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Abundance and local-scale processes contribute to
multi-phyla gradients in global marine diversity
Graham J. Edgar,1* Timothy J. Alexander,2 Jonathan S. Lefcheck,3 Amanda E. Bates,4

Stuart J. Kininmonth,5,6 Russell J. Thomson,7 J. Emmett Duffy,8

Mark J. Costello,9 Rick D. Stuart-Smith1

Among themost enduring ecological challenges is an integrated theory explaining the latitudinal biodiversity gradient,
including discrepancies observed at different spatial scales. Analysis of Reef Life Survey data for 4127 marine species at
2406 coral and rocky sites worldwide confirms that the total ecoregion richness peaks in low latitudes, near +15°N and
−15°S. However, although richness at survey sites is maximal near the equator for vertebrates, it peaks at high latitudes
for largemobile invertebrates. Site richness for different groups is dependent onabundance,which is in turn correlated
with temperature for fishes and nutrients for macroinvertebrates. We suggest that temperature-mediated fish preda-
tion andherbivory have constrainedmobilemacroinvertebrate diversity at the site scale across the tropics. Conversely,
at the ecoregion scale, richness responds positively to coral reef area, highlighting potentially huge global biodiversity
losses with coral decline. Improved conservation outcomes require management frameworks, informed by hierar-
chical monitoring, that cover differing site- and regional-scale processes across diverse taxa, including attention
to invertebrate species, which appear disproportionately threatened by warming seas.
INTRODUCTION
Since the earliest voyages of discovery, the remarkable richness of trop
ical plants and animals has intrigued the greatest traveling scientists, in
cluding von Humboldt (1), Darwin (2), Wallace (3, 4), and Bates (5).
They reported an exceptionally high diversity of species at the regional
scale, in terms of taxonomic collections, and also at the local scale, with
their senses overwhelmed by the profusion of life observed in rainforests
and on coral reefs. Since then, many studies have attempted to quantify
historical observations and suggest causes of the “latitudinal gradient in
biodiversity,” where species richness peaks in the tropics. Latitudinal
gradients appear to be a global phenomenon for many groups of ter
restrial and marine species but vary across taxa (6, 7). Patterns are
scale dependent (8), with the latitudinal biodiversity gradients ap
parently stronger when reported as g (regional) than a (local) diver
sity (9). Although most studies assume that the underlying gradient
should be unimodal and peak at the equator, a recent review consolidat
ing many disparate surveys found that marine species richness was bi
modal and asymmetric with latitude, dipping at the equator, and higher
in the Northern Hemisphere (9). However, subsequent analyses of
51,000 species that accounted for sampling effort showed that the lati
tudinal gradient was symmetric and bimodal (10) and that g diversity
was less sensitive to sampling bias than a diversity.
More than 30 different hypotheses have been proposed to account for
global patterns of richness (11, 12), with approximately half favoring his
torical and evolutionary processes (13), such as the accumulation of species
in the tropics through rapid speciation rates or long term environmental
stability (14). Other hypotheses invoke global variability in contemporary
physical and ecological processes, including temperature and species inter
actions (Table 1) (12,15, 16).Nevertheless, consensus onmechanisms that
create andmaintain global patterns of biodiversity is lacking. Among the
many investigations on biogeographic gradients published to date, re
latively few have extended beyond one continent or a single taxonomic
group, and none among this group have accounted for the potentially
confounding influence of sampling variation and species’ abundance at
local scales, whereby richness is partly dependent on the number of ob
served individuals. A focus on a phylogenetically narrow set of taxa,
particularly studies of single clades, risks confounding through clade
specific responses to environmental drivers that may not generalize
across taxonomic groups (17). Improved knowledge on how diversity is
shaped by multiscale processes and variability in abundance is urgently
needed for effective conservation because expanding human pressures
are known to act at different scales of space and time.

The recent expansion of the Reef Life Survey (RLS) data set (18) to
include the abundances of more than 4000 species across 11 classes of
visually conspicuous mobile macroscopic organisms, in 44 countries
(fig. S1), permits a rigorous evaluation of many of the long standing
hypotheses regarding the latitudinal biodiversity gradient based on
a standardized methodology. A total of 13,858 transect blocks were
censused during daylight at 2406 sites, generating records of 2516
actinopterygian fish (bony fishes), 66 chondrichthyan fish (sharks and
rays), 8 reptile, 6 mammal, 105 holothurian (sea cucumbers), 104 echi
noid (sea urchins), 180 asteroid (sea stars), 99 crinoid (feather stars),
805 gastropod, 28 cephalopod (octopi and cuttlefish), and 210 decapod
and stomatopod crustacean (crabs, lobsters, and mantis shrimps) taxa.
In total, the fauna considered represents <10% of all marine species (19)
but >50% of large (>2.5 cm) species in regional checklists and field
guides of shallow reef taxa [for example, the studies of Allen et al. (20),
Allen and Robertson (21), Hickman (22), Hickman and Finet (23), Lamb
and Hanby (24), and Haussermann and Forsterra (25)].
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correlates of species richness at different scales. We then constructed
structural equation models (SEMs), which united the subset of in
formative variables identified in GLMs in a single hypothesized causal
network, to disentangle the direct and indirect influences of the primary
potential drivers across spatial scales and major taxa.

We considered the following environmental and geographic
predictors that recur in hypotheses explaining the latitudinal bio
diversity gradient and additionally corrected for local abundance at
the site scale (Table 1): (i) temperature, through potential influences
on metabolic rates, evolution rates (that is, mutation, evolution, and
extinction), or phylogenetically conserved thermal preferences (30, 31);
(ii) primary productivity (32, 33); (iii) area of continental shelf and coral
reef (34, 35); (iv) natural disturbance regime (36); (v) climatic stability
since the last glacial maximum (37); (vi) geographic connectivity and
fragmentation (38, 39); and (vii) human disturbance (40). GLMs in
dicated that annualmean sea surface temperature, coral reef area within
ecoregion, and nitrate and chlorophyll levels were the most influential
factors associated with patterns of site richness (Table 2). At the
ecoregion level, shelf area (invertebrates) and connectivity to other
ecoregions (sea stars) were also important in individual class models.
Local invertebrate richness was influenced by coastline length and
area of continental shelf and richness of all taxa by annual variability
in sea temperature.

Thus, latitudinal gradient hypotheses other than temperature,
productivity, and habitat area received inconsistent or no empirical
support from the GLMs. About half of the modeled metrics with in
fluences on richness at the site scale responded in the opposite direc
tion to predictions from associated hypotheses (Table 2). Coral reef
area and temperaturewere highly correlated (R2 = 0.67; table S2), and at
least one of these factors positively contributed to nearly half of the
models. Both predictors contributed significantly to all taxa site rich
ness, indicating that area of coral reef added species to site richness
above the contribution of temperature alone. Sea surface temperature
was a significant predictor primarily in site level models, and coral reef
area was a significant predictor in ecoregion models.

Richness of the investigated invertebrate classes generally showed
poorly defined relationships with predictors, whereas models explained
a very high proportion of variance in bony fish richness at site (R2 =
0.87) and ecoregion (R2 = 0.67) scales (table S1). Despite the most im
portant predictors differing between classes, the model fit was good for
all taxa combined (R2 = 0.66 for sites and 0.62 for ecoregions; table S1).

The GLM models that excluded the influence of abundance (by
considering the residuals of the relationship between abundance
and richness) generated an unexpected result. We found a much better
model fit for site richness of all taxa (R2 = 0.73; table S1) than themodel
fits for any of the classes individually (bestR2 value of 0.36 for any single
class bony fishes; Table 2 and table S1). Thus, within a standardized
sample of individuals at a site, total richness wasmuchmore predictable
than fish richness, which was more predictable than the numbers of
species in other classes investigated. Given that the animal classes have
different site scale distributions globally (Fig. 2), we expected the oppo
site, with a reasonable fit for some classes to spatial and environmental
covariates but a poor overall fit when aggregating across classes into
total richness because of the likelihood of patterns canceling each other;
therefore, we expected species numbers to generate a noisy overall
pattern when summed. Ecological interactions that limited species
richness at the site level were presumably occurring; if one mobile fish
or invertebrate class has elevated richness within the community, then
low richness was needed in others to maintain a predictable sum.
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Nevertheless, not all classes contributed with equal weight to the
predictable richness totals; fish richness probably affected invertebrate
richness much more than invertebrate richness affected fishes. The
strengthof the relationship betweenbony fish richness and environmental
variables at the local scale was so remarkable (R2 = 0.87), and thus,
the unexplained residual variation was so low that the influence of
other factors, including contributions of other animal classes, could
not be great. This is consistent with a strong predatory influence of
fishes on invertebrate species [see below, the studies of Bertness et al.
(41), Leleu et al. (42), Ogden and Lobel (43), Hay (44), and Hughes
(45)] and with reduced activity and consumption among inverte
brates when predatory fishes are present. Among herbivores, the
mobility of fishes may also confer a competitive advantage over in
vertebrates in some situations by allowing rapid access to patchy al
gal resources. However, contrary competitive outcomes are known,
with Caribbean urchins reported to deplete algae below levels needed
by herbivorous fishes (46 48). Experimental research on cross phyla
interactions between grazers and predators is urgently needed to ascer
tain the context dependency of competitive mechanisms limiting local
invertebrate richness.

Althoughwe found no significant effect of human population den
sity on the biodiversity metrics studied, this result relates to a single
index of human impact (population density), and to richness only, and
therefore should not be taken as indicating that fish communities were
unaffected by human activity. Our results contrast with published
studies focused on other reef community metrics, notably total fish
biomass, where a substantial human footprint has been detected (28, 40).
Our lack of correlation with richness metrics may also have concealed
major changes in the species’ relative abundances and composition as
sociated with human activity that can occur regardless of constancy of
species richness totals (49). Alternatively, effects of exploitation and
habitat degradation may extend across nearly all sites, obscuring an ef
fect of human population density on richness.

The GLM results suggested that water temperature, nitrate, and
coral reef area were consistent predictors of biodiversity across scales,
but they did not indicate whether these variables were acting directly on
richness or indirectly, such as through abundance. A structural equation
modeling approach revealed drivers operating in different directions at
site and ecoregion scales and only minor connections between these
scales (Fig. 4). The direct link between site and ecoregion richness for
all taxa was weak despite a highly significant correlation between these
two metrics (R2 = 0.35, P < 0.001; fig. S3), which are both positively
associated with the same extrinsic factor, coral reef area.

For all taxa, temperature exerted its strongest influence on richness
through coral reef area, which directly enhances site and ecoregion rich
ness and indirectly influenced local richness through aggregation of site
richness (Fig. 4A). Changes in sea temperature, occurring with climate
change, are thus likely to act directly at site scales on species abundance
and richness and indirectly at broader scales because of effects on coral
reef availability, which in turn contributes habitat structure and
complexity to the seascape (34). Aworldwith few coral reefs would have
a much lower mean ecoregion richness and probably global richness
because about 30% of all marine fish species are associated with coral
(50), although the number of those dependent on coral is unknown.

Temperature also showed a direct positive effect on site richness
(Fig. 4A), thus adding to the growing empirical support for ametabolic
related contribution to spatial variability in biological diversity
(12, 15, 51, 52). Nevertheless, no direct influence of temperature was
evident at the ecoregion scale when effects of reef area were also
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increasingwith site richness; and (vi) ecoregion richness increasingwith
coral reef area, continental shelf area, historical evolutionary processes,
and, to a minor extent, local richness (Fig. 5). The strong latitudinal
gradient for all taxa at the site level, despite little consistent latitudinal
pattern in total abundance, was due to a steeper slope of the abundance/
richness relationship for fishes compared to other classes. For a hypo
thetical site with 1000 individuals, the predicted total species richness
was 52, 21, 11, and 3 if only bony fishes, sea stars, gastropods, and echi
noids, respectively, were present, based on regressions shown in fig. S4.
Thus, the pronounced decrease in all taxa richness with latitude was
directly related to decreasingproportional abundance of themost speciose
group, bony fishes.

Our SEM models depict upscaling processes, with ecoregion rich
ness dependent on local richness, which is dependent on site richness.
Richness is thereby viewed here as driven from small spatial scales re
flecting the aggregation of individual sampled sites to provide regional
totals. Amore common paradigm inmacroecology is that local commu
nities are filtered subsets of broader species pools, with regional richness
driving site richness (8).We statistically compared these two alternative
frameworks. Upscaling drivers generated a more likely configuration
than downscaling drivers in SEMs (AIC = −357 versus −351, respec
tively), explained a higher proportion of the variance in most cases,
and produced overall stronger relationships among observed variables
based on standardized regression coefficients (fig. S5). The downscal
ing “all taxa” and “vertebrate” models also significantly departed
from good model fit (df = 4; c2 = 9.53, 21.94, and 7.18; P = 0.049,
P < 0.001, and P = 0.126, respectively, for all taxa, vertebrate, and in
vertebrate SEMs). Nevertheless, differences in model diagnostics were
relatively slight, with both downscaling and upscaling processes prob
ably operating concurrently.

Conservation implications
The paths, and presumably the mechanisms, through which tempera
ture influences biodiversity ofmobile reef fauna greatly differed between
Edgar et al., Sci. Adv. 2017;3 : e1700419 18 October 2017
ecoregion and local scales. Temperature appears to primarily affect spe
cies richness at ecoregion scales through the addition of coral reef area
in warm latitudes and at local scales throughmetabolic processes. These
differences highlight a need for investigations linking changing bio
diversity to climate to consider the complicating effects of scale. Caution
is clearly needed when inference on the rate of change in regional spe
cies pools is based on changes measured through time across a set of
small sites, particularly when rates and scales of global change are esti
mated [for example, the study ofDornelas et al. (49)]. Observed changes
in richness at sites are likely to occur more rapidly than changes at the
ecoregion scale, and rates of species gain relative to loss may also differ
with geographic scaling (59).

Our study indicates that ecological interactions affect the relative
abundance and richness of at least visually conspicuous mobile inverte
brates at local scales. Thus, monitoring of biodiversity needs to en
compass the range of guilds and trophic levels in a community and not
be limited to “indicator” groups that are strongly taxonomically con
strained, such as fishes. The fact that interactions between classes
were not visible at the ecoregion level may be a consequence of species
richness at this spatial scale reflecting evolutionary drivers, such as
temperature, more than local factors. Studies encompassing wider
habitat and species diversity should further inform the patterns reported
here, as should studies clarifying the influence of potential biases, in
cluding whether visual census methods result in systematically low
estimates of mobile invertebrate richness in the tropics due to predator
avoidance and nocturnal foraging.

Differences in the processes operating at large and small spatial
scales indicate a need for comprehensive conservation planning that
takes these scale differences into account. In addition to ecoregional re
presentation, conservation practice would benefit from recognition of
local scale patchiness, whereby biodiversity elements can be concen
trated in scattered locations rather than coinciding with the bound
aries of ecoregion maps. Examples of integrated practice are BirdLife
International’s “Important Bird Area” and “Endemic Bird Area”
Fig. 5. Proposed model of global marine diversity. At the site scale, temperature and nutrients influence abundance, which affects site richness, which in turn
strongly influences local richness. Fishes control abundances of large mobile invertebrates through predation, generating a negative relationship between vertebrate
and invertebrate richness at the site scale. At the ecoregion scale, species richness is influenced by local richness, the extent of coral reef, and biogeographic factors.
[Top and bottom photos by G.J.E. and middle photo by R.D.S. S. (University of Tasmania)].
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approach (60), theNatureConservancy’s “coarse” and “fine” filters (61),
and the International Union for Conservation of Nature’s “Key Bio
diversity Areas” (62), which all cover ecoregional representation while
also including specieswith small distributions and thus patchiness at the
local scale, which may otherwise be overlooked.

Although species loss is likely to be slower at ecoregion than site
scales, rapid regional loss in richness can potentially occur with loss
of coral reef area, which is indicated by SEM output to play a funda
mental role in modulating biodiversity patterns at ecoregion scales.
Ecoregions with large areas of coral reef have substantially higher total
richness than ecoregions with a similar climate but little coral. From
this, we confirm that the increasing frequency of catastrophic coral
bleaching events (63, 64), which now extend globally, represents a
major immediate threat to global patterns of shallow reef bio
diversity.

Although a primary focus of conservation efforts on tropical coral
reefs appears warranted given the importance of coral area as a global
structuring agent, we conclude that initiatives are additionally needed
to safeguard the large proportion of global biodiversity that lies in
temperate and polar realms, particularly for invertebrates. Hotspots
of local scale biodiversity occur outside the tropics for many animal
classes (Fig. 2) yet remain inadequately protected from anthropogenic
pressures (27). In particular, mobile macroinvertebrates were nega
tively associated with temperature at the site scale and are perhapsmore
susceptible to warming trends than previously thought. A potential ef
fect of warmingmay be the suppression of visually conspicuous mobile
invertebrate diversity due to increasing richness, activity, and abun
dance of predatory and herbivorous fishes. With “business as usual,”
we predictmobile invertebrates to suffer substantial population declines
and site scale species losses, at least, with global warming. Given the
geographic extent and magnitude of ongoing change, integrated trans
national conservation strategies encompassing the global extent of bio
diversity need urgent consideration.
MATERIALS AND METHODS
Reef vertebrate and invertebrate data
Standardized data were obtained by trained scientific and recreational
divers participating in the citizen science RLS program, through
underwater visual census of reef fishes, higher vertebrates, and mobile
invertebrates along 50 m transect lines. Full details of fish census
methods are provided in previous studies (18, 28, 65), and an online
methods manual (www.reeflifesurvey.com) describes all data collection
methods, including that for invertebrates. Data quality and training of
divers are detailed in the study of Edgar and Stuart Smith (65). All
observed vertebrate species were counted in 5 m wide transect blocks
(250 m2), and cryptic fishes and mobile invertebrates (total length,
>2.5 cm) were counted in 1 m wide transect blocks (50 m2). Data
from the twomethods were combined for a 50 m2 block area by ran
domly subsampling 20% of all individuals observed and removing
any cryptic species present (defined by family in the online methods
manual) in the 250 m2 blocks to avoid double counting, then adding
these data to the corresponding 50 m2 data. Site richness was the
total number of species per 50 m2.

A total of 13,858 transect blocks were censused at 2406 sites in
82 of 232 marine ecoregions worldwide (26); 2516 bony fish, 66 sharks
and rays, 8 reptile, 6 mammal, 105 holothurian, 104 echinoid, 180 as
teroid, 99 crinoid, 805 gastropod, 28 cephalopod, and 210 malacostra
can crustacean taxa were recorded.
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Estimation of local richness
Local richness was assessed using rarefaction methods for groups of
sites located within a 12 km maximum span, a classification that re
sulted in local groups with amean separation of 4 ± 2 (SD) km between
sites. We initially applied two rarefaction methods, calculating the
Chao2 estimator for replicated incidence data (66) and extrapolation
to asymptotic richness (1000 samples) using coverage based rarefaction
(67). Calculation were made using the vegan (68) and iNEXT (69)
packages in R. Incidence and coverage based estimators showed near
1:1 agreement for all taxa (R2 = 0.99). Consequently, we applied the
incidence based method because the coverage method produces less
consistent results when richness is low.

However, estimates of local richness were affected by the number of
transects surveyed within each location (R2 = 0.24, 0.11, and 0.37, for all
taxa, vertebrates, and invertebrates, respectively). Assumptions under
lying the rarefaction methods were contravened, as is the case generally
with field studies, where regional richness is estimated through extra
polation. The pool of species within each location is not bounded, spe
cies are not randomly dispersed within each location, and different
species have differing probabilities of observation when present. Conse
quently, as survey incidence increased, so did total estimated local rich
ness due to continued addition of rare species, particularly vagrant
species at edges of latitudinal and longitudinal ranges and depth and
habitat boundaries. To minimize this source of bias, we first calculated
the linear regression of local richness versus the number of surveys in
locations. We then subtracted predicted richness based on the regres
sion from observed richness for each site grouping and added the pre
dicted richness for groupings with 200 sites surveyed. Thus, our local
richness estimates are standardized to represent total richness for 200
sites within a maximum 12 km span.

Estimation of ecoregion richness
Ecoregion richness valueswere estimatedusinga capture mark recapture
process by cross validation of tallies of recorded species in online data
bases with RLS species counts. Species in online databases were analo
gous to initial captures, whereas RLS records for the same ecoregion
comprised independent recaptures (29). Species lists for each ecoregion
were compiled using online presence records filtered by excluding spe
cies categorized as pelagic, deepwater (not recorded if shallower than
30m), freshwater, and ecoregions without RLS surveys. To align online
data with shallow reef habitat, we also excluded species in families not
recorded during RLS surveys. Databases used comprised the OBIS
(www.iobis.org/), FishBase (www.fishbase.org/), and SeaLifeBase
(www.sealifebase.org/). The OBIS data used comprised 52,932 records
of 14,336 species when duplicate records of species in an ecoregion
are excluded. The FishBase (fishes) and SeaLifeBase (invertebrates)
data comprised a total of 52,575 records of 11,807 species. The three
sources were combined, and duplicates were removed to provide a
data set of 18,452 species. RLS data comprised 18,602 ecoregion records
of 4127 species. Raw ecoregion tallies derived from online databases
are greatly affected by sampling effort. A correction was applied by
calculating the species lists for each ecoregion using the OBIS, Reef
Base, and SeaLifeBase data sets combined, then multiplying the total
species count by an independent estimate of the proportion of species
not observed. This proportion was calculated using the RLS data, as
the inverse of the percent of species recorded by RLS divers in each
ecoregion that were not included in the combined OBIS/FishBase/
SeaLifeBase data set. Thus, estimates of species richness within each
ecoregion were independent of RLS totals because the contribution of
9 of 12
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RLS data was in the form of proportions and thus unrelated to total
counts.

Predictive mapping of global biodiversity
Random forestmodels (70), which are available in the “extendedForest”
packages for R (https://r forge.r project.org/projects/gradientforest),
were developed to predict the distribution of species richness in inshore
habitats globally. Procedures were similar to those detailed in the study
of Edgar et al. (28). Each random forest consisted of 2000 regression
trees, where each tree was fit to a bootstrap sample of the biological data.

Relationships were identified between themean richness ofmajor
taxonomic groupings observed per site in 82 marine ecoregions and
associated values for the absolute value of latitude, longitude, hem
isphere (N or S), human population density, eight remotely sensed
oceanographic covariates available through Bio ORACLE (71) [nitrate,
phosphate, silicate, chlorophyll, photosynthetically active radiation, sea
surface temperature annual range, mean sea surface temperature, and
SDof sea surface temperature; see the study of Edgar et al. (28)], and five
map derived variables (continental shelf area at a depth of 50 m, coral
reef area, island frequency, coastline length, and isolation index; Table 1).
Ecoregions with a value of zero for a diversity metric (for example, local
reptile richness) were removed from analysis and treated as missing
values when generating predictive models. To estimate predictor im
portance (percent change in accuracy) and model fit (R2), we used
cross validation where observations that were not selected in bootstrap
samples for trees were compared to predictions. Only the six most im
portant predictor variables were used in the predictive models, assessed
by the percent change in accuracy when a predictor variable was re
moved from a model. The fit of the model for each diversity metric
was as follows (R2 for site, local, and class levels, respectively): Actinop
terygii (88%, na, 69%), Chondrichthyes (21%, na, 34%), Reptilia (15%,
na, 34%), Malacostraca Crustacea (25%, na, 14%), Asteroidea (47%, na,
0%),Crinoidea (51%,na, 32%), Echinoidea (51%, na, 1%),Holothuroidea
(36%, na, 11%), Cephalopoda (10%, na, 31%), Gastropoda (39%, na,
26%), vertebrates (80%, 72%, 63%), invertebrates (4%, 27%, 23%), and
all taxa (75%, 66%, 56%). Local richness was not assessed (na) at class
level because of low total counts in many ecoregions. Mammals were
only sighted at sites in five high latitude ecoregions; hence, their
distribution was not modeled.

Assessing influence of predictors using GLMs
The influence of explanatory variables representing hypotheses driving
latitudinal biodiversity gradients of abundance, site richness, local rich
ness, and ecoregion richness was tested within the framework of GLMs
(Gaussian family) using data for 2406 sites and 80 ecoregions, after
poorly sampled outlying ecoregions in southern New Zealand and
North and East Barents Sea were excluded (four sites) from the 82
ecoregions with RLS data. Response and independent variables were
tested for normality using the Shapiro test and a priori transformed
using log (+1 where necessary) or square root transformations. Best
models were identified with forward stepwisemodel building procedures
based on BIC (72). The presence of extreme outliers and nonlinear rela
tionships was examined using biplots before each independent vari
able was included in the model. The proportion of variance explained
by the best model, and the increase with the addition of each indepen
dent variable (marginal R2), was calculated as R2 = 1− (model deviance/
null deviance). The influence of abundance on patterns of local richness
was determined through analyses of the residuals of a linear regression
model of abundance on richness.
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Structural equation modeling
WeusedSEMs to statistically test the relationship between environmental
variables and diversity indices across scales (site, local, and ecoregion)
and between broad taxonomic groups (all taxa, vertebrates, and inver
tebrates). SEMs unite multiple variables in a single hypothesized causal
network and thus provide a powerful tool to test multivariate hypothe
ses under a unified framework (73). We also constructed competing
models to test whether the influence of variables propagates upward
from local to regional, or vice versa. Data used in analyseswere averaged
at the ecoregion level, and ecoregionswith fewer than n=3observations
were removed, yielding a total of N = 74 replicates used in analyses.

To statistically evaluate the SEMs, we used global variance covariance
estimation procedure implemented in the lavaan package (74) in R (75).
Variables were assessed for collinearity before model fitting but were
considered to be sufficiently uncorrelated as to not bias estimates of
SEs. Individual model fit was assessed using a c2 goodness of fit test,
where themodel is considered to reproduce the data well if the resulting
significance value is P > 0.05. All variables were log10 transformed
before fitting to improve model fit. Standardized regression coefficients
are reported. AIC were used to compare models of different structures
(site → local → regional, regional → local → site), and models were
considered to be significantly more likely if the difference between their
AIC values was >2.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/10/e1700419/DC1
table S1. Results of GLMs.
table S2. Pearson’s correlation matrix relating transformed predictor metrics.
fig. S1. Map of investigated shallow reef sites.
fig. S2. Species richness relationships between scales and major taxa.
fig. S3. Species richness relationships between ecoregion and site scales for major taxa.
fig. S4. Local richness versus abundance.
fig. S5. Reversal of causal network showing hypothesized links between environmental drivers
and diversity across scales, with effects propagating downward from regional diversity.
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