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Wind causes Totten Ice Shelf melt and acceleration
Chad A. Greene,1,2* Donald D. Blankenship,1,2 David E. Gwyther,3

Alessandro Silvano,3,4 Esmee van Wijk4,5

Totten Glacier in East Antarctica has the potential to raise global sea level by at least 3.5 m, but its sensitivity to
climate change has not been well understood. The glacier is coupled to the ocean by the Totten Ice Shelf, which
has exhibited variable speed, thickness, andgrounding line position in recent years. Tounderstand the drivers of this
interannual variability, we compare ice velocity to oceanic wind stress and find a consistent pattern of ice-shelf
acceleration 19 months after upwelling anomalies occur at the continental shelf break nearby. The sensitivity to
climate forcing we observe is a response to wind-driven redistribution of oceanic heat and is independent of
large-scale warming of the atmosphere or ocean. Our results establish a link between the stability of Totten Glacier
andupwelling near the East Antarctic coast, where surfacewinds are projected to intensify over the next century as a
result of increasing atmospheric greenhouse gas concentrations.
INTRODUCTION
Totten Glacier drains a 550,000 km2 ice basin whose base lies primarily
below sea level (1), indicating potential vulnerability to rapid collapse
(2, 3). The grounding line where Totten Glacier goes afloat to form
Totten Ice Shelf (TIS) has recently retreated (4) while the ice shelf
velocity and terminus position have been unstable (5 7). The TIS sur
face showed a marked lowering trend from 2002 to 2008 (8, 9), which
continued through at least 2012 in the grounded part of the glacier (10),
but longer records of TIS surface elevation suggest that subdecadal
trends may only represent part of a longer term variability (6, 11).

Observed changes in TIS are thought to be driven by a variable
supply of warm, salty, modified circumpolar deep water (mCDW)
(5, 7, 12), which can access the water cavity below TIS through a
network of bathymetric troughs (13). Ship based observations have
repeatedly shown a presence of mCDW along the outer continental
shelf (14 17), and a recent survey confirmed the ability of mCDW
to traverse the continental shelf and fill the troughs near the TIS ice
front (18, 19). Ocean models have linked interannual variability of the
TIS melt rate to sea ice production, which generates cold, dense water
that has the potential to displace mCDW and quench melt (20, 21);
however, no such cold, densewater was detected at the time of the only
survey conducted on the continental shelf (18, 19, 22).Observations and
models both suggest that the TIS melt rate is modulated by a variable
supply ofmCDW, but themechanismdrivingmCDWexchange across
the continental shelf break has not yet been explained, and until now,
no links between forcing mechanisms and TIS response have been di
rectly observed. Insights into the drivers of TIS variability may lie in
West Antarctica, where similar behaviors observed at Pine Island Ice
Shelf have been hypothesized as resulting from a variable supply of
CDW, forced onto the continental shelf by wind processes at the shelf
break (23 26).

We investigate the causes of recent TIS acceleration and decelera
tion by comparing a 14 year time series of ice shelf velocity to oceanic
surface wind stress. We use ice surface velocity as a proxy for melt
driven ice thickness change and as a direct measure of the response
of TIS to variable forcing. The TIS velocity time series is generated
by a template matching algorithm applied to 629 satellite image pairs
obtained between February 2001 and September 2014. Zonal and me
ridional components of wind stress are calculated from surface wind
and sea ice reanalysis data. We focus on local regions of upwelling,
which develop where wind causes surface waters to diverge. Because
of the effects of Earth’s rotation, surface water is transported 90° to the
left of the wind direction in the southern hemisphere, so surface water
divergence is given by the mathematical curl of wind stress. We define
upwelling as the vertical water velocity at the bottom of the surface
layer, which we estimate from the wind stress curl.
RESULTS
To assess the TIS response to interannual forcing from the ocean, we
limit velocity analysis to a region of the ice shelf laterally bounded by
shear margins, between 20 and 40 km from the ice front, where we
expect minimal influence from pinning points, calving processes, or
velocity anomalies associated with lateral motion near the ice front
(Fig. 1). Here, we see a 5% increase in surface velocity from 2001 to
2006 followed by an immediate trend reversal, slowing 6% by 2013
(Fig. 2B).Minor velocityminima occurred in 2005 and 2009, andminor
maxima occurred in 2010 and 2014.

With a 19 month lag, TIS velocity is negatively correlated with
zonal wind throughout the domain (Fig. 3A), indicating that TIS ac
celerates in response to weakening of the eastward winds that drive
the Antarctic Circumpolar Current or strengthening of the westward
winds that drive the Antarctic Coastal Current. We assume that TIS
velocity is linked to a variable supply of mCDW, and lag times are
primarily due to the time required for melt rate anomalies to integrate
and cause sufficient thinning to produce an observable response in
surface velocity (27). Over the deep ocean north of the continental
shelf break, the negative correlation with zonal wind contrasts with
the notion from classical Ekman dynamics that positive zonal wind
anomalies should induce upwelling of warm deep water near 63°S.
Over the continental shelf, westward winds are expected to induce
southward transport of surface water, depress isotherms, and could
therefore prevent mCDW from surmounting the continental shelf
(28, 29), yet we provide evidence that competing processes prevail.

Over the continental shelf, prevailing westward winds serve as the
southern component of the wind stress curl, which causes upwelling
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maximized with a 19 month lag (fig. S3), indicating the time required
for upwelled mCDW to traverse the continental shelf, enter the water
cavity below TIS, induce melt, and lead to ice shelf acceleration by re
duced lateral shear stress.
DISCUSSION
Oceanographic observations further implicate upwelling as the
primary driver of mCDW variability on the continental shelf, where,
between 450 and 650 m depth, temperature anomalies of 2°C or
more can result from thermocline shoaling associated with upwelling
along the nearby continental slope (fig. S1). Themean depth of the TIS
base is 550 m in the region of our velocity time series observations, at
which depth a +2°C temperature anomaly represents a sixfold increase
in thermal driving potential relative to observed temperature minima
of 0.4°C above the in situ freezing point. Models indicate that ice shelf
Greene et al., Sci. Adv. 2017;3 : e1701681 1 November 2017
melt rates scale superlinearly to quadratically with thermal driving
potential (30 32), suggesting that some areas of the TIS base can ex
periencemore than a 10 fold increase or decrease inmelt rate depend
ing on the availability of upwelled mCDW.

Profiling float and ship based observations show a widespread
presence of mCDW on the continental shelf, and the thickness of
the mCDW layer is linked to upwelling along the continental slope.
We posit that aftermCDWsurmounts the continental slope, the west
ward winds that drive the coastal current may enhance the delivery of
mCDW to the water cavity below TIS, where the ice shelf base is high
ly sensitive to small changes in thermal forcing (Fig. 4). Furthermore, a
strengthened coastal current may flush coldmeltwater from the cavity
below TIS or intensify cavity circulation and increase melt (33).

Surface velocity averaged over the main trunk of TIS reached a
maximum in early 2007, corresponding to a reported ice thickness
minimum (6), when the lateral shear stress restraining TIS flow was
Fig. 3. Reanalysis fields and ice shelf velocity. (A toD) Regression coefficients of linear least squares fits of TIS velocity and zonal wind stress [mPa/(m a 1)] (A), meridional
wind stress [mPa/(m a 1)] (B), sea ice concentration [%/(m a 1)] (C), and upwelling [(mm s 1)/(m a 1)] (D). All panels contain gray vectors representing mean wind velocity,
gray 1 km bathymetric contours, and a gold polygon outlining the region of upwelling referred to in Fig. 2A. Gray shading denotes statistical insignificance at the 95%
confidence level. Coefficients of determination are given in fig. S4.
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minimized (fig. S2). The linear trend of TIS slowdown amidst ongoing
acceleration of the surrounding grounded ice (Fig. 1B) is similar to a
pattern seen at the Pine Island Glacier, whose ice shelf has shown a
response to ocean forcing by accelerating approximately 9 months
after thermal anomalies arrive at the ice front (27). The 19 month
lag we observe from the time of upwelling along the continental
slope to TIS acceleration includes the time required for mCDW to
traverse the continental shelf. On average, TIS is much thicker than
Pine Island Ice Shelf and is thus expected to respond more slowly to
basal melt anomalies (27).

The region along the continental slope inwhich upwelling is highly
covariant with TIS velocity is near a persistent eddy feature where dis
solved silicate measurements have repeatedly revealed upwelling (14);
warm, saline CDWhas been detected (15, 16); and upwelling has been
shown to be positively correlated with the Southern Annular Mode
(SAM) (29). The SAM is the leading mode of climate variability in
the southern hemisphere, it is seasonally influenced by various natural
and anthropogenic drivers (34), and its positivemode is associatedwith
an intensification of the eastward winds around Antarctica (35). In
summer, the SAMhas been trending toward its positive phase in recent
decades primarily due to effects of ozone depleting substances, but an
increasing influence of atmospheric greenhouse gas is expected to dom
inate the SAM in the coming century and continue its positive bias as the
ozone hole recovers (36, 37). Projections show an intensification of the
wind driven Antarctic Circumpolar Current and an increase in upwell
ing, particularly along the East Antarctic continental slope (36, 38, 39).
It is possible thatwestwardwinds along the coast couldweaken in con
junction with a southward migration of the divergence zone (39), in
which case mCDW delivery to TIS could be tempered by a weakened
Greene et al., Sci. Adv. 2017;3 : e1701681 1 November 2017
coastal current; however, projections of coastal westward winds near
TIS are few, and their relationships to SAM or atmospheric greenhouse
gas have not been validated.

We have confirmed the role of wind driven upwelling as a primary
delivery mechanism for mCDW on the continental shelf of East
Antarctica and have shown that mCDW upwelling is directly
correlated with the melt driven velocity of TIS. Wind patterns over
the SouthernOcean are expected to evolve throughout the 21st century,
and a shifting regime of upwelling could precipitate a marked response
in Totten Glacier, unlocking the door to at least 3.5 m of eustatic sea
level potential (13) in the vast ice basin it drains.
MATERIALS AND METHODS
Ice velocity time series
The ice velocity time series was generated from displacement fields ob
tained for 363MODIS (Moderate resolution Imaging Spectroradiometer)
band 2 image pairs (40) separated by 365± 29 days (referred to asM1data
herein) and 266 image pairs separated 730 ± 21 days (referred to as M2
data herein). Images were preprocessed with a Gaussian high pass filter
characterized by a 2 pixel SD and then supersampled by a factor of 2.
Template matching was performed with ImGRAFT (41) for a 500 m res
olution grid using a 10 × 10 pixel template and 20 × 20 pixel search box
centered on displaced locations predicted by interferometric synthetic ap
erture radar derivedvelocity fields (42).Displacement fieldswerepostpro
cessed with a 3 × 3 pixel median filter, and the remaining grid cells with
missingdatawere filledusinga spring metaphor inpainting technique (43).

M1 andM2datawere treated separately to allowdirect comparison
of velocity fields obtained over 1 and 2 years, respectively. M2 data
Fig. 4. Schematic of mCDW upwelling along the Antarctica’s Sabrina Coast. Around Antarctica, the warmest waters are found in the deep ocean north of the
continental shelf break. Where wind stress (gray vectors) causes surface waters to part, warm deep water (red arrow) can upwell, surmount the continental shelf, and melt
nearby ice shelves frombelow. Seafloor color depicts the covariance of TIS velocity and local upwelling as in Fig. 3D, indicatingwherewind driven upwelling is closely linked to
TIS velocity.
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provide lower uncertainty for slow moving ice, whereas M1 data pro
vide superior temporal resolution and perform best where ice moves
fast, where motion is curvilinear, or where surface effects prevent
matches separated by long periods of time.

An averaging technique was used to obtain velocities at monthly
postings from 2001 to 2014. M1 and M2 data were treated separately,
and for each monthly posting, an average velocity was calculated for
all image pairs whose first image was obtained before the posting and
whose second image was obtained after the posting. At least 14 image
pairs contributed toM1 andM2data at eachmonthly posting (fig. S5B).
Velocity uncertainty s at each monthly posting t was estimated as

sðtÞ ¼ sN
N

p ð1Þ

where sN is the SD of all N velocity measurements corresponding to
time t, and N is the number of image pairs contributing to each
monthly posting (44). The continuous ice velocity time series in this
workwas generated by the linear combination of low pass filteredM2
data and high pass filteredM1data, where the crossover filtering period
was 48 months for both data sets.

Ice-shelf thinning and acceleration
For a laterally bounded ice shelf under constant driving stress, small
perturbations in ice thickness dH lead to changes in ice velocity dU by

dU ¼ U0
H0

H0 þ dH

� �3

� 1

" #
ð2Þ

whereH0 andU0 are the nominal ice thickness and velocity, respectively
(45). Figure S2 compares TIS velocity observations to predictions using
Eq. 1, whereU0 is taken as themean ice shelf velocity within the orange
polygon in Fig. 1C, H0 = 1163 m is the mean ice thickness along the
lateral shear margins of TIS (46), and dH is the time varying ice thick
ness anomaly.We used an ice thickness time series derived from surface
elevation measurements obtained by radar altimetry (6, 47) and
followed an established procedure (8, 20) to remove the anomalies asso
ciated with accumulation (48) and firn densification (49). Surface eleva
tion was converted to ice thickness assuming hydrostatic equilibrium,
where the seawater density is 1028 kg/m3 and column averaged ice den
sity is 897 kg/m3, including a 22 m mean firn air thickness (49).

Profiling float data
Figure S1 shows a 15 month time series of the T = −0.4°C isotherm
depth obtained by a profiling float. Geolocation of the profiling float
was recorded for 29 surfacing events during data collection. Profile loca
tions shown in fig. S1A (solid green line) indicate surfaced positions
with a Global Positioning System fix. Linearly interpolated positions
when the float was under ice between 5 April 2015 and 27 December
2015 were indicated by the green dashed line. Isotherm depth was
determined by linear interpolation for each profile collected by the pro
filing float. The isotherm depth time series was linearly interpolated to
daily postings, and then a first order low pass Butterworth filter was
applied to account for the response of the lower layers to surface forcing.
Filter cutoff periods of 45 and 90 days bracket expected response times
(28), and both filtered time series agree well with upwelling time series
filtered to the same periods.
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Reanalysis data and upwelling estimation
This work used ERA Interim monthly means of daily mean (50) sea
ice concentration and 10 m zonal and meridional wind components
u10 and v10 generated at 0.75° resolution and regridded to 0.125° res
olution. It has been shown that higher resolution atmosphericmodels
often produce stronger coastal winds (51, 52), but ERA Interim
matched observations well (53, 54) and was of sufficient resolution
to capture the wind processes of interest to our analysis. Wind stress
t was calculated as

t ¼ rairCDðu210 þ v210Þ ð3Þ

where rair = 1.225 kg/m3 is the density of air, and CD = 1.25 × 10− 3 is
the drag coefficient in the absence of sea ice (55) and is parameterized
when sea ice is present (56). Seasonal cycles were removed, and time
series of each grid cell were low pass filtered with a cutoff period of
24months using a first order Butterworth filter. Ekman pumping was
calculated as the vertical velocity of water induced by surface water
divergence using the relation

wE ¼ curl
t

rw f

� �
ð4Þ

where rw = 1028 kg/m3 is the density of seawater, and f is the Coriolis
frequency (57).

Mapping and figure generation
DataanalysiswasperformedusingAntarcticMappingTools forMATLAB
(58), andgraphics in this paperusedcmocean (59) colormaps.Background
images in Figs. 1 and 3 and figs. S1 and S4were from theMODISMosaic
of Antarctica (60, 61), grounding lines were from MEaSUREs radar
mapping (62), and bathymetric contours were from the IBCSO (Inter
national Bathymetric Chart of the Southern Ocean) (63).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/11/e1701681/DC1
fig. S1. Upwelling brings warm water onto the continental slope.
fig. S2. Ice shelf thinning drives acceleration.
fig. S3. Regression of upwelling and TIS velocity.
fig. S4. Coefficients of determination.
fig. S5. Uncertainty estimates for TIS velocity time series.
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