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Abstract. Stratosphere-to-troposphere transport (STT) pro-
vides an important natural source of ozone to the upper tro-
posphere, but the characteristics of STT events in the South-
ern Hemisphere extratropics and their contribution to the re-
gional tropospheric ozone budget remain poorly constrained.
Here, we develop a quantitative method to identify STT
events from ozonesonde profiles. Using this method we es-
timate the seasonality of STT events and quantify the ozone
transported across the tropopause over Davis (69◦ S, 2006–
2013), Macquarie Island (54◦ S, 2004–2013), and Melbourne
(38◦ S, 2004–2013). STT seasonality is determined by two
distinct methods: a Fourier bandpass filter of the vertical
ozone profile and an analysis of the Brunt–Väisälä frequency.
Using a bandpass filter on 7–9 years of ozone profiles from
each site provides clear detection of STT events, with maxi-
mum occurrences during summer and minimum during win-
ter for all three sites. The majority of tropospheric ozone en-
hancements owing to STT events occur within 2.5 and 3 km
of the tropopause at Davis and Macquarie Island respec-
tively. Events are more spread out at Melbourne, occurring
frequently up to 6 km from the tropopause. The mean frac-
tion of total tropospheric ozone attributed to STT during STT
events is ∼ 1.0–3.5 % at each site; however, during individ-
ual events, over 10 % of tropospheric ozone may be directly
transported from the stratosphere. The cause of STTs is de-
termined to be largely due to synoptic low-pressure frontal
systems, determined using coincident ERA-Interim reanal-
ysis meteorological data. Ozone enhancements can also be

caused by biomass burning plumes transported from Africa
and South America, which are apparent during austral winter
and spring and are determined using satellite measurements
of CO. To provide regional context for the ozonesonde obser-
vations, we use the GEOS-Chem chemical transport model,
which is too coarsely resolved to distinguish STT events but
is able to accurately simulate the seasonal cycle of tropo-
spheric ozone columns over the three southern hemispheric
sites. Combining the ozonesonde-derived STT event charac-
teristics with the simulated tropospheric ozone columns from
GEOS-Chem, we estimate STT ozone flux near the three
sites and see austral summer dominated yearly amounts of
between 5.7 and 8.7× 1017 molecules cm−2 a−1.

1 Introduction

Tropospheric ozone constitutes only 10 % of the total ozone
column but is an important oxidant and greenhouse gas
which is toxic to life, harming natural ecosystems and re-
ducing agricultural productivity. Over the industrial period,
increasing tropospheric ozone has been estimated to ex-
ert a radiative forcing of 365 mW m−2 (Stevenson et al.,
2013), equivalent to a quarter of the CO2 forcing (Forster
et al., 2007). While much tropospheric ozone is produced
photochemically from anthropogenic and natural precursors,
downward transport from the ozone-rich stratosphere pro-
vides an additional natural source of ozone that is particularly
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important in the upper troposphere (Jacobson and Hansson,
2000, and references therein). The contribution of this source
to overall tropospheric ozone budgets remains uncertain (Šk-
erlak et al., 2014), especially in the Southern Hemisphere
(SH). Models show that stratospheric ozone depletion has
propagated to the upper troposphere (Stevenson et al., 2013).
However, work based on the Southern Hemisphere Ad-
ditional OZonesonde (SHADOZ) network suggests strato-
spheric mixing may be increasing upper-tropospheric ozone
near southern Africa (Liu et al., 2015; Thompson et al.,
2014). Uncertainties in the various processes which pro-
duce tropospheric ozone limit predictions of future ozone-
induced radiative forcing. Here we use a multi-year record of
ozonesonde observations from sites in the SH extratropics,
combined with a global model, to better characterise the im-
pact of stratospheric ozone on the tropospheric ozone budget
in the SH.

Stratosphere-to-troposphere transport (STT) primarily im-
pacts the ozone budget in the upper troposphere but can also
increase regional surface ozone levels above the legal thresh-
olds set by air quality standards (Danielsen, 1968; Lelieveld
et al., 2009; Lefohn et al., 2011; Langford et al., 2012; Zhang
et al., 2014; Lin et al., 2015). In the western US, for exam-
ple, deep STT events during spring can add 20–40 ppbv of
ozone to the ground-level ozone concentration, which can
provide over half the ozone needed to exceed the standard
set by the US Environmental Protection Agency (Lin et al.,
2012, 2015). Another hotspot for STT is the Middle East,
where surface ozone exceeds values of 80 ppbv in summer,
with a stratospheric contribution of 10 ppb (Lelieveld et al.,
2009). Estimates of the overall contribution of STT to tro-
pospheric ozone vary widely (e.g. Galani, 2003; Stohl et al.,
2003; Stevenson et al., 2006; Lefohn et al., 2011). Early work
based on two photochemical models showed that 25–50 %
of the tropospheric ozone column can be attributed to STT
events globally, with most contribution in the upper tropo-
sphere (Stohl et al., 2003). In contrast, a more recent analy-
sis of the Atmospheric Chemistry and Climate Model Inter-
comparison Project (ACCMIP) simulations by Young et al.
(2013) found that STT is responsible for 540± 140 Tg yr−1,
equivalent to ∼ 11 % of the tropospheric ozone column,
with the remainder produced photochemically (Monks et al.,
2015). This wide range in model estimates exists in part be-
cause STT is challenging to be accurately represented, and
finer model resolution is necessary to simulate small-scale
turbulence. Observation-based process studies are therefore
key in determining the relative frequency of STT events, with
models then able to quantify STT impact over large regions.
Ozonesondes are particularly valuable for this purpose as
they provide multi-year datasets with high vertical resolu-
tion.

Lower-stratospheric and upper-tropospheric ozone con-
centrations are highly correlated, suggesting mixing across
the tropopause mainly associated with the jet streams over
the Atlantic and Pacific oceans (Terao et al., 2008). Extrat-

ropical STT events most commonly occur during synoptic-
scale tropopause folds (Sprenger et al., 2003; Tang and
Prather, 2012; Frey et al., 2015) and are characterised by
tongues of high potential vorticity (PV) air descending to
lower altitudes. As these tongues become elongated, fila-
ments disperse away from the tongue and mix irreversibly
into the troposphere. STT can also be induced by deep over-
shooting convection (Frey et al., 2015), tropical cyclones
(Das et al., 2016), and mid-latitude synoptic-scale distur-
bances (e.g. Stohl et al., 2003; Mihalikova et al., 2012). STT
events have been observed in tropopause folds around both
the polar front jet (Vaughan et al., 1993; Beekmann et al.,
1997) and the subtropical jet (Baray et al., 2000). The sum-
mertime pool of high tropospheric ozone over the eastern
Mediterranean is mainly attributed to the downward ozone
transport, as a result of the enhanced subsidence (Zanis et al.,
2014) and the tropopause fold activity (Akritidis et al., 2016)
over the region. The eastern Mediterranean exhibits a sum-
mer maximum of subsidence, which sits between 20 and
35◦ E and between 31 and 39◦ N, while zonally most sub-
tropical tropopause folds occur during winter (Tyrlis et al.,
2014, and references therein). They are also observed near
cut-off lows (Price and Vaughan, 1993; Wirth, 1995), so both
regional weather patterns and stratospheric mixing are im-
portant to understand for STT analysis.

Stratospheric ozone intrusions undergo transport and mix-
ing, with up to half of the ozone diffusing within 12 h fol-
lowing descent from the upper troposphere (Trickl et al.,
2014). The long-range transport of enhanced ozone can be
facilitated by upper-tropospheric winds, with remarkably lit-
tle convective mixing, as shown by Trickl et al. (2014) who
measured STT air masses 2 days and thousands of kilometres
from their source. Cooper et al. (2004) also showed how STT
advection can transport stratospheric air over long distances,
with a modelled STT event spreading from the northern Pa-
cific to the east coast of the USA over a few days.

The strength (ozone enhancement above background lev-
els), horizontal scale, vertical depth, and longevity of these
intruding ozone tongues vary with wind direction and
strength, topography, and season. While the frequency, sea-
sonality, and impacts of STT events have been well described
in the tropics and Northern Hemisphere (NH), observational
estimates from the SH extratropics are noticeably absent in
the literature. The role of STT in the SH remains highly un-
certain due to the more limited data availability compared
to the NH and the temporal sparsity of these datasets (Mze
et al., 2010; Thompson et al., 2014; Liu et al., 2015).

Here, we characterise the seasonal cycle of STT events
and quantify their contribution to the SH extratropical tro-
pospheric ozone budget using nearly a decade of ozonesonde
observations from three locations around the Southern Ocean
spanning latitudes from 38 to 69◦S. In Sect. 2 we describe
the observations and methods used to identify STT events
and to relate STT occurrence to meteorological events. We
show how possible biomass burning smoke plume influence
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Figure 1. Ozonesonde release sites and the regions used to examine STT effect on tropospheric ozone levels.

is detected and handled, and we introduce the GEOS-Chem
model which is used for ozone flux estimation. Within Sect. 3
we show the seasonality, altitude, depth, and frequency of de-
tected STT events, along with a comparison of our findings
to other literature where possible. In Sect. 4 we analyse how
well GEOS-Chem captures the tropospheric ozone seasonal-
ity and quantity near our three sites. In Sect. 5 an extrapo-
lation of the STT detection frequencies along with GEOS-
Chem monthly tropospheric ozone columns is used to esti-
mate STT ozone flux near our three sites. We also compare
and contrast our results against relevant literature. Finally, in
Sect. 6 we examine in detail the uncertainties involved in our
STT event detection technique and ozone flux estimations.

2 Data and methods

2.1 Ozonesonde record in the Southern Ocean

Ozonesondes provide a high vertical resolution profile of
ozone, temperature, pressure, and humidity from the surface
and up to 35 km. In the troposphere, the ozonesondes gen-
erally perform 150–300 measurements. Ozone mixing ratio
is quantified with an electrochemical concentration cell, us-
ing standardised procedures when constructing, transporting,
and releasing the ozonesondes (http://www.ndsc.ncep.noaa.
gov/organize/protocols/appendix5/). Ozonesondes are esti-
mated to provide around 2 % precision in the stratosphere,
which improves at lower altitudes, and ozonesondes have
been shown to be accurate to within 5 % when the correct
procedures are followed (Smit et al., 2007).

Ozonesondes are launched approximately weekly from
Melbourne (38◦ S, 145◦ E), Macquarie Island (55◦ S,
159◦ E), and Davis (69◦ S, 78◦ E), as shown in Fig. 1. Mel-
bourne is a major city in the south-east of Australia and
may be affected by anthropogenic pollution in the lower tro-
posphere. Macquarie Island is isolated from the Australian
mainland, situated in the remote Southern Ocean, and un-
likely to be affected by any local pollution events. Davis is
on the coast of Antarctica and also unlikely to experience the
effects of anthropogenic pollution.

For this study, we use the 2004–2013 data for Melbourne
and Macquarie Island and the 2006–2013 data for Davis be-
cause both ozone and geopotential height (GPH) are avail-
able from the World Ozone and Ultraviolet Data Centre
archived data in these periods. At Davis, ozonesondes are
launched twice as frequently during the ozone hole season
and preceding months (June–October) as at other times of
year (Alexander et al., 2013). A summary of ozonesonde re-
leases at each site can be seen in Table 1.

Characterisation of STT events requires a clear definition
of the tropopause. Two common tropopause height defini-
tions are the standard lapse rate tropopause (WMO, 1957)
and the ozone tropopause (Bethan et al., 1996). The lapse rate
tropopause is defined as the lowest altitude where the lapse
rate (vertical gradient of temperature) is less than 2 ◦C km−1,
provided the lapse rate averaged between this altitude and
2 km above is also below 2 ◦C km−1. The ozone tropopause
is defined as the lowest altitude satisfying the following three
conditions for the ozone mixing ratio (OMR) (Bethan et al.,
1996):
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Table 1. Number of sonde releases at each site over the period of analysis.

Site Total releases Monthly releases (J, F, M, etc.) Date range

Davis 240 11, 12, 13, 12, 17, 31, 2006/04/13–
29, 28, 32, 28, 15, 12 2013/11/13

Macquarie Island 390 32, 31, 45, 28, 34, 33, 2004/01/20–
28, 35, 29, 33, 31, 31 2013/01/09

Melbourne 456 31, 38, 40, 38, 41, 36, 2004/01/08–
38, 39, 46, 40, 38, 31 2013/12/18

1. vertical gradient of OMR is greater than 60 ppb km−1;

2. OMR is greater than 80 ppb; and

3. OMR exceeds 110 ppb between 500 and 2000 m above
the altitude under inspection (modified to between 500
and 1500 m in the Antarctic, including the site at Davis).

The ozone tropopause may misdiagnose the real tropopause
altitude during stratosphere–troposphere exchange; however,
it is useful at polar latitudes in winter, where the lapse rate
definition may result in artificially high values for tropopause
height (Bethan et al., 1996; Tomikawa et al., 2009; Alexan-
der et al., 2013). We require lapse-rate-defined tropopauses
to be at a minimum of 4 km altitude. Another commonly
used tropopause definition is determined with the use of PV
(dynamical tropopause). In the extratropics the isosurface
where PV= 2 PVU (1 PVU= 10−6 m2 s−1 K kg−1) is often
used to define the tropopause, allowing the 3-D representa-
tion of tropopause folds and other tropopause features in a
sufficiently resolved model (Škerlak et al., 2014; Tyrlis et al.,
2014). The PV is not calculable using the ozonesonde mea-
surements alone, so in this work the ozone tropopause is used
when determining STT events or measured tropopause alti-
tude.

Figure 2 shows the monthly median ozone tropopause
altitudes at each location (solid lines). At Melbourne, the
tropopause altitude displays a seasonal cycle with maximum
in summer and minimum is winter. This seasonality is miss-
ing at Macquarie Island and almost reversed at Davis, which
has a minimum during autumn and maximum from winter
to spring. Tropopause altitude decreases with latitude from
9–14 km at Melbourne (38◦ S) to 7–9 km at Davis (69◦ S).

Figure 3 shows multi-year averaged ozone mixing ratios
measured by ozonesonde over the three stations. Over Mel-
bourne, increased ozone extending down through the tro-
posphere is apparent from December to March and from
September to November. The increased tropospheric ozone
in these months is due to STT (in summer) and possi-
ble biomass burning influence (in spring), both discussed
in more detail in the following sections. Over Davis and
Macquarie Island, tropospheric ozone is higher between
March and October, although the seasonal differences are
small compared to those at Melbourne. The seasonality

Figure 2. Multi-year monthly median tropopause altitude (using the
ozone-defined tropopause) determined from ozonesondes measure-
ments at Davis (2006–2013), Macquarie Island (2004–2013), and
Melbourne (2004–2013) (solid lines). Dashed lines show the 10th
to the 90th percentile of tropopause altitude for each site.

shown in Fig. 3 for Davis is consistent with remote free-
tropospheric photochemistry determined by solar radiation
availability and temperature, resulting in higher ozone in
winter (Lelieveld and Dentener, 2000). NO2 stratospheric
observations have been conducted in the Southern Hemi-
sphere at Lauder, Macquarie Island, and Arrival Heights (i.e.
Struthers et al., 2004), which displays a winter minima in
seasonality consistent with an ozone maxima. Influence from
the ozone hole can be seen over Davis in October, with rela-
tively low ozone levels extending up 5–6 km into the strato-
sphere.

2.2 Model description

To provide regional and global context to the ozonesonde
observations, we use the GEOS-Chem version 10-01 global
chemical transport model (Bey et al., 2001), which simulates
ozone along with more than 100 other trace gases throughout
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Figure 3. Multi-year mean seasonal cycle of ozone mixing ratio over Davis, Macquarie Island, and Melbourne as measured by ozonesondes.
Measurements were interpolated to every 100 m and then binned monthly. Black and red solid lines show median ozone and lapse-rate-defined
tropopause altitudes (respectively), as defined in the text.

the troposphere and stratosphere. Stratosphere–troposphere
coupling is calculated using the stratospheric unified chem-
istry extension (UCX) (Eastham et al., 2014). Transport
is driven by assimilated meteorological fields from the
Goddard Earth Observing System (GEOS-5) maintained by
the Global Modeling and Assimilation Office (GMAO) at
NASA. Ozone precursor emissions are from the Model of
Emissions of Gases and Aerosols from Nature (MEGAN)
version 2.1 (Guenther et al., 2012) for biogenic emissions,
the Emissions Database for Global Atmospheric Research
(EDGAR) version 4.2 for anthropogenic emissions, and the
Global Fire Emissions Database (GFED4) inventory (Giglio
et al., 2013) for biomass burning emissions. Our simulation
was modified from the standard v10-01 to fix an error in
the treatment of ozone data from the Total Ozone Mapping

Spectrometer (TOMS) satellite used to calculate photolysis
(see http://wiki.seas.harvard.edu/geos-chem/index.php/
FAST-JX_v7.0_photolysis_mechanism#Fix_for_TOMS_
to_address_strange_cycle_in_OH_output.).

Our simulations span 2005–2012 (following a 1-year spin-
up) with horizontal resolution of 2◦ latitude by 2.5◦ longitude
and 72 vertical levels from the surface to 0.01 hPa. The ver-
tical resolution is finer near the surface at ∼ 60 m between
levels, spreading out to ∼ 500 m near 10 km altitude. For
comparison to the ozonesonde observations, the model state
was saved every 6 h within the grid boxes containing each
site. When comparing against ozonesondes, GEOS-Chem
UTC+0 time samples are used for all sites. This means that
the simulated ozone profiles are analysed at local times of
07.00 for Davis and 11.00 for Macquarie Island and Mel-
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bourne. GEOS-Chem uses the tropopause height provided
by GEOS-5 meteorological fields, which are calculated us-
ing a lapse rate tropopause definition using the first minimum
above the surface in the function 0.03×T (p)− log(p), with
p in hPa (Rienecker, 2007).

2.3 Characterisation of STT events and associated
fluxes

We characterise STT events using the ozonesonde verti-
cal profiles to identify tropospheric ozone enhancements
above a local background (in moles per billion moles of dry
air, referred to here as ppb). The process is illustrated in
Fig. 4 on an example ozone profile. First, the ozone verti-
cal profiles are linearly interpolated to a regular grid with
20 m resolution from the surface to 14 km altitude. Small
vertical-scale fluctuations in ozone, which are captured by
the high-resolution ozonesondes, can be regarded as sinu-
soidal waves superimposed on the large vertical-scale back-
ground tropospheric ozone. As such, the interpolated profiles
are bandpass-filtered using a fast Fourier transform (Press
et al., 1992) to retain these small vertical scales, between
0.5 and 5 km (removing low- and high-frequency perturba-
tions). The high-frequency perturbations are removed as they
may represent noise in the measurements. The perturbations
with scales longer than 5 km represent the vertical gradient
of ozone concentration from the surface to the stratosphere.
In what follows, these filtered vertical profiles are referred to
as perturbation profiles.

For an event to qualify as STT, a clear increase above the
background ozone level is needed, as a bandpass filter leaves
us with enhancements minus any noise or seasonal-scale ver-
tical profile effects. We next use all the perturbation profiles
at each site to calculate the 95th percentile perturbation value
for the site. The threshold is calculated from all the interpo-
lated filtered values between 2 km above the surface and 1 km
below the tropopause. This is our threshold for tropospheric
ozone perturbations, and any profiles with perturbations ex-
ceeding this value in individual ozonesondes are classified
as STT events. STT events at altitudes below 4 km are re-
moved to avoid surface pollution, and events within 0.5 km
of the tropopause are removed to avoid false positives in-
duced by the sharp transition to stratospheric air. We note
that this ozone detection methodology detailed above does
not allow us to resolve STT events where the ozone flux
is spread diffusely across the troposphere without a peak-
like structure in the ozonesonde profile. In other words, STT
events which might have occurred some distance and time
away from the location of the ozonesonde profiles may not
be readily detected using the high-vertical-resolution, but in-
frequent, ozonesonde launches.

We define the ozone peak as the altitude where the pertur-
bation profile is greatest between 2 km from the surface and
0.5 km below the tropopause. The STT event is confirmed if
the perturbation profile drops below zero between the ozone

Figure 4. An example of the STT identification and flux estimation
methods used in this work. The left panel shows an ozone profile
from Melbourne on 8 January 2004 from 2 km to the tropopause
(blue dashed horizontal line). The right panel shows the perturba-
tion profile created from bandpass filtering of the mixing ratio pro-
file. The STT occurrence threshold calculated from the 95th per-
centile of all perturbation profiles is shown as the orange dashed
line, and the vertical extent of the event is shown with the purple
dashed lines (see details in text). The ozone flux associated with
the STT event is calculated using the area outlined with the orange
dashed line in the left panel.

peak and the tropopause, as this represents a return to non-
enhanced ozone concentrations. Alternatively, the STT event
is also confirmed if the OMR between the ozone peak and the
tropopause drops below 80 ppb and is at least 20 ppb lower
than the OMR at the ozone peak. If neither of these condi-
tions are met, the profile is rejected as a non-event. This fi-
nal step removes near-tropopause anomalies for which there
is insufficient evidence of detachment from the stratosphere.
Vertical ozone profiles recorded by ozonesondes are highly
dependent on the time of launch (Sprenger et al., 2003), and it
cannot be guaranteed that detected ozone enhancements are
fully separated from the stratosphere, although this method
minimises that risk by removing detected events too near the
tropopause.

We estimate the ozone flux into the troposphere associ-
ated with each event by integrating the ozone concentration
enhancement vertically over the altitude range for which an
STT event is identified (i.e. enhancement near the ozone peak
over which the perturbation profile is greater than zero). This
estimate is conservative because it does not take into ac-
count any ozone enhancements outside of the detected peak
that may have been caused by the STT and also ignores any
enhanced ozone background amounts from synoptic-scale
stratospheric mixing into the troposphere.

Atmos. Chem. Phys., 17, 10269–10290, 2017 www.atmos-chem-phys.net/17/10269/2017/
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Figure 5. Seasonal cycle of STT event frequency at Davis (a), Macquarie Island (b), and Melbourne (c). Events are categorised by associated
meteorological conditions as described in the text, with low-pressure fronts (“frontal”) in dark blue, cut-off low-pressure systems (“cut-off”)
in teal, and indeterminate meteorology (“misc”) in cyan. Events that may have been influenced by transported smoke plumes are shown in
red (see text for details).

Our method differs somewhat from that used by Tang and
Prather (2010) to detect STT events from ozonesonde mea-
surements. Their definition is based on subjective analysis
of sondes released from 20 stations ranging in latitude from
35◦ S to 40◦ N. They identify an STT event if, starting from
5 km altitude, ozone exceeds 80 ppb and then within 3 km de-
creases by 20 ppb or more to a value less than 120 ppb. Their
technique would miss many events due to the lower ozone
concentrations found in the cleaner SH.

2.4 Biomass burning influence

The STT detection algorithm described in Sect. 2.3 as-
sumes all ozone enhancements are caused by stratospheric
intrusions. In some cases, however, these perturbations may
in fact reflect ozone production in lofted smoke plumes.

Biomass burning in southern Africa and South America has
previously been shown to have a major influence on atmo-
spheric composition in the vicinity of our measurement sites
(Oltmans et al., 2001; Gloudemans et al., 2007; Edwards
et al., 2006), particularly from July to December (Pak et al.,
2003; Liu et al., 2017). On occasion, smoke plumes from
Australian and Indonesian fires can also reach the mid–high
southern latitudes, as seen from satellite measurements of
carbon monoxide (CO) discussed below.

Large biomass burning events emit substantial quantities
of ozone precursors, some of which are capable of being
transported over long distances and driving ozone produc-
tion far from the fire source (Jaffe and Wigder, 2012). Ozone
production from biomass burning is complex and affected by
photochemistry, fuel nitrogen load, and time since emission,
among other factors. While ozone production occurs in some
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Figure 6. Seasonal distribution of STT events using the alternative STT proxy, obtained from consideration of the static stability at the ozone
and lapse rate tropopauses, for Davis (2006–2013), Macquarie Island (2004–2013), and Melbourne (2004–2013).

biomass burning plumes, this is not always the case; there-
fore ozone perturbations detected during transported smoke
events may or may not be caused by the plume. For this rea-
son all detected STT events which could be caused by smoke
plumes are flagged, following the procedure outlined below.
Calculations of seasonality, and ozone flux do not include
flagged events, but they are included in summary plots in this
work.

Possible biomass burning influence is identified using
satellite observations of CO from the AIRS (Atmospheric In-
frared Sounder) instrument on board the Aqua satellite (Tex-
eira, 2013). CO is emitted during incomplete combustion and
is an effective tracer of long-range transport due to its long
lifetime (Edwards, 2003; Edwards et al., 2006). In the SH,
biomass burning is the primary source of CO, making CO a
good proxy for fire plumes (e.g. Sinha et al., 2004; Mari et al.,
2008). To identify possible biomass burning influence, AIRS
vertical column CO is visually inspected for all dates with
detected STT events. Smoke plumes are diagnosed over ar-
eas with elevated CO columns (∼ 2×1018 molecules cm−2 or
higher), and any sonde-detected STT event that occurs near
(within ∼150 km of) a smoke plume is flagged. Removal of
these detections reduces the yearly estimated ozone flux by
∼ 15% at Macquarie Island and ∼ 20% at Melbourne.

All days with detected STT events were screened, with the
exception of one event during which there were no available

AIRS data (January 2010). We find that biomass burning may
have influenced 27 events over Melbourne and 21 events over
Macquarie Island. These events are flagged in the following
sections and are not used in our calculation of total STT flux.
All of the flagged events except for two occurred during the
SH burning season (July to December). No events at Davis
were seen to be influenced by smoke transport.

2.5 Classifying synoptic conditions during STT events

Synoptic-scale weather patterns are examined using data
from the European Centre for Medium-range Weather Fore-
casts (ECMWF) Interim Reanalysis (ERA-I) (Dee et al.,
2011). This is done using the ERA-I data products over
the three sites on dates matching the detected STT events.
We use the ERA-I 500 hPa data to subjectively classify the
events based on their likely meteorological cause by visu-
ally examining each date where an event was detected. Dur-
ing STT occurrence, the upper troposphere is typically char-
acterised by nearby cyclones, cut-off lows, or cold fronts.
Over Melbourne and Macquarie Island, we find that frontal
and low-pressure activity are prevalent during STT events
(see Sect. 3). Over Davis, the weather systems are often
less clear, but we see a higher portion of probable cut-off
lows. The stratospheric polar vortex may create tropopause
folds without other sources of upper-tropospheric turbulence
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Figure 7. The distribution of STT events’ altitudes at Davis (a), Macquarie Island (b), and Melbourne (c), determined as described in the
text. Events are coloured as described in Fig. 5.

such as low-pressure fronts or cyclones (e.g. Baray et al.,
2000; Sprenger et al., 2003; Tyrlis et al., 2014). Cut-off
low-pressure systems can be seen clearly in synoptic-scale
weather maps as regions with lowered pressure and cyclonic
winds. Low-pressure fronts in the higher southern latitudes
travel from west to east and lower the tropopause height. We
examine two cases in detail to illustrate the relationship be-
tween synoptic-scale conditions and STT events over Mel-
bourne. These are included in the Supplement (Figs. S2 and
S3) and show an archetypal cut-off low and low-pressure
front. To detect cut-off low-pressure systems we look for cy-
clonic winds and a detached area of low pressure within ∼
500 km of a site on days of event detection. For low-pressure
fronts we look for low-pressure troughs within ∼ 500 km.
Frontal passage is a known cause of STT as stratospheric air
descends and streamers of ozone-rich air break off and mix
into the troposphere (Sprenger et al., 2003).

3 STT event climatologies

Figure 5 shows the seasonal cycles of STT frequency at
Davis, Macquarie Island, and Melbourne. Frequency is de-
termined as detected event count divided by total launched
ozonesondes for each month. STT events in Figs. 5–8
are coloured based on the meteorological classification de-
scribed in Sect. 2.5, with events classified as either low-
pressure fronts (“frontal”, dark blue), cut-off low-pressure
systems (“cut-off”, teal), or indeterminate (“misc”, cyan).
Events that may have been influenced by transported smoke
plumes (Sect. 2.4) are shown in red. Ozonesonde releases are
summarised in Table 1 and detected event counts are sum-
marised in Table 2.

There is an annual cycle in the frequency of STT events
(Fig. 5) with a summertime peak at all three sites. This
summertime peak is due to a prevalence of summer low-
pressure storms and fronts, which increase turbulence and
lower the tropopause (Reutter et al., 2015). At Davis, there
are more STT detections during winter relative to our other
sites, which may be due to the polar vortex and its associated
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Figure 8. The distribution of STT events’ depths, defined as the distance from the event to the tropopause, at Davis (a), Macquarie Island
(b), and Melbourne (c), determined as described in the text. Events are coloured as described in Fig. 5.

Table 2. Total number of ozonesonde detected STT events, along
with the number of events in each category (see text).

Site Events Cut-offs Frontal Misc. Fire

Davis 80 44 19 17 0
Macquarie 105 19 31 34 21
Island
Melbourne 127 28 31 41 27

lowered tropopause and increased turbulence. STT events as-
sociated with cut-off low-pressure systems are more preva-
lent during summer, while STT events associated with frontal
passage occur throughout the year. The high frequency of
STT ozone enhancements is comparable to the > 25% fre-
quencies seen over Turkey and east of the Caspian sea in an
ERA-I analysis performed by Tyrlis et al. (2014).

The SH summer maximum we see for STT ozone flux
can also be seen in Fig. 16 of Škerlak et al. (2014), which
shows seasonal flux over the Southern Ocean, although this
is less clear over Melbourne. This seasonality is not clear in

the recent ERA-I tropopause fold analysis performed by Šk-
erlak et al. (2015), where a winter maximum of tropopause
fold frequency (∼ 0.5% more folds in winter) over Australia
can be seen to the north of Melbourne. Their work seems
to show slightly higher fold frequencies over Melbourne in
summer (Škerlak et al., 2015, Fig. 5) but not to the same ex-
tent that our summer peak suggests. Their winter maximum
is in the subtropics only – from around 20 to 40◦ S, which
can be seen as the prevalent feature over Australia in their
Fig. 5. Wauben et al. (1998) look at modelled (CTM driven
by ECMWF output) and measured ozone distributions and
find more SH ozone in the lower troposphere during austral
winter, but they note that the ECMWF fields are uncertain
here again due to lack of measurements. Their work shows
a generally cleaner lower troposphere in the SH summer but
this cannot be construed to suggest more or less STT folds in
either season. Sprenger et al. (2003) examine modelled STT
folds using ECMWF output over March 2000–April 2001,
and show that for this year there is a clear austral winter max-
imum, again over the 20 to 40◦ S band. The winter maximum
does not include Melbourne, or the Southern Ocean, which
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Figure 9. Comparison between observed (black) and simulated (pink, red) tropospheric ozone columns (�O3 , in molecules cm−2) from
1 January 2004 to 30 April 2013. For the model, daily output is shown in pink, while output from days with ozonesonde measurements are
shown in red. For each site, the model has been sampled in the relevant grid square.

explains why we see a seasonality not readily evident in these
global-scale studies.

The measurement sites are not in the regions which have
a clear winter maximum seen in Fig. 1 of Sprenger et al.
(2003), and the large-scale winter maximum shown by all
three studies seems to be dominated by the system in that re-
gion. The seasonality of our three sites is not driven by the
larger STT system seen over the southern Indian Ocean and
middle Australia which dominates prior analysis near or over
Australia.

To examine the robustness of the distributions shown in
Fig. 5, we developed an alternative assessment of the sea-
sonal occurrence of STT events, with results shown in Fig. 6.
Here STT occurrence is evaluated by consideration of the
square of the dry Brunt–Väisälä frequency (N2) at the heights
of the ozone tropopause (zOT) and lapse rate tropopause
(zLRT) in each ozonesonde profile that has been binned to
100 m resolution. We use N2 to assess atmospheric stability,
which is normally distinctly higher in the stratosphere than
in the troposphere, and assume that the vertical temperature
gradients within the intrusion respond most rapidly to trans-
ported heat, which is an additional characteristic of strato-
spheric air. N2 is evaluated using 250 m resolution data (to
smooth variability in the vertical gradient of potential tem-
perature that is due to small temperature fluctuations likely
associated with gravity waves). The altitude binning chosen
is a compromise between vertical resolution and the level of
variability in N2 introduced by temperature gradients associ-
ated with perturbations from gravity waves and changes near

the lapse rate tropopause and is the minimum that produces a
robust seasonal distribution. We define STT as having taken
place if N2(zOT) > N2(zLRT) and zOT < zLRT; in this way the
characteristically higher static stability and ozone concentra-
tion of stratospheric intrusion is regarded as being retained
as it penetrates below the lapse rate tropopause. The sea-
sonal distributions shown for the three stations in Fig. 6 are
generally similar to those shown in Fig. 5 (although detected
events are less frequent), with the main exception that very
few events are identified with the alternative method at Davis
in the first half of the year. For our STT proxy, we only detect
intrusions where the lowest altitude of the intrusion satisfies
the ozone tropopause definition. During summer and autumn,
the vertical ozone gradients at Davis are weaker compared
with the other seasons, and the detected ozone tropopause
tends to lie above the lapse rate tropopause, potentially re-
ducing the ability to identify STT events based on the defini-
tion of our proxy.

Figure 7 shows the altitudes of detected events, based
on the altitude of peak tropospheric ozone (local maximum
ozone within enhancement altitude) in the ozonesonde pro-
file. STT event peaks most commonly occur at 6–11 km
above Melbourne and anywhere from 4 to 9 km at Davis and
Macquarie Island. There is no clear relationship between me-
teorological conditions and event altitude, which may reflect
the fact that the ozonesondes observe a snapshot of an event
at different stages of its life cycle.

Figure 8 shows the distance from the event peak to the
ozone-defined tropopause, referred to as event depth. The
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Figure 10. Observed and simulated tropospheric ozone profiles over Davis, Macquarie Island, and Melbourne, averaged seasonally. Model
medians (2005–2013 average) are shown as red solid lines, with red dashed lines showing the 10th and 90th percentiles. Ozonesonde
medians (over each season, for all years) are shown as black solid lines, with coloured shaded areas showing the 10th and 90th percentiles.
The horizontal dashed lines show the median tropopause heights from the model (red) and the observations (black).

majority of STT events occur within 2.5 km of the tropopause
at Davis and Macquarie Island. Over Melbourne, the event
depth is more spread out, with peak ozone enhancement gen-
erally occurring up to 6 km below the tropopause. Again,
there is no clear relationship between meteorological con-
ditions and event depth.

4 Simulated ozone columns

Figure 9 compares the time series of tropospheric
ozone columns (�O3 ) in molecules cm−2 simulated by
GEOS-Chem (red) to the measured tropospheric ozone
columns (black). GEOS-Chem outputs ozone density

(molecules cm−3) and height of each simulated box, as well
as which level contains the tropopause, allowing modelled
�O3 to be calculated as the product of density and height
summed up to the box below the tropopause level. In both
observations and model, the maximum ozone column at Mel-
bourne occurs in austral summer and the minimum in winter,
while Macquarie Island and Davis show the opposite season-
ality.

GEOS-Chem provides a reasonable simulation of the ob-
served seasonality and magnitude of �O3 . Reduced major
axis regression of observed versus simulated �O3 gives a
line of best fit with slopes of 1.08 for Davis, 0.99 for Mac-
quarie Island, and 1.34 for Melbourne. The model is only
partially able to reproduce the variability in the observations,
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Figure 11. Example comparisons of ozone profiles from ozonesondes (black) and GEOS-Chem (red) from three different dates during which
STT events were detected from the measurements. The dates were picked based on subjective visual analysis. The examples show the best
match between model and observations for each site. GEOS-Chem and ozonesonde pressure levels are marked with red and black dashes
respectively.

with paired r2 values of 0.38 for Davis, 0.18 for Macquarie
Island, and 0.37 for Melbourne. Much of the variability is
driven by the seasonal cycle, and after removing this effect
(by subtracting the multi-year monthly means), the r2 values
decrease to 0.07, 0.11, and 0.30, respectively, although the
slope improves at Melbourne to 1.08.

Figure 10 shows the observed and simulated ozone pro-
files at all sites, averaged seasonally. The model generally
underestimates ozone in the lower troposphere (up to 6 km)
over Davis, although this bias is less pronounced during sum-
mer. Over Melbourne, ozone in the lower troposphere is well
represented, but the model overestimates ozone from around
4 km to the tropopause. Over Macquarie Island we see model
overestimation of ozone above 4 km as well as underesti-
mated ozone in the lower troposphere, suggesting that this
region is influenced by processes seen at both of our other
sites. Also shown is the mean tropopause height simulated
by the model (horizontal dashed red line), which is always
higher than the observed average, although this difference is
not statistically significant. The effect of local pollution over
Melbourne during austral summer (DJF) can be seen from
the increased mean mixing ratios and enhanced variance near
the surface. The gradient of the O3 profiles is steeper in the
measurements than the model, at all sites during all seasons.

Recently Hu et al. (2017) examined GEOS-Chem ozone sim-
ulations and found a similar overestimation of upper tropo-
sphere ozone in the mid-southern latitudes when using the
GEOS5 meteorological fields.

Figure 11 compares modelled (red) and observed (black)
ozone profiles on 3 example days when STT events were de-
tected using the ozonesondes. The figures show the profile
for each site with the closest (qualitative) match between
model and observations. The resolution (both vertical and
horizontal) of GEOS-Chem in the upper troposphere is too
low to consistently allow detection of STTs, although in a
few cases (e.g., Melbourne in Fig. 11) it appears that the
event was large enough to be visible in the model output.

5 Stratosphere-to-troposphere ozone flux from STT
events

5.1 Method

We quantify the mean stratosphere-to-troposphere ozone flux
due to STT events at each site based on the integrated ozone
amount associated with each STT event (see Sect. 2.3).
Events that may have been influenced by transported biomass
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Figure 12. (a) Tropospheric ozone attributed to STT events. (b) Per-
cent of total tropospheric column ozone attributed to STT events.
Boxes show the interquartile range (IQR), with the centre line be-
ing the median, whiskers show the minimum and maximum, and
circles show values which lie more than 1.5 IQR from the median.
Values calculated from ozonesonde measurements as described in
the text.

burning are excluded from this calculation. Our estimate pro-
vides a preliminary estimate of how much ozone is trans-
ported from the stratosphere by the events detected by our
method. The estimate is conservative for several reasons:
it ignores secondary ozone peaks which may also be trans-
ported from the stratosphere, potential ozone enhancements
which may have dispersed and increased the local back-
ground mixing ratio, and any influence from STT events
nearby which may also increase the local background ozone.

Observed tropospheric columns are calculated from the
ozonesondes by calculating the ozone number density
(molecules cm−3) using measured ozone partial pressure
(PO3 ) and integrating vertically up to the tropopause:

�O3 =

TP∫
0

PO3(z)

kB× T (z)
dz,

where z is the altitude (GPH), TP is the altitude at the
tropopause, T is the temperature, and kB is the Boltzmann
constant.

Three regions are used to examine possible STT flux over
a larger area using modelled tropospheric ozone concentra-
tions. The regions are shown in Fig. 1. The regions are cen-
tred at each site, plus or minus 10◦ latitude, and plus or mi-
nus 25, 16, and 11◦ longitude for Davis, Macquarie Island,
and Melbourne respectively. These boundaries approximate
a rectangle centred at each site with ∼ 2000 km side lengths,
covering ∼ 4.4, 4.6, and 4.8 million square km, for Davis,
Macquarie Island, and Melbourne respectively.

To determine the ozone column attributable to STT, we de-
termine monthly averaged STT impact (I; fraction of tropo-
spheric ozone sourced from the stratosphere as shown above)
and the monthly mean tropospheric ozone column (from the
GEOS-Chem multi-year mean, �O3 ) over the regions de-
scribed above. This can be expressed simply as the STT flux
per event (fluxi in each month: fluxi =�O3×I ). Next we de-
termine how many events are occurring per month by assum-
ing that only one event can occur at one time and no event
is measured twice. These assumptions allow a simple esti-
mate of events per month from the relatively sparse dataset
and should hold true as long as our regions of extrapolation
are not too large. The probability of any sonde launch de-
tecting an event is calculated as the fraction of ozonesonde
releases for which an STT event was detected, calculated for
each month. We assume events last N days, then find how
many events per month we expect by multiplying the days in
a month by P and dividing by this assumed event lifetime.
For example, if we expect to see an event 25 % of the time
in a month, and events last 1 day, then we expect one event
every 4 days (∼ 7.5 events in that month); however, if we ex-
pect events to last a week then we would expect ∼ one event
in that month. This leads us to multiply our flux i by P and
then by the term M (M = days per month

N
) determined by our

assumed event lifetime in order to determine monthly STT
ozone flux.

The longevity of ozone events is very difficult to deter-
mine, and we have chosen 2 days as a representative num-
ber based on several examples in Lin et al. (2012) where
intrusions were seen to last from 1 to 3 days (occasionally
longer) and an analysis of one large event by Cooper et al.
(2004) showing that most of the ozone had dispersed after
48 h. Worth noting is the recent work of Trickl et al. (2014),
where intrusions are detected > 2 days and thousands of kilo-
metres away from their initial descent into the troposphere
over Greenland or the Arctic. In those regions with high wind
shear, mixing appears to be slower, which allows ozone in-
trusions to be transported further without dissipating into the
troposphere. Relative uncertainty in our M term is set to
50 %, as we assume these synoptic events to generally last
from 1 to 3 days.
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Figure 13. (a) Tropospheric ozone, impact per event, and probability of event detection per sonde launch, averaged over the region above
Davis. The tropospheric ozone column �O3 (black, left axis) is from GEOS-Chem, while the STT probability P (magenta, right axis) and
impact I (teal, right axis) are from the ozonesonde measurements. The STT impact is multiplied by 10 to better show the seasonality. (b)
Estimated contribution of STT to tropospheric ozone columns over the region, with uncertainty (shaded area) estimated as outlined in Sect. 6.
The black line shows STT ozone flux if event lifetime is assumed to be 2 days, with dashed lines showing the range of flux estimation if we
assumed events lasted from 1 day to 1 week.

5.2 Results

The top panel of Fig. 12 shows the STT ozone enhance-
ments, based on a vertical integration of the ozone above
baseline levels for each ozonesonde where an event was de-
tected. The area considered to be “enhanced” ozone is out-
lined with yellow dashes on the left panel of Fig. 4. We
find that the mean ozone flux associated with STT events is
∼ 0.5−2.0×1016 molecules cm−2. The bottom panel shows
the mean fraction of total tropospheric column ozone (cal-
culated from ozonesonde profiles) attributed to stratospheric
ozone intrusions at each site for days when an STT event oc-
curred. First the tropospheric ozone column is calculated, and
then the enhanced ozone column amount is used to determine
the relative increase. At all sites, the mean fraction of tropo-
spheric ozone attributed to STT events is ∼ 1.0–3.5%. On
3 separate days over Macquarie and Melbourne, this value
exceeds 10 %.

The upper panels in Figs. 13–15 show the factors I , P , and
�O3 , which are used along with the assumed event lifetime

to estimate the STT flux. The tropospheric ozone and area
of our region is calculated using the output and surface area
from GEOS-Chem over our three regions. The lower panel
of these figures show the results of the calculation when we
choose 2 days for our flux estimation, with dotted lines show-
ing the range of flux calculated if we assume events last from
1 day to 1 week. The seasonal cycle of ozone flux is mostly
driven by the P term, which peaks in the SH summer over
all three sites. Total uncertainty (shaded) is on the order of
100% (see Sect. 6.2). We calculate the annual amount based
on the sum of the monthly values. The regions over Davis,
Macquarie Island, and Melbourne have estimated STT ozone
contributions of∼ 5.7×1017,∼ 5.7×1017, and∼ 8.7×1017

molecules cm−2 a−1, respectively, or equivalently∼ 2.0, 2.1,
and 3.3 Tg a−1.

5.3 Comparison to literature

Škerlak et al. (2014) show an estimate of roughly 40 to
150 kg km−2 month−1 in these regions, over all seasons
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Figure 14. As described in Fig. 13, for the region containing Macquarie Island.

(see Figs. 16, 17 in their publication), while we estimate
from 0 to 180 kg km−2 month−1 STT impact, following
a seasonal cycle with the maximum in austral summer.
We estimate higher maximum flux over Melbourne (178;
150 kg km−2 month−1 in January and February) than in ei-
ther Davis (89 kg km−2 month−1 in March) or Macquarie Is-
land (68 kg km−2 month−1 in January). Our calculated sea-
sonal contributions, along with total uncertainty are shown in
Table 3.

This result disagrees with several other studies which have
found STT ozone fluxes in the SH extratropics are largest
from autumn or winter to early spring. Roelofs and Lelieveld
(1997) used a model carrying a tracer for stratospheric ozone
to estimate STT impacts. They see higher SH tropospheric
ozone concentrations, as well as STT flux, in the SH win-
ter. Our model also shows ozone column amounts peaking
in winter, but flux is maximised in summer due to our de-
tected event frequencies. Elbern et al. (1998) examine STT
using ECMWF data for prior to 1996, using PV and Q vec-
tors to determine STT frequency and strength, and suggest
fewer fold events in the SH occur from December to Febru-
ary. Olsen (2003) used PV and winds from the GEOS reanal-
ysis combined with ozone measurements from the TOMS
satellite to estimate that the ozone flux between 30 and 60◦ S

is 210 Tg yr−1, with the maximum occurring over SH winter.
Liu et al. (2017) model the upper-tropospheric ozone and its
source (emissions/lightning/stratospheric) over the Atlantic
Ocean between 30 and 45◦ S and suggest that most of this is
transported from the stratosphere from March to September,
which is when the subtropical jet system is strongest.

The disagreements largely reflect the difference between
point-source-based estimates and zonally averaged esti-
mates, as the meteorological behaviour at our three sites is
not the same as the system that dominates the SH in gen-
eral. As detailed in Sect. 3, the maximum STT influx which
occurs during SH winter is almost entirely due to the dom-
inant STT system which occurs annually over the southern
Indian Ocean and middle of Australia. It is difficult to com-
pare remote ozonesonde datasets with area averaged models
or reanalyses based on non-co-located measurements (such
as ERA).

6 Sensitivities and limitations

6.1 Event detection

Our method uses several subjectively defined quantities in
the process of STT event detection. Here we briefly discuss
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Figure 15. As described in Fig. 13, for the region containing Melbourne.

Table 3. Seasonal STT ozone contribution in the regions near each site, in kg km−2 month−1. In parentheses are the relative uncertainties.

Region DJF MAM JJA SON

Davis 54.5 (102 %) 47.7 ( 97 %) 30.7 (114 %) 18.8 (127 %)
Macquarie Island 61.3 ( 85 %) 70.7 ( 91 %) 17.9 (139 %) 7.7 (229 %)
Melbourne 96.7 (103 %) 88.6 ( 89 %) 26.7 (102 %) 21.4 (109 %)

these quantities and the sensitivity of the method to each. Us-
ing the algorithm discussed in Sect. 2.3, we detect 80 events
at Davis, 105 (21 fire influenced) events at Macquarie Island,
and 127 (27 fire influenced) events at Melbourne.

The cut-off threshold (defined separately for each site) is
determined from the 95th percentile of the ozone perturba-
tion profiles between 2 km above the earth’s surface and 1 km
below the tropopause. We use the 95th percentile because at
this point the filter locates clear events with fewer than 5 %
obvious false positive detections. Event detection is sensi-
tive to this choice; for example, using the 96th, and 97th per-
centile instead decreased detected events by 2, 9 (2, 10 %) at
Davis, 13, 31 (11, 28 %) at Macquarie Island, and 8, 24 (6,
18 %) at Melbourne. Event detection is therefore also sensi-
tive to the range over which the percentile is calculated. This
range was chosen to remove anomalous edge effects of the

Fourier bandpass filter and to discount the highly variable
ozone concentration which occurs near the tropopause.

Ozone enhancements are only considered STT events
if they occur from 4 km altitude up to 500 m below the
tropopause. This range removes possible ground pollution
and events not sufficiently separated from the stratosphere,
while still capturing many well-defined events that occur
within 1 km of the tropopause. An example of a well-defined
event that occurs within 1 km of the tropopause is shown in
the Supplement (Fig. S2). However, STT events which reach
below 4 km are physically possible and we may have some
false negative detections due to the altitude-restricted detec-
tions.
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6.2 Flux calculations

Flux is calculated as I×P ×M×�O3 , with each term calcu-
lated as described in Sect. 5.1. The uncertainty is determined
using the standard deviation of the product, with variance cal-
culated using the variance of a product formula, assuming
that each of our terms is independent:

var(5iXi)=5i(var(Xi)+E(Xi)
2)− (5iE(Xi))

2.

The standard deviations for the I and �O3 terms are calcu-
lated over the entire dataset. These terms are considered to be
homoscedastic (unchanging variance over time). Uncertainty
in assumed event lifetime is set at 50 %, as we believe it is
reasonable to expect events to last 1–3 days. P is the proba-
bility of any ozonesonde detecting an event and is assumed to
be constant (for any month). The overall uncertainty as a per-
centage is shown in parentheses in Table 3; these values are
on the order of 100 %, largely due to relative uncertainty in
the I factor which ranges from 50 to 120 % for each month.

Small changes in the region do not have a large affect on
the per area flux calculations: increasing or decreasing the
regions by 1◦ on each side (∼ 10% change in area) changes
the resulting flux by∼ 1%. However, due to the large portion
of winter STT events being flagged due to potential smoke
plume influence, a significant change in the yearly flux is
seen when we do not remove these events. Without remov-
ing smoke flagged events we see an increase in estimated
yearly flux of ∼ 1.1,2.1×1017 molecules cm−2 yr−1 (which
is a change of ∼ 15,20%) over Macquarie Island and Mel-
bourne respectively.

Considering the I factor, as discussed in here and in
Sect. 6, there are several uncertainties in our method that are
likely to lead to a low bias, such as the conservative estimate
of flux within each event. Although there are little available
data on SH ozone events for us to compare against, consider
Terao et al. (2008), who estimated that up to 30–40 % of the
ozone at 500 hPa was transported from the stratosphere in the
NH.

Our STT event impact estimates have some sensitivity
to our biomass burning filter: including smoke-influenced
days increases the mean per area flux by 15–20 %. Although
events which are detected near fire smoke plumes are re-
moved, some portion of these could be actual STTs. The
change in our P parameter when we include potentially
smoke influenced events leads to a yearly estimated STT of
11×1017 molecules cm−2 yr−1 over Melbourne, which sug-
gests that up to 2.1× 1017 molecules cm−2 yr−1 ozone en-
hancement could be caused by smoke plume transported pre-
cursors. This is a potential area for improvement, as a better
method of determining smoke influenced columns would im-
prove confidence in our estimate.

Other possibly important uncertainties in our calculation
of STT flux which we do not cover are listed here. Filtering
events which occur within 500 m of the tropopause may also
lead to more false negatives. This could also cause lower im-

pact estimates due to only measuring ozone enhancements
which have descended and potentially slightly dissipated.
However, we have no measure of how often the detached
ozone intrusion reascends into the stratosphere, which would
lead to a reduced stratospheric impact. The estimated tropo-
spheric ozone columns modelled by GEOS-Chem may be
biased; for instance, Hu et al. (2017) suggest that in general
GEOS-Chem (with GEOS-5 meteorological fields) under-
estimates STT, with ∼ 360 Tg a−1 simulated globally com-
pared to ∼ 550 Tg a−1 observationally constrained. Trans-
port uncertainty is very difficult to estimate with the disparate
point measurements; it is possible that detected events are (at
least partially) advected out of the analysis regions, which
would mean we overestimate the influx into the region, and
it is also possible that we are influenced by STT events out-
side the regions of analysis. Uncertainty in event longevity
is set to 50 %, but this implies a very simplistic model of
event lifetimes. A great deal of work could be done to prop-
erly model the regional event lifetimes, but this is beyond the
scope of our work.

Uncertainties in STT ozone flux detection are∼ 100% and
could be directly improved with larger or longer datasets.
Possible parameterisations and an improved model of event
lifetime could also improve the confidence in our estimate of
event impacts, as well as allowing fewer assumptions.

7 Conclusions

Stratosphere-to-troposphere transport can be a major source
of ozone to the remote free troposphere, but the occurrence
and influence of STT events remains poorly quantified in
the southern extratropics. Ozonesonde observations in the
SH provide a satellite-independent quantification of the fre-
quency of STT events, as well as an estimate of their impact
and source. Using almost 10 years of ozonesonde profiles
over the southern high latitudes, we have quantified the fre-
quency, seasonality, and altitude distributions of STT events
in the SH extratropics. By combining this information with
ozone column estimates from a global chemical transport
model, we provided a conservative first estimate of the influ-
ence of STT events on tropospheric ozone over the Southern
Ocean.

Our method involved applying a bandpass filter to the
measured ozone profiles to determine STT event occurrence
and strength. The filter removed seasonal influences and al-
lowed clear detection of ozone-enhanced tongues of air in the
troposphere. By setting empirically derived thresholds, this
method clearly distinguished tropospheric ozone enhance-
ments that are separated from the stratosphere. Our method
is sensitive to various parameters involved in the calculation;
however, for our sites we saw few false positive detections of
STT events.

Detected STT events at three sites spanning the SH extra-
tropics (38, 55, and 69◦ S) showed a distinct seasonal cycle.
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All three sites displayed a summer (DJF) maximum and an
autumn to winter (AMJJA) minimum, although the seasonal
amplitude was less apparent at the Antarctic site (Davis)
as events were also detected regularly in winter and spring
(likely due to polar-jet-stream-caused turbulence). Analysis
of ERA-I reanalysis data suggested the majority of events
were caused by turbulent weather in the upper troposphere
due to low-pressure fronts, followed by cut-off low-pressure
systems. Comparison of ozonesonde-measured ozone pro-
files against those simulated by the GEOS-Chem global
chemical transport model showed the model is able to repro-
duce seasonal features but does not have sufficient vertical
resolution to distinguish STT events.

By combining the simulated tropospheric column ozone
from GEOS-Chem with ozonesonde-derived STT estimates,
we provide a first estimate of the total contribution of STT
events to tropospheric ozone in these southern extratropi-
cal regions. We estimate that the ozone enhancement due
to STT events near our three sites ranges from 300 to
570 kg km−2 a−1, with seasonal maximum in SH summer.

Estimating STT flux using ozonesonde data alone remains
challenging; however, the very high vertical resolution pro-
vided by ozonesondes suggests they are capable of detecting
STT events that models, reanalyses, and satellites may not.
Further work is needed to more accurately translate these
ozonesonde measurements into STT ozone fluxes, particu-
larly in the SH where data are sparse and STT is likely to be
a major contributor to upper-tropospheric ozone in some re-
gions. More frequent ozonesonde releases at SH sites could
facilitate development of better STT flux estimates for this
region.

Data availability. All GEOS-Chem model output is available
from the authors upon request. GEOS-Chem model code is
publicly available, with download and run instructions accessi-
ble at http://acmg.seas.harvard.edu/geos/doc/archive/man.v10-01/
index.html. Ozonesonde data come from the World Ozone and
Ultraviolet Data Centre at https://doi.org/10.14287/10000008, and
are available from http://woudc.org/data/explore.php. The ERA-
Interim data were downloaded from the ECMWF website (http:
//apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pl/) fol-
lowing registration.
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