
Blending Multiple Nitrogen Dioxide Data Sources for Neighborhood
Estimates of Long-Term Exposure for Health Research
Ivan C. Hanigan*

Centre for Air Quality and Health Research and Evaluation, Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia

University of Canberra, Canberra, Australia

Grant J. Williamson

Centre for Air Quality and Health Research and Evaluation, Woolcock Institute of Medical Research Sydney,
Australia & School of Biological Sciences, University of Tasmania, Hobart, Australia

Luke D. Knibbs

Centre for Air Quality and Health Research and Evaluation, Woolcock Institute of Medical Research Sydney,
Australia & School of Public Health, The University of Queensland, Herston, Australia

Joshua Horsley

School of Public Health, University of Sydney, Sydney, Australia

Margaret I. Rolfe

School of Public Health, University of Sydney, Sydney, Australia

Martin Cope

Centre for Air Quality and Health Research and Evaluation, Woolcock Institute of Medical Research Sydney,
Australia & CSIRO, Melbourne, Australia

Adrian G. Barnett

Institute of Health and Biomedical Innovation & School of Public Health and Social Work, Queensland University of Technology,
Brisbane, Australia

Christine T. Cowie

Centre for Air Quality and Health Research and Evaluation, Woolcock Institute of Medical Research, University of Sydney;
South West Sydney Clinical School, University of NSW & Ingham Institute for Applied Medical Research, Sydney, Australia

Jane S. Heyworth

Centre for Air Quality and Health Research and Evaluation, NESP Clean Air and Urban Landscapes, School of Population and Global
Health, The University of Western Australia, Perth, Australia

Marc L. Serre

University of North Carolina, Chapel Hill, United States

Received: June 13, 2017
Revised: September 22, 2017
Accepted: September 26, 2017
Published: September 26, 2017

Article

pubs.acs.org/est

© 2017 American Chemical Society 12473 DOI: 10.1021/acs.est.7b03035
Environ. Sci. Technol. 2017, 51, 12473−12480

Cite This: Environ. Sci. Technol. 2017, 51, 12473-12480

pubs.acs.org/est
http://dx.doi.org/10.1021/acs.est.7b03035
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.7b03035
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.7b03035
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.7b03035


Bin Jalaludin

Centre for Air Quality and Health Research and Evaluation, Woolcock Institute of Medical Research, University of Sydney;
South West Sydney Clinical School, University of NSW & Ingham Institute for Applied Medical Research, Sydney, Australia

Geoffrey G. Morgan

Centre for Air Quality and Health Research and Evaluation, Woolcock Institute of Medical Research & University Centre for Rural
Health, North Coast, School of Public Health, University of Sydney, Sydney, Australia

*S Supporting Information

ABSTRACT: Exposure to traffic related nitrogen dioxide (NO2)
air pollution is associated with adverse health outcomes.
Average pollutant concentrations for fixed monitoring sites are
often used to estimate exposures for health studies, however
these can be imprecise due to difficulty and cost of spatial
modeling at the resolution of neighborhoods (e.g., a scale of
tens of meters) rather than at a coarse scale (around several
kilometers). The objective of this study was to derive
improved estimates of neighborhood NO2 concentrations by
blending measurements with modeled predictions in Sydney,
Australia (a low pollution environment). We implemented
the Bayesian maximum entropy approach to blend data with
uncertainty defined using informative priors. We compiled
NO2 data from fixed-site monitors, chemical transport models, and satellite-based land use regression models to estimate
neighborhood annual average NO2. The spatial model produced a posterior probability density function of estimated annual
average concentrations that spanned an order of magnitude from 3 to 35 ppb. Validation using independent data showed
improvement, with root mean squared error improvement of 6% compared with the land use regression model and 16% over the
chemical transport model. These estimates will be used in studies of health effects and should minimize misclassification bias.

■ INTRODUCTION
There is evidence that short-term acute exposures to ambient air
pollution cause adverse health effects such as hospitalizations or
deaths from cardiovascular disease and respiratory disease.1

Several studies have shown an association between long-term
exposure to air pollution and increased risks of various health
outcomes.2 However, evidence is lacking at the lower end of the
exposure-response function, because most existing studies have
been conducted in cities where pollutant levels are relatively
high.3 At lower concentrations it is important that errors
associated with exposure are minimized. Sydney, Australia’s most
populous city (∼5 million), and its surrounding regions have
relatively low concentrations of air pollution compared with
similar economically developed cities. For example, the annual
average nitrogen dioxide (NO2) concentration was 7.6 parts per
billion (ppb) in 2011 (the focal year of our study) (source: New
South Wales Government air pollution data). This is lower than
concentrations found in many health studies in other cities
around the world. In a review of 15 cohort studies, Hoek et al.4

found much higher long-term annual average NO2 concen-
trations for their cohorts with a mean of 18.7 ppb (8.9 to
35.0 ppb). Rome, for example, is a similar population size to
Sydney but long-term average NO2 in that cohort was 23.0 ppb,
three times higher than the average in Sydney.
Considerable research effort has been spent evaluating

statistical methods which are sensitive to subtle variation in
exposures.5 However, there is no consensus concerning the most
appropriate methods to estimate long-term, spatially varying
exposures, especially when the risk of exposure misclassification

bias is high. Valid estimates of the spatial distribution of air
pollution are required so that exposure-response associations can
be investigated in epidemiological studies. Additional research is
necessary that can providemore accurate and precise estimates of
exposure, and to ascertain the key sources of the uncertainties
that remain.
NO2 is a marker of traffic-related air pollution and more

spatially heterogeneous compared with particulate matter in
urban areas where traffic is the main source,6 hence our interest
in better exposure estimation for this pollutant. We aimed to
provide improved concentration estimates by improving the
representativeness of the modeled spatial patterns in order to
better estimate exposure at the residential address. This improved
characterization of the variation in exposures should produce
more accurate estimates of risk-response functions.
Progress in the development of spatially resolved air pollution

exposure assessment models has become increasingly sophisti-
cated, both nationally and internationally, using new data sources
such as satellite data and new statistical techniques. For instance
Akita et al.,7 Xu et al.,8 and Buteau et al.9 have used Bayesian
blending methods to improve air pollution models in North
America. Meanwhile other approaches have developed such as
that used by Knibbs et al.10 who produced improved NO2 air
pollution maps for Australia using a Land Use Regression (LUR)
model that combined satellite images with ground based
predictor variables. A different approach used by Cope et al.11

in Australia applies physics and chemistry principles to model
the dispersion of emissions to predict pollution. Relatedly,
Shaddick et al.12 recently developed a global Bayesian-based
PM2.5 model.
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While several novel air pollution exposure assessment
methods are therefore now available, few studies have sought
to combine methods to leverage the best attributes of each,
particularly in low exposure settings where uncertainty of
the measurements will be a key challenging point (i.e., close
to detection limits). Therefore, the purpose of this study was
to blend together information from multiple data sources to
estimate annual average NO2 concentrations at the level of
Sydney neighborhoods (small areas incorporating housing
within hundreds of meters of roads). We implemented the
Bayesian Maximum Entropy (BME) approach13 to integrate
modeled predictions with measurements of NO2, to provide a
new spatial model. Our goal was to blend data from multiple
sources based on BME (a method which has been recently used
internationally7), but our aim was not to compare BME against
any other blending methods. To date no Bayesian blending
methods have previously been implemented in the Sydney study
area specifically, and only occasionally in air pollution modeling
more generally, therefore this work is filling a key knowledge gap.

■ METHODS AND MATERIALS
Our approach involved blending fixed-site monitor data with a
satellite-based Land Use Regression model (SatLUR) and
Chemical Transport Model (CTM). The resulting estimates
were validated against passive samplers because they were
independent of all other data inputs. Our input data are shown in
panels A, B, and C of Figure 1. Panels B and C show that NO2
varies substantially across Sydney, and SatLUR estimates display
greater variation than CTM. Panel D shows the derived trend
surface of all inputs, used to adjust for regional spatial
autocorrelation prior to our spatial modeling.

Study Area and Period. Our study area was the Sydney
greater metropolitan region of New South Wales (NSW),
Australia. This is the most populous region in Australia. The
study area covered over 17 000 km2, and had an estimated popu-
lation in 2015 of 5.8 million (Australian Bureau of Statistics, LGA
population estimates 2015). Our study period comprised the
years 2011 (for the predictive modeling) and 2013−2014
(for the validation data set) which we selected based on the
availability of pollution data and because it coincides with the
five-year follow up of the longitudinal “45andUp” cohort study
with a sample size of 99 317 persons in the greater Sydney region
which adds to the applicability of the study to support health
research (see www.saxinstitute.org.au for more information on
the cohort). The comparability of the two periods was supported
by our exploratory analyses that showed that the spatial pattern
of annual averages between these periods was stable (see the
Supporting Information (SI) document).
The Sydney region has relatively low concentrations of air

pollution when compared with similar economically developed
cities around the world; the mean of annual average daily
NO2 concentrations at 14 fixed-site monitors in 2011 was
7.6 ppb, ranging from 1.8 to 13.0 ppb at individual monitors
(NSW Office of Environment and Heritage monitor data,
http://www.environment.nsw.gov.au/AQMS/search.htm).

Fixed-Site Monitoring NO2 Measurements. During the
study period The NSW Office of Environment and Heritage
(OEH) monitored the concentrations of NO2 at 14 sites across
the Sydney Metropolitan area for regulatory compliance.
We obtained daily average ground-level NO2 measurements
for January to December 2011 from the OEH data portal
(http://www.environment.nsw.gov.au/AQMS/search.htm).

Figure 1. Maps of (A) NO2 monitoring sites with roads, (B) Satellite based Land Use Regression model (SatLUR), (C) Chemical Transport Model
(CTM), and (D) the inverse distance weighted smoothed surface used as an offset for our Bayesian Maximum Entropy (BME) modeling.
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NO2 concentrations were measured using the standard chemi-
luminescence methods. The measurements had undergone
quality assurance procedures via internal processing prior to
public release of data online (see http://www.environment.nsw.
gov.au/resources/air/nepm-air-monitoring-plan.pdf for details).
We computed annual averages for each of the 14 monitors

using data for all days where concentrations had been recorded
between January and December 2011. All sites had more
than 90% of days where concentrations had been recorded.
The annual average was calculated using the mean of 24 h daily
averages as originally provided.
Satellite-Based Land Use Regression Model. We used

a national satellite-based NO2 Land Use Regression model
(SatLUR) developed by Knibbs et al.10 The model development
and validation are described extensively elsewhere (Knibbs
et al.;10 Knibbs et al.14). The SatLUR model used data from
fixed-site government-run monitors from networks around
Australia as the outcome variable, and the model incorporated
high-resolution land-use predictors across Sydney (including
roads, impervious surfaces, industrial point sources, and
industrial land use) and satellite observations of NO2 from
the ozone monitoring instrument aboard the Aura satellite.
Two estimates of SatLUR derived NO2 concentrations were
available: one based on surface data (estimated using surface-to-
column ratios from the WRF-Chem model), and the second
based on the estimates of total tropospheric NO2 column
density. The two LUR models developed using the separate
satellite estimates produced similar results but the column-
density model estimates were used in this study due to ease of
implementation compared with the surface model.10 The column
model captured up to 81% of spatial variability in annual average
NO2 concentrations when cross-validated, and up to 66% when
validated against an independent set of NO2 measurements.14

Predicted values of NO2 were estimated for Mesh Block
centroids from the 2011 Census. Mesh Blocks were the smallest
geographical statistical unit used by the Australian Bureau of
Statistics in the 2011 census. In NSW in 2011 Mesh Blocks had a
median population of 83 (range 3 to 1,932 persons) and mean
area of 8.8 km2 (range 0.0005 to 12,541 km2) (Australian Bureau
of Statistics data).
Chemical Transport Model. Chemical Transport Models

(CTMs) were used to estimate concentrations of NO2 as one of
our data inputs. The CTMs used emissions data and physical
dispersion modeling to predict NO2 air pollution concentrations.
We used NO2 predictions from the CTMs developed by Cope
et al.11 for July 2010 through June 2011. The model comprised
a prognostic meteorological model, the 2008 NSW OEH air
emissions inventory (developed to describe the emissions from
the shipping industry as well as traffic and industry emissions),
and a chemical transport and particle dynamics model.11

The model used a 1 × 1 km grid cell for the inner region
around the central urban area of Sydney and a 3 × 3 km square
grid cell for the larger area (Greater Sydney Metropolitan
Region). Daily predicted NO2 average concentrations from the
CTMwere used to calculate monthly concentrations, which were
then combined to calculate annual average NO2 concentrations.
Passive Samplers. The resulting estimates from the BME

model were validated against passive samplers data because they
were independent of all other data inputs. Forty-seven Ogawa
passive samplers were deployed at sites located within the
metropolitan area of the city that were selected to capture
within-city and near-road variability in NO2. Samples were
taken for two week periods during July−August (winter) 2013,

November−December (summer) 2013, and March−April
(autumn) 2014. We used data for this period because no other
data were collected during 2011. The fixed-site monitors
showed minimal change in concentration between 2011 and 2014
(see SI document). Passive sampling locations were chosen to
capture the full range of expected NO2 concentrations across the
city, based on knowledge of land use, traffic conditions and
industrial sources. Passive sampler siting followed the method as
outlined in the European Study of Cohorts for Air Pollution
Effects (ESCAPE)protocol.15 Formore details see the SI document.
Conversion to annual mean NO2 was conducted using

standard protocols.14 Passive sampler measurements were
adjusted to an estimated annual mean using the ratio of mean
NO2 measured by fixed-site monitors during each measurement
period, compared with its annual mean. The ratio was calculated
based on three separate fixed-site monitors in the study area.
The selection criteria for the fixed-site monitors and the adjust-
ment process are described in the original paper.14

Bayesian Maximum Entropy Spatial Model. We
implemented the BME geostatistical approach.13 BME is a
statistical framework for spatial estimation that can process a
wide range of general and site specific knowledge based on
entropy maximization and epistemic Bayesian processing rules.
We used the BMElib13 software which is a numerical imple-
mentation of the BME framework in the case where the general
knowledge includes mean and covariance, and the site specific
knowledge consist of hard and soft data. Where we talk specif-
ically about the implementation of BME, we refer to the numeri-
cal package in the BMEprobaMoments function found in the
BMElib13 software. We created an exposure surface by blending
the measured concentrations of NO2 at the fixed-site monitors
with the two models (SatLUR and CTM). These data all
included various sources of uncertainty such as measurement
error, emission inventory assumptions, and spatial uncertainty
about the geographical predictors (such as industrial land use
classes). Each data point therefore contained information about
the uncertainty that the BMElib model used when estimating the
concentration.
The model approach is similar to spatial interpolation, which

is a method used to generate estimates across an entire region
(e.g., the city of Sydney) from a scattered set of data points in that
region (e.g., monitors and model estimation points). BMElib is
similar to the kriging algorithm common in GIS software which
estimates the interpolated values using a statistical model
governed by the covariance relationships between data points
across space.
The BME framework allows prior information to be weighted,

based on a Probability Density Function (PDF). A PDF repre-
sents the known or assumed likelihood of all the possible values.
The PDF is used to specify the probability of the value falling
within a particular range of values. PDFs can be combined to give
estimates that are based on all the available knowledge. To do
this, the BME framework uses maximum entropy, which is a
concept used in information theory. Maximum entropy involves
a modest claim being made regarding certainty about the
probabilities of expected values, and PDFs can be combined to
achieve a maximally informative model, given the uncertain
general knowledge base. Thus, the “informativeness” require-
ment is mathematically expressed in terms of a maximum
entropy condition of the type based on the Shannon information
concept.13 The estimated PDF is the one that best represents the
current state of knowledge asserted by the prior PDFs. This is
referred to as the posterior PDF.
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When the simplest constraints are used in BME, no PDF is
assigned as all the data points are assumed to be the “true” value
at that spatial location. The BMEprobaMoments algorithm then
reduces to the kriging algorithm. However, if additional
information is included to apply probabilistic constraints then
each datum is assigned a PDF. The PDF explicitly models the
measurement error in each datum using a distribution to reflect
uncertainty that is centered on the observed datum. Incorporat-
ing these distributions is straightforward in a Bayesian paradigm
and including measurement error in the model more closely
captures reality. This should give a better estimate of the mean
pollutant concentration as well as be better at capturing
uncertainty than a standard geostatistical model.16

In this study, we applied probabilistic constraints on our prior
expectations of the uncertainty around that central estimate
(i.e., the range and shape of the PDF). Then using the BMElib
program,13 these prior PDFs are blended together and a posterior
PDF produced. The mean of the BME posterior PDF minimizes
the mean square estimation error and was used as our estimate of
NO2 in the output result.
We categorized our data into two groups: (i) hard data: the

fixed-site monitor measurements with high precision or minimal
uncertainty; and (ii) soft data: the SatLUR and CTM model
estimates with an uncertainty characterized by a PDF.
Parametrization for Prior Probability Density Func-

tions of Soft Data. We created the PDFs with a triangular
distribution where the mean was set to the concentration
estimated by either of our two models (the SatLUR or CTM
model), and the corresponding range (the minimum and
maximum for the triangular distribution) was estimated from
the uncertainties associated with the expected values at each
location, based on how well they reproduce the colocated
observed values from the NO2 passive samplers within each
location. This meant that areas with less observed measurement
error had a narrower PDF. We used the root mean squared error
(RMSE) of these paired predictions and observations to
determine the range of the prior PDFs. This was 2.7 ppb for
the SatLUR and 3.1 ppb for the CTM.
The SatLUR estimates for Mesh Block centroids were used

as one type of soft data input. We extended the spatial coverage
of these by also incorporating a grid of points equally spaced at
2.5 km across the region (because all points within a Mesh Block
give the same value), so that each estimation node in the
modeled output would have guaranteed data inputs within the
search radius used by the BMEprobaMoments algorithm.
Detrending Data Inputs Using a Global offset. Similar to

kriging, BMElib relies on the assumption that the random errors
have zero mean and constant variance, and so trend removal can
help satisfy assumptions of normality and stationarity. The first
stage in our analysis was to develop a smoothed trend surface.
We used an inverse distance weighted average smoother with
300 × 300 m grid cell resolution as an offset to detrend the input
data sets. We chose this resolution so that the smooth trend
should produce low variance in the residuals while maintaining
adequate residual autocorrelation. As Xu et al.8 point out this is
because when a trend surface is smoother and less variable across
space, the transformed residuals retain more variability.
Conversely as the surface becomes less smooth the residuals
are less autocorrelated. Residuals for each data input and this
offset surface were calculated, along with the upper and lower
limits of the PDFs.
Determination of the Spatial Covariance Model.

The experimental covariance model was estimated based on

the residuals of all hard and soft data within a 10 × 10 km square
that included high expected concentrations of NO2. We used
the ArcMap 10.2.1 kriging cross-validation tool to optimize the
parameters for an exponential spatial covariancemodel. The covari-
ance sill reported by ArcGIS was 1.04. The covariance range
was 1238.5 m. Please see the SI document for further details on
the spatial covariance model.

Estimation of the BME Posterior PDFs.We computed the
BME posterior PDFs at the nodes of a two-dimensional network
of estimation points on the Australian Map Grid (GDA94,
zone 56), with regular spacing every 100 m within 10 × 10 km
squares. We chose this resolution as a trade-off between compu-
tational time and our aim to model NO2 at the level of street
addresses. We did this within these subsets to improve the
efficiency of computational work and allow more rapid testing
and revision of the parametrizations. We then combined all
resultant subset squares into a mosaic for the full study region.
We used the mean estimate of NO2 from the posterior PDFs as
our predicted concentration. During computation we allowed
the inclusion of data points external to the squares out to a buffer
distance of 1200 m to minimize any discontinuity at the bound-
aries when the squares were combined. This buffer distance
means that all estimation nodes within each subset square has a
complete set of input data points within the search radius, even
when the point is on the boundary of the subset square. We set
the maximum search radius for each estimation node at 1,240 m
so that the experimental covariance range was met, and to ensure
that each node would include some data points (e.g., soft data for
SatLUR were at the equally spaced 2500 m grid in addition to
each of the Mesh Block centroids). We assumed that the mean
was constant over the estimation neighborhood, after assessing
the frequency distribution of our detrended residuals from the
global offset. The BMElib model returned estimates that
represent the mean value which minimizes the estimation error
variance of the posterior PDF. This value is on the scale of the
residuals and so when added to the global offset the result
provides the estimated long-term NO2 concentrations.

Validation Methods. We used an external validation
method to assess our model. Our validation data set comprised
NO2 passive sampler observations (adjusted for seasonality using
the method described in Knibbs et al.14). In this approach we
assessed the agreement between the modeled estimates and a set
of unrelated, independent measurements. We calculated the
RMSE for our BMElib model as well as the two models used as
data inputs (SatLUR and CTM).
We used Matlab R2016a, BMElib2.0b, ArcGIS 10.2.1, and

R version 3.2.5 for data preparation and analyses.

■ RESULTS AND DISCUSSION
The BMElib model estimated annual average NO2 concen-
trations are shown in Figure 2.

Validation Statistics. We compared the RMSE for the
CTM, SatLUR, and BMElib output (Figure 3D). In all models
there was an indication of under-prediction at levels above
10 ppb (Figure 3A−C).

Key Results and Comparison with Other Studies.
We found that the BMElib resulted in a reduced RMSE against
the validation data set when compared to the RMSE for the CTM
and SatLUR. See Table 1. The magnitude of the difference
between the three RMSE was 0.5 ppb (BMElib compared to
CTM) and 0.2 (BMElib compared to SatLUR). As a percentage
difference this was a 16.2% improvement over the CTM and
5.7% improvement over the SatLUR.
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A similar study by Akita et al.7 in Spain found larger improve-
ments in predictive accuracy of NO2 using BME compared
with their CTM and LUR (not Satellite-based). Akita et al. found
that their BME model reduced the RMSE for validation data
by approximately 40% from both their CTM and LUR models,
and over 60% from an ordinary kriging model of sensor data.
A possible reason for this is that NO2 concentrations in Sydney
were lower than concentrations measured in Spain. Our maxi-
mum predicted concentration was 35 ppb in Sydney, whereas
Spain had a maximum concentration of 58 ppb (converted from
the original predicted NO2 value reported in Akita et al. using the
conversion factor of 1.9125).
Alternatively, the difference may reflect higher underlying

precision of our input model data (our CTM and SatLUR).
The CTM used by Akita et al. was the CALIOPE Air Quality
Forecast Modeling (AQFM) system and was reported to have a

RMSE against the fixed-site monitors of 6.9 ppb. In contrast,
the CTM from Cope et al.11 which we used has a smaller RMSE
of 3.1 ppb against our passive sampler validation data set.
Therefore, the BME model RMSE of 4.0 ppb (7.6 μg/m3)
reported by Akita et al. represented a substantial improvement
over their CTM. An additional likely explanation is that there
were only 14 observations used as hard data here, while there
were a lot more observations (N = 80) in the Akita et al. model,
therefore we would expect a much greater drop in RMSE in that
study than here. While our relative improvements were more
modest, they are still important for epidemiological studies
because the small relative risks arising from air pollution
exposures (e.g., of the order of ∼1.04), are assigned to large
population numbers, which results in a large population
attributable risk from air pollution.

Strengths and Weaknesses. Our project demonstrates an
alternative to similar applications of the BME in two important
ways. First, we detrended the input data sets using an inverse
distance weighted smoother to obtain our offset, which is a robust
alternative to other options and requires fewer assumptions
regarding the spatial autocorrelation structure. To the best of our
knowledge this is a new contribution to the approach. Second,
we defined the range of the prior probability intervals using a
triangular density function based on the agreement of the input

Figure 3. Scatter plots of measured versus estimated NO2 annual averages (ppb) estimated by (A) chemical transport model (CTM), (B) satellite-based
land use regression (SatLUR) and (C) Bayesianmaximum entropy (BME) integration of fixed-site monitors, CTM and SatLUR data. Panel D shows the
RMSE in ppb for each modeling approach.

Table 1. RootMean Squared Error for EachModel against the
Validation Dataset

modeling method root mean squared error (ppb)

chemical transport model (CTM) 3.1
satellite-based land use regression (SatLUR) 2.8
Bayesian maximum entropy (BME) 2.6

Figure 2. Maps of NO2 annual average (ppb) estimated by Bayesian Maximum Entropy blending of various data inputs for (A) Sydney and
(B) Liverpool (a built-up southwestern suburb of Sydney).
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data with the external validation data set. This is an important
parameter and using our approach we estimate the uncertainty
against an independent set of external observed data, rather than
from internal model cross-validation.
In general, the strengths of the BME approach include the

ability to combine all available data inputs despite their different
temporal and spatial attributes into one estimate, making use of
all available prior information regarding uncertainties. Weak-
nesses of our study include that the workload for preparing
the data and conducting the analysis was very labor intensive.
In addition, the actual calculations themselves were computa-
tionally intensive and required many hours of computer time to
complete.
A limitation of this study was the incomplete seasonal coverage

of the passive sampler data used as the external validation.
The seasonal adjustments made by Knibbs et al.14 of the three ×
fortnightly samples is a widely used method for passive samplers
which is likely to make them representative of annual (long-
term) averages. Even so, the potential remains that the sampled
seasonal coverage of the measurements might not fully capture
the annual average conditions.
One major conclusion of our study is that the blending done in

the BMElib model showed an improvement in predictive perfor-
mance in comparison to either the CTM or SatLUR alone.
However, the three modeled outputs are not exactly comparable
because the SatLUR was developed with a training data set
that spanned multiple cities across the Australian continent. It is
possible that a SatLUR model built exclusively from the Sydney
data might perform better than this national model,17−19

however no city-specific SatLUR currently exists that could be
used for our study, so we have made use of all information at
the spatial extent and resolution that was available. However,
this remains a limitation and it is not possible to conclude that the
BMElib is the optimal method based on our study. Rather, we
can only conclude that BMElib with a SatLUR model at a conti-
nental extent had the greatest performance to-date as measured
by our validation set for Sydney.
Future Directions. Future research should attempt to

ameliorate a key weakness of any blending model, which is that
they cannot overcome limitations that are common across all the
data inputs (i.e., observations, SatLUR and CTM). For example,
it is likely that NO2 in reality may bemuchmore spatially variable
than what is displayed in any of the input data sets20 and so
the spatial variability of the original data inputs places limits on
the extent that Bayesian blending can produce spatial variability
in the predictions. However, the aim of such blending is to get an
estimate that is at least as good as the best of the available inputs,
or even better. BMElib can theoretically achieve this outcome
by incorporating all available information and accounting for
uncertainty to combine all the available data into one single
exposure metric, without losing information from each individual
data set.
There are a number of parameters in the model specification

that might be optimized in future research. One of the most
important assumptions relates to the range of the interval used to
construct the PDF for the soft data. Also, the shape of the PDF
used may be important. We used a triangular PDF because of the
ease of specification (only the mean, minimum andmaximum are
needed) however other functional forms such as a normal
distribution may result in further improvements if they capture
the prior information better, but this was beyond the scope of this
study. In future research we aim to experiment with ways that the
prior PDF parameters can be used to optimize the predictions

based on validation (i.e., change the parameters and compare the
impact these changes have on the validation statistics).

Implications. This paper presents a combination of novel
approaches to the operationalization of the BME spatial
modeling framework for air pollution estimation and shows the
validation statistics for this approach provided better results than
some more classical alternatives.
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