women 2 

aged 60 years or older [2]. Although osteophytes (OPs) have long been viewed 3 

as a defining structural feature of knee OA [3] and a fundamental sign of disease 4 

incidence and progression [4], correlation between OPs  and clinical features is 5 

weak at best [5, 6], and change in symptoms is poorly predicted by baseline 6 

radiographic OPs [7].  7 

In an observational study, knee pain was reported by 1004 subjects, only 15% of 8 

whom had radiographic grade 2 to 4 changes of OA [8]. The discrepancy between 9 

clinical and radiographic OA may be due to the inherent limitations of 10 

conventional radiography as an imaging tool [9]. Many OA features cannot be 11 

detected using radiography and some pre-radiographic OA features are missed 12 

using radiographic assessment. A recent study revealed that about 90% of 13 

radiographically normal knees had one or more OA-related features on MRI, and 14 

MRI-detected OP is the most common abnormality among these features[10]. An 15 

obeservational study has reported that prevalence of MRI-detected OPs is 72% 16 

among middle-aged women [11] and another study reports 74% MRI-detected 17 

OPs in 710 knees without radiographic evidence of OA [10]. In contrast, the 18 

prevalence of radiographic OPs was approximately 10% in a generally older 19 

population (mean age 61 years) [12]. 20 

Given that radiography fails to detect a large proportion of OPs which can only 21 

be detected on MRI, there would be a large number of OA patients who have 22 

MRI-detected early OPs (MRI-OPs) are misclassified as normal. Moreover, they 23 

represent different stages of OA process. To date, the relevance of MRI-OPs for 24 

the development of structural and clinical abnormalities is uncertain. We 25 

hypothesized that MRI-OPs that are detected only by MRI can serve as a 26 

biomarker in identifying patients at a high risk of osteoarthritic progression. The 27 
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aim of this population-based cohort study, therefore, was to describe the 1 

prevalence of MRI-OPs in older adults and the longitudinal associations with 2 

knee pain and structural abnormalities. 3 

Materials and Methods 4 

Subjects 5 

These analyse suse data from the Tasmania Older Adult Cohort (TASOAC) Study, 6 

a population-based, ongoing, prospective longitudinal cohort study which was 7 

designed to identify the environmental, genetic, biochemical factors associated 8 

with the development and progression of OA at multiple sites. Participants 9 

between 50 and 80 years old were randomly selected from the electoral roll in 10 

Southern Tasmania (population 229, 000) using sex-stratified random sampling 11 

(response rate 57%). Participants were excluded if they were institutionalised or 12 

had contraindications to MRI. The Southern Tasmania Health and Medical 13 

Human Research Ethics Committee approved the study, and written informed 14 

consent was obtained from all participants. Baseline examinations were taken 15 

between February 2002 and September 2004, and follow-up measures were taken 16 

at approximately 2.6 and 5.1 years later. This study consisted of 837 participants 17 

who had knee MRI and radiographic scans at baseline. 18 

Magnetic Resonance Imaging 19 

MRI scans of the right knees were performed on two occasions and imaged in the 20 

sagittal plane on a 1.5-T whole body magnetic resonance unit (Picker, Cleveland, 21 

OH) using a commercial transmit-receive extremity coil. The image sequences 22 

used are listed as follows: (1) a T1-weighted fat saturation 3D gradient recall 23 

acquisition in the steady state; flip angle 30°; repetition time 31 ms; echo time 24 

6.71 ms; field of view 16 cm; 60 partitions; 512×512 matrix; acquisition time 11 25 
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min 56 s; one acquisition. Sagittal images were obtained at a partition thickness 1 

of 1.5 mm and an in-plane resolution of 0.31×0.31 (512×512 pixels). (2) a T2-2 

weighted fat saturation 3-D fast spin echo, flip angle 90, repetition time 3067 ms, 3 

echo time 112 ms, field of view 16 cm, 15 partitions, 228x256-pixel matrix; 4 

sagittal images were obtained at a partition thickness of 4 mm with a between-5 

slices gap of 0.5 to 1.0 mm. The image database was transferred to an independent 6 

computer workstation using the software program Osirix (University of Geneva, 7 

Geneva, Switzerland) as previously described [13, 14]. 8 

MRI-detected osteophytes  9 

MRI-detected OPs were measured by ZZ according to the Knee Osteoarthritis 10 

Scoring System (KOSS) [15] where OPs are defined as focal bony excrescences, 11 

seen on sagittal, axial or coronal images, extending from a cortical surface. OPs 12 

were measured using the following scale: grade 0, absent; grade 1, minimal 13 

(<3mm); grade 2, moderate (3-5 mm); grade 3, severe (>5 mm) [15]. Size was 14 

measured from the base (distinguished from that of adjacent articular cartilage 15 

with a normal MRI appearance) to the tip of the OP [16] at each of the following 16 

14 sites: the anterior (a), central weight bearing (c) and posterior (p) margins of 17 

the femoral condyles (medial and lateral) and tibial plateaus (medial and lateral), 18 

and the medial (M) and lateral (L) margins of the patella [17]. The highest score 19 

of each individual site in the relevant compartment (or whole knee) was regarded 20 

as the OP score in that compartment (or whole knee). MRI-detected OP score of 21 

≥1 was considered as OP present. MRI-detected OPs were remeasured in 40 22 

randomly selected participants with four weeks interval by ZZ and WH to 23 

calculate intra-observer and inter-observer reliabilities. Intra-observer reliability 24 

(expressed as intraclass correlation coefficients, ICCs) was 0.94-0.97 and inter-25 

observer reliability was 0.90-0.96.   26 
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Cartilage defects  1 

Cartilage defects were graded by CD at medial tibial, lateral tibial, medial femoral, 2 

lateral femoral and patellar regions as previously described [18-21] as follows: 3 

grade 0, normal cartilage; grade 1, focal blistering and low-signal intensity 4 

change with an intact surface and bottom; grade 2, irregularities on the surface or 5 

bottom and loss of thickness of less than 50%; grade 3, deep ulceration with loss 6 

of thickness of more than 50%; grade 4, full thickness cartilage loss with exposure 7 

of subchondral bone [18]. The highest score of each individual site in the relevant 8 

compartment (or whole knee) was regarded as the cartilage defect score in that 9 

compartment (or whole knee). The presence of cartilage defects was defined as a 10 

cartilage defect score of ≥2 at any site. An increase in cartilage defects was 11 

defined as a change in cartilage defects of ≥1. Intra-observer reliability was 0.89-12 

0.94 and inter-observer reliability was 0.85-0.93 [18].  13 

Cartilage volume  14 

Knee cartilage volume was measured on T1-weighted images by a single trained 15 

observer at baseline as previously described [22, 23]. The volumes of individual 16 

cartilage plates (medial tibial, lateral tibial, medial femoral, lateral femoral and 17 

patellar) were isolated from the total volume by manually drawing disarticulation 18 

contours around the cartilage boundaries on a section by section basis. These data 19 

were resampled by means of bilinear and cubic interpolation (area of 312×312) 20 

μm and 1.5 mm thickness, continuous sections) for the final 3-dimensional 21 

rendering. Changes in cartilage volume were calculated as: percentage change 22 

per annum= [(follow-up volume – baseline volume)/baseline cartilage 23 

volume]/time between 2 scans in years × 100. The coefficients of variation (CVs) 24 

for cartilage volume measures were 2.1% to 2.6% [22, 23].  25 

Bone marrow lesions 26 
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Subchondral bone marrow lesions (BMLs) were defined as discrete areas of 1 

increased signal adjacent to the subcortical bone on T2-weighted MRI and scored 2 

at medial tibial, lateral tibial, medial femoral, lateral femoral, medial patellar and 3 

lateral patellar regions using a modified version of Whole-Organ Magnetic 4 

Resonance Imaging Score (WORMS): grade 0, absence of BML; grade 1, area 5 

smaller than 25% of the region; grade 2, area between 25% to 50% of the region; 6 

grade 3, area larger than 50% of the region [17]. The highest score of each 7 

individual site in the relevant compartment (or whole knee) was regarded as the 8 

BML score in that compartment (or whole knee).  An increase in BMLs was 9 

defined as a change in BMLs of ≥1. The intraclass correlation coefficients (ICCs) 10 

for intra-observer reliability were 0.89-0.96 [24]. The inter-observer reliability of 11 

this BML scoring system was assessed by randomly selecting 40 subjects with 12 

BMLs and having their MRI scans re-read by another observer. The ICCs for 13 

inter-observer reliability were also excellent (0.73-0.95).  14 

X-ray assessment 15 

A standing anteroposterior semiflexed view of the right knee with 15° of fixed 16 

knee flexion was performed in all subject at baseline. Joint space narrowing (JSN) 17 

and radiographic osteophytes (OPs) were scored at each site of medial tibia, 18 

medial femur, lateral tibia and lateral femur on a scale of 0-3 (0=normal, 3= 19 

severe) according to the Osteoarthritis Research Society International (OARSI) 20 

atlas developed by Altman et al [25]. Medial tibiofemoral (femoral and tibial 21 

combined) X-ray-detected OP and lateral tibiofemoral X-ray-detected OP were 22 

the highest scores of all the regions. The total X-ray-detected OP score was the 23 

highest score of the four sites (medial tibia, medial femur, lateral tibia and lateral 24 

femur). The presence of X-ray-detected OP was defined as X-ray-detected OP 25 

scores of ≥ 1 in the specific compartment. The presence of radiographic OA 26 

(ROA) was defined as any score of ≥ 1 (JSN or OP). Each score was determined 27 
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by two readers who simultaneously assessed the radiograph with immediate 1 

reference to the atlas. Intraobserver repeatability was tested in 40 subjects one 2 

month apart with ICCs of 0.65-0.85 [26].  3 

WOMAC pain assessment 4 

Knee pain was assessed using the Western Ontario McMaster University 5 

Osteoarthritis Index (WOMAC) [27] at baseline and 5 years later using a 10-point 6 

scale from 0 (no pain) to 9 ( severe pain). The 5 subscales (walking on flat surface, 7 

going up/down stairs, at night, sitting/lying and standing upright) were assessed 8 

separately and summed to create a total pain score (0 to 45). Change in knee pain 9 

score was calculated as follow-up value - baseline value. The presence of knee 10 

pain was defined as total WOMAC pain score of 1 or greater. Worsening knee 11 

pain was defined as a change in WOMAC pain score of 1 or greater. Regular 12 

nonsteroridal anti-inflammatory drugs (NSAIDs) use in most days (>15 days) of 13 

the last month at baseline were recorded by questionnaire.  14 

Anthropometrics 15 

Height was measured to the nearest 0.1 cm (with shoes, and headgear removed) 16 

using a stadiometer. Weight was measured to the nearest 0.1 kg (with shoes, socks, 17 

and bulky clothing removed) by using a single pair of electronic scales (Delta 18 

Model 707, Seca, Hamburg, Germany) that were calibrated using a known weight 19 

at the beginning of each clinic. Body mass index (BMI, weight (kg)/height (m2)) 20 

was also calculated.  21 

Data analysis 22 

One-way analysis of variance or χ2 tests were used to compare means or 23 

proportions among participants with no-OPs (no X-ray or MRI OPs), MRI-OPs 24 

(only MRI OPs, not detected by X-ray) and established-OPs (both X-ray and MRI 25 
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OPs). Multivariable linear regression analyses were used to examine the 1 

associations between different phenotypes of OP (independent variables) and 2 

knee cartilage volume change (dependent variable), with age, sex, BMI, cartilage 3 

defects and BMLs as covariates. Multivariable log binominal regression analyses 4 

were used to assess associations between different phenotypes of OP 5 

(independent variables) and increases in cartilage defects /BMLs (dependent 6 

variables); multivariable linear regression analyses were also used to evaluate 7 

longitudinal associations between OP phenotypes and change of total WOMAC 8 

knee pain over 5 years, both after adjustment for potential confounders. All 9 

statistical analyses were performed on Stata version 12.0 for Windows (StataCorp, 10 

College Station, TX, USA) 11 

A p-value < 0.05 (2-tailed) or a 95% confidence interval (CI) not including the 12 

null point (for linear regression) or 1 (for log binominal regression) was 13 

considered statistically significant.  14 

 15 

Results  16 

Characteristics of study sample 17 

Of the 837 participants, 628 (75%) had MRI-OPs, 127 (15%) had no-OPs and 80 18 

(9.6%) had definie-OPs in the whole knee. In medial tibiofemoral compartment, 19 

205 (24%) had MRI-OPs, and in lateral tibiofemoral compartment, 446 (53%) 20 

had MRI-OPs (Table 1). 2 cases had OPs only seen on radiographs. We ignored 21 

this group as the sample was too small to do any proper analyses. Due to lack of 22 

skyline view of radiographs, patellofemoral compartment was not investigated in 23 

current study. Follow-up MRI scans were only available in 395 out of 837 24 

participants. However there were no significant differences in baseline 25 

demographics, cartilage defects, BMLs, or cartilage volume between the subjects 26 
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who were included in the present study and the those who did not have follow-up 1 

MRI scans (data not shown). The baseline characteristics of the participants are 2 

shown in Table 2.  Over the observational period 83%, 69%, 77%, and 53% of 3 

participants had persistent MRI-detected OP scores and 17%, 30%, 23%, and 46% 4 

of subjects had increased MRI-detected OP scores in the medial tibiofemoral 5 

compartment, lateral tibiofemoral compartment, patellar compartment, and total 6 

knee compartment, respectively. Change in MRI-detected OP scores were 7 

significant associated with increases in cartilage defects, BMLs before and after 8 

adjusted for age, sex, BMI and baseline structural abnormalities (data not shown). 9 

At baseline, subjects with no-OPs, establishedestablished-OPs and MRI-OPs 10 

were significant different in terms of age (p<0.01), body weight (p<0.01), BMI 11 

(p<0.01), female proportion (p=0.03),  tibial bone area (p<0.01), prevalence of 12 

JSN (p<0.01), cartilage defects and BMLs (p<0.01), and total cartilage defect and 13 

BML scores(p<0.01).  Subjects with no, MRI-, and established-OPs were similar 14 

in terms of baseline cartilage volume.  15 

Associations with cartilage defects 16 

Figure 1a shows a dose-response relationships between baseline OP phenotypes 17 

and increases in knee cartilage defects in different knee compartments. Compared 18 

to knees with no-OPs, knees with MRI-OPs were associated with a greater risk 19 

of increased cartilage defect scores in medial (RR 1.26, 95%CI 1.08-1.48) and 20 

lateral tibiofemoral (RR 1.28, 95%CI 1.08-1.51), but not in total, compartments, 21 

after adjustment for age, sex, BMI, baseline cartilage volume and BMLs in the 22 

same compartments (Table 3). Similarly, knees with established-OPs had greater 23 

risk of increased cartilage defect scores in total knee (RR 1.50, 95%CI 1.13-2.00) 24 

and medial tibiofemoral (RR 1.44, 95%CI 1.05-1.97), but not in lateral 25 

tibiofemoral, compartment, after adjustment for relevant covariates and the effect 26 

sizes were larger than MRI-OPs group (Table 3).   27 
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Associations with cartilage volume 1 

Figure 1b shows significant associations of baseline OP phenotypes with changes 2 

of total cartilage volume in different compartments. Compared to subjects with 3 

no-OPs, knees with MRI-OPs had significantly greater loss of total knee cartilage 4 

volume over 2.6 years in medial tibiofemoral compartment (β -0.55, 95%CI -1.10, 5 

-0.01), after adjustments for age, sex and BMI, and remained significant after 6 

further adjustment for cartilage defects and BMLs in the same compartments 7 

(Table 3). Associations between MRI-OPs and cartilage loss in total and lateral 8 

tibiofemoral compartment were not significant. Established-OPs were associated 9 

with loss of knee cartilage volume over 2.6 years in total and lateral compartments, 10 

after adjustment for age, sex and BMI (β -5.41, 95%CI -9.68, -1.13), but 11 

significant association in total compartment did not persist after further 12 

adjustment for cartilage defects and BMLs in the same compartments. No 13 

significant associations were found between established-OPs and cartilage 14 

volume loss in medial compartments (Table 3).  15 

Associations with BMLs  16 

Figure 1c showed significant associations between baseline OP phenotypes and 17 

increases in total knee BMLs in different compartments. Comparing with no-OPs 18 

knees, knees with MRI-OPs had higher risks of having increased medial 19 

tibiofemoral BMLs over 2.6 years, after adjustment for age, sex and BMI, and 20 

remained significant after further adjustment for cartilage volume and cartilage 21 

defects (RR 1.51, 95%CI 1.08-2.11). MRI-OPs were not significantly associated 22 

with increases in BMLs in the total and lateral tibiofemoral compartments. Knees 23 

with established-OPs had significantly higher risks of increased knee BMLs over 24 

2.6 years in both total knee (RR 1.76, 95%CI 1.03-3.01) and tibiofemoral 25 

compartments (RR 2.16, 95%CI 1.36-3.45 for medial; RR 1.88, 95%CI 1.18-3.00 26 
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for lateral) after adjustment for age, sex and BMI. These significant associations 1 

remained, after further adjustment for cartilage volume and cartilage defects in 2 

the same compartments (Table 3).  3 

Associations with knee pain  4 

Figure 2 showed the associations between baseline OP phenotypes and increases 5 

in total WOMAC knee pain in different compartments. Established-OPs in total 6 

knee compartment were positively associated with change in knee pain over 5 7 

years (β 1.96, 95%CI 0.17, 3.76), after adjustment for age, sex, BMI, BMLs and 8 

cartilage defects (Table 4). Similar significant associations were found for 9 

established-OPs in medial tibiofemoral compartment (β 2.54, 95%CI 0.74, 4.35). 10 

In contrast, there was a significantly negative association between MRI-OPs in 11 

medial tibiofemoral compartment and change in total knee pain over 5 years (β -12 

1.51, 95%CI -2.50, -0.52), and this association remained significant after 13 

adjustment for age, sex, BMI, BMLs and cartilage defects in the same 14 

compartments (Table 4). MRI-OPs in total knee compartment were also 15 

negatively associated with knee pain change, but this did not reach statistical 16 

significance. All associations remained largely unchanged after further 17 

adjustment for NSAIDs usage and baseline WOMAC pain score (data not shown). 18 

No statistically significant associations were found for OPs in lateral tibiofemoral 19 

compartment (Table 4).  20 

 21 

Discussion  22 

In this population-based cohort study, MRI-detected early OPs (MRI-OPs) were 23 

highly prevalent, affecting 75% of older adults; in contrast, the prevalence of 24 

established-OPs was only 10%. Only 0.2% (2 case in this sample) had x-ray only 25 

OPs. Both categories of OP predicted progression of knee structural abnormalities 26 
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in a dose-response manner. In contrast, medial tibiofemoral MRI-OPs were 1 

associated with decreases in total knee pain over 5 years while established-OPs 2 

were associated with worsening knee pain. This association is unexpected but 3 

suggests MRI-OPs may alleviate pain to a limited extent but lead to OA 4 

progression over time.  5 

Our current study confirmed that MRI-detected early OPs were highly prevalent 6 

in an older population-based sample which highlights the need for an 7 

understanding of clinical relevance of these common findings. OPs are 8 

considered to be the hallmark of knee OA [28] and their size and extent are used 9 

for defining OA [29]. Despite the development and widespread use of MRI in 10 

recent decades, conventional radiography remains the most commonly used 11 

imaging tool to detect OPs in research and clinical practice [5, 30]. The 12 

discrepancies of using MRI and radiography in detecting OPs have been reported 13 

previously [31]. MRI-defined OPs were present in 60% of older persons without 14 

radiographic OA [11], and were the most common abnormality that was found in 15 

74% of all participants without radiographic evidence of OA [10]. 16 

Our study found that MRI-detected early OPs and established-OPs are associated 17 

with knee structural changes in a dose response manner. Cross-sectional studies 18 

suggested that greater size of MRI-defined OPs correlated with higher Kellgren-19 

Lawrence score, and increasing size and presence of MRI-defined OPs was 20 

associated with severity of knee OA [32, 33]. Another study reported that patients 21 

with central OPs detected by MRI had higher likelihood of full thickness or near-22 

full thickness cartilage defects than patients without central OPs [16]. To the best 23 

of our knowledge, there are only two longitudinal studies examining the 24 

associations of MRI-defined OPs with knee structural changes so far. While one 25 

did not find any significant associations between MRI-defined OPs and knee 26 

structural progression [11], another reported that MRI-defined OP was an 27 
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important factor in determining future total knee arthroplasty [34]. Our findings 1 

from the current longitudinal study were consistent, with OPs detected only by 2 

MRI but not by X-ray (MRI-detected early OPs) being associated with increases 3 

in cartilage defects/loss and subchondral bone abnormalities over time. Our 4 

results are largely in line with findings from a previous case-control study which 5 

reported that hidden OPs on plain x-ray at femoral inter-condylar notch were at 6 

risk for the development of radiographic OA after 48 months [35], indicating 7 

MRI-detected early OPs can serve as a biomarker for knee osteoarthritic 8 

structural progression before radiographic changes become evident. 9 

Although knee OPs are associated with pain and predict pain weakly but more 10 

accurately than joint space narrowing, the longitudinal associations are 11 

inconsistent [36-39]. In one prior study, increasing x-ray-detected OP size at 12 

baseline was reported to be associated with increasing WOMAC pain severity 13 

score [11]. In contrast, Link et al [33] reported that MRI-defined OPs were not 14 

associated with clinical findings as assessed with the WOMAC scores in patients 15 

with varying degree of OA. Neogi et al estimated the relationship of radiographic 16 

features with knee pain and found that JSN was more strongly associated with 17 

knee pain than OPs [40]. A recent systematic review concluded that there was a 18 

lack of evidence on the association between OPs and knee pain [41], and it is still 19 

debatable if OPs are detrimental or beneficial for pain [39, 42]. Our data showed 20 

that while OPs detected only by MRI predicted a decrease of WOMAC knee pain 21 

over 5 years, established-OPs (both on MRI and x-ray) predicted an increase in 22 

knee pain over time. This is unexpected. It suggests that MRI-OPs, which would 23 

largely represent early subchondral bone overgrowth, may alleviate pain to a 24 

limited extent compared to larger OPs. Pain medication usage and baseline 25 

WOMAC pain score may be potential factors that affect our results; however, the 26 
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significant associations remained  largely unchanged after further adjustment for 1 

NSAIDs usage and baseline WOMAC pain score, suggesting this is unlikely.  2 

A previous study reported that removal of OPs from the arthritic compartment 3 

significantly increased the varus-valgus motion [43]. OPs have been considered 4 

an adaptive reaction of the joint to cope with instability and may play a 5 

compensatory role in the redistribution of forces to provide articular cartilage 6 

protection [42]. However, our data do not support this as both categories of OP 7 

were associated with worse structural change, although MRI-OPs are associated 8 

with reduced knee pain over time.    9 

We employed a combination of WORMS and KOSS for the measurement of OPs 10 

in current study. WORMS and KOSS scoring systems are two validated 11 

instruments which have good reliability to assess OPs semi-quantitatively on MR 12 

imagines [15, 17]. In our study, WORMS was used to divide the whole knee into 13 

14 different subregions as it has one of the most complex differentiation of OP in 14 

terms of number of locations, and KOSS was used to score OP at each site. The 15 

reason for making this choice is because WORMS grading system has advantage 16 

of subdividing whole knee into different subregions which includes both marginal 17 

and central OPs, but its OP grading scale is more subjective . On the other hand, 18 

KOSS grading system has the advantage of quantitative OP grading scale for each 19 

subregion. The reliability of our measures were excellent. 20 

There were several potential limitations in our study. One limitation was lack of 21 

skyline view to assess patellofemoral radiographic OPs, so we were unable to 22 

comment on the associations of patellofemoral OPs with OA progression. The 23 

patellofemoral joint is a common site of knee pain and contribute to functional 24 

limitation among OA patients [44, 45]. Future study are needed to investigate 25 

whether MRI-OPs in patellofemoral compartment have similar relationships with 26 
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knee pain change as those in tibiofemoral knee compartments. Second, using 1 

higher field strength magnet than 1.5 T might be marginally more sensitive in 2 

detecting OPs; however, as reported previously [46], the results would not be 3 

markedly different as this benefit is modest. Third, follow-up MRI scans were 4 

only available in 395 out of 837 participants; However, there were no significant 5 

differences in demographic factors, ROA, baseline cartilage volume, defects and 6 

BMLs between the current study sample and the rest of cohort (data not shown). 7 

Last, the WOMAC knee pain questionnaire was not asked specifically for the 8 

right knee, while MRI scans were taken at right knee. Thus, the associations found 9 

between MRI-OPs and WOMAC knee pain change needs to be interpreted with 10 

caution.  11 

Conclusion  12 

MRI-detected early OPs are associated with knee structural changes in a dose 13 

response manner. Unexpectedly, they have opposite associations with pain 14 

suggesting MRI-detected early OPs may prior to knee pain development. 15 
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 33 

Table 1. Frequencies of OP types detected by x-ray and MRI in the studied sample 34 

 35 

 Total knee MTF LTF  

 
x-ray 

OPs 
MRI OPs n x-ray OPs MRI OPs n x-rays OP MRI OPs 

n 

No-OPs N N 127 N N 571 N N 358 

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.joca.2017.09.005


 

21 
© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 

http://creativecommons.org/licenses/by-nc-nd/4.0/ 

https://doi.org/10.1016/j.joca.2017.09.005 

MRI-OPs N Y 628 N Y 205 N Y 
446 

 Y N 2 Y N 2 Y N 
0 

Established-

OPs 
Y Y 80 Y Y 59 Y Y 33 

Total   837   837   
837 

OP: osteophytes; MTF: medial tibiofemoral; LTF: lateral tibiofemoral; Y means with 1 

x-ray OP or MRI OP, N means without x-ray OP or MRI OP.  2 

 3 

 4 

Table 2. Baseline characteristics of participants  5 

    No-OP MRI-OPs Established-OPs  Total Sample 

 N=127 N=628 N=80  N=837 

Age (year) 60.5±6.5 62.4±7.5 65.2±7.5  62.4 7.4 

Female sex (%) 61 48 46  50 

Weight (kg) 72.1±12.0 77.9±14.5 85.4±15.1  77.7 14.8 

BMI (kg/m²) 26.4±3.7 27.7±4.4 30.4±6.2  27.7 4.7 

Total tibial bone area (cm²) 3.2±1.5 3.3±0.5 3.5±0.6  3.3 0.8 

Any joint space narrowing (%) 51 56 95  59 

Joint space narrowing score (n)      

0 62 276 4  342 

1 51 273 18  342 

2 13 66 35  114 

3 1 13 23  37 

Total cartilage defects score (0-20) 4.3±1.4 5.7±1.9 9.5±3.2  5.8 2.4 

Total BML score (0-5) 0.38±0.63 0.65±0.90 1.3±1.2  0.47 0.71 

Total tibial cartilage volume (ml) 4.9±1.2 5.1±1.2 4.9±1.3  5.1 1.2 

Any cartilage defects (%) 18 54 90  53 

Any BMLs present (%) 22 33 64  34 

Knee pain present (%) 42 50 73  51 

Total WOMAC score (0-45) 2.8 ± 5.7 3.3 ± 6.0 6.4 ± 7.4 <0.01 3.5 ± 6.1 

Total radigraphic OP score (n)      

0  127 628 0  755 

1 0 0 46  46 

2 0 0 25  27 
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3 0 0 9  9 

One-way analysis of variance was used for differences between three subgroups, and χ2 tests were 1 
used for proportions (percentages). Mean ± SD except for percentages. Significant differences are 2 
shown in bold. OPs: osteophytes; BMI: body mass index; BML: bone marrow lesions.  3 
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Table 3. Longitudinal associations of OP phenotype status and changes/increases in total knee structure in 2.6 years 

 

 

 Increases in Cartilage Defects Cartilage Volume changes (p.a) Increases in BMLs 

 Adjusted* Adjusted** Adjusted* Adjusted** Adjusted* Adjusted** 

 RR (95% CI) RR (95% CI) β (95% CI) β (95% CI) RR (95% CI) RR (95% CI) 

OP phenotypes n=395       

Total knee       

No-OPs  (n=53) Ref. Ref. Ref. Ref. Ref. Ref. 

MRI-OPs (n=310) 1.16 (0.89, 1.50) 1.14 (0.88, 1.47) -0.49 (-1.25, 0.26) -0.24 (-0.99, 0.51) 0.83 (0.53, 1.30) 0.71 (0.46, 1.11) 

Established-OPs (n=32) 1.63 (1.23, 2.17) 1.50 (1.13, 2.00) -1.21 (-2.37, -0.06) -0.42 (-1.61, 0.78) 1.94 (1.17, 3.23) 1.76 (1.03, 3.01) 

p for trend  p<0.01  p=0.03  p<0.01 

Medial tibiofemoral       

No-OPs (n=259) Ref. Ref. Ref. Ref. Ref. Ref. 

MRI-OPs (n=111) 1.31 (1.12, 1.53) 1.26 (1.08, 1.48) -0.56(-1.09, -0.04) -0.55 (-1.10, -0.01) 1.52 (1.10, 2.11) 1.51 (1.08, 2.11) 

Established-OPs  (n=24) 1.64 (1.41, 1.90) 1.49 (1.26, 1.75) -0.79 (-1.83, 0.26) -0.47 (-1.57, 0.63) 2.29 (1.48, 3.56) 2.16 (1.36, 3.45) 

p for trend  p<0.01  p<0.01  p<0.01 

Lateral tibiofemoral       

No-OPs (n=165) Ref. Ref. Ref. Ref. Ref. Ref. 

MRI-OPs (n=219) 1.33 (1.13, 1.57) 1.28 (1.08, 1.51) -0.01 (-1.12, 1.14) -0.14 (-0.64, 0.37) 1.23 (0.88, 1.71) 0.97 (0.63, 1.50) 

Established-OPs  (n=11) 1.50 (1.08, 2.09) 1.44 (1.05, 1.97) -5.93 (-10.2, -1.70) -5.41 (-9.68, -1.13) 2.60 (1.59, 4.26) 1.88 (1.18, 3.00) 

p for trend  p=0.01  p=0.08  p<0.01 

OP: osteophytes; p.a, percentage per annual; Results of this table are generated from a linear regression or log binominal regression model. *Adjusted for age, 

sex and BMI; ** Further adjusted for cartilage volume, cartilage defects and BMLs in the same compartments (excluded the outcome structures); Significant 

differences are showed in bold.  
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Table 4. Longitudinal associations of OP phenotype status and WOMAC knee pain changes 

in 5 years 

 

 Total knee Pain  

 Adjusted * Adjusted ** 

 β (95% CI) β (95% CI) 

OP phenotypes n=646   

Total   

No-OPs  (n=103) Ref. Ref. 

MRI-OPs (n=481) -0.23 (-1.33, 0.88) -0.28 (-1.40, 0.84) 

Established-OPs (n=62) 2.20 (0.51, 3.89) 1.96 (0.17, 3.76) 

Medial tibiofemoral   

No-OPs  (n=447) Ref. Ref. 

MRI-OPs (n=155) -1.25 (-2.2, -0.30) -1.51 (-2.50, -0.52) 

Established-OPs (n=43) 2.91 (1.21, 4.60) 2.54 (0.74, 4.35) 

Lateral tibiofemoral   

No-OPs (n=287) Ref. Ref. 

MRI-OPs (n=332) 0.12 (-0.70, 0.94) -0.05 (-0.91, 0.81) 

Established-OPs  (n=27) 1.08 (-1.11, 3.27) 0.35 (-1.95, 2.66) 

OP: osteophytes; Significant differences are shown in bold. Results of this table are generated from a 

linear regression model. * Adjusted for age, sex and BMI, ** Further adjusted for BMLs and cartilage 

defects in the same compartments. 
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Figure Legends: 2 

 3 

Figure 1. Associations of baseline osteophytes phenotypes with increases in total knee 4 

cartilage defects (a), change in cartilage volume (b), and increases in BMLs (c). OP: 5 

osteophytes; MTF: medial tibiofemoral; LTF: lateral tibiofemoral.  6 

 7 

Figure 2. Associations of baseline osteophytes phenotypes with increases in total 8 

WOMAC knee pain. OP: osteophytes; MTF: medial tibiofemoral; LTF: lateral 9 

tibiofemoral.  10 
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Figure 1 16 
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Figure 2 2 
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