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Abstract 26 

Upright stance in humans requires an intricate exchange between the neural mechanisms that 27 

control balance and those that control posture; however, the distinction between these control 28 

systems is hard to discern in healthy subjects. By studying balance and postural control of a 29 

participant with camptocormia – an involuntary flexion of the trunk during standing that 30 

resolves when supine – a divergence between balance and postural control was revealed. A 31 

kinematic and kinetic investigation of standing and walking showed a stereotyped flexion of 32 

the upper body by almost 80 degrees over a few minutes, and yet the participant’s ability to 33 

control their center of mass within their base of support and to compensate for external 34 

perturbations remained intact.  35 

This unique case also revealed the involvement of automatic, tonic control of the paraspinal 36 

muscles during standing and the effects of attention. Although strength was reduced and MRI 37 

showed a reduction in muscle mass, there was sufficient strength to maintain an upright 38 

posture under voluntary control and when using geste antagoniste maneuvers or “sensory 39 

tricks” from visual, auditory and haptic biofeedback. Dual-tasks that either increased or 40 

decreased the attention given to postural alignment would decrease, or increase the postural 41 

flexion, respectively. The custom-made, ‘twister’ device that measured axial resistance to 42 

slow passive rotation revealed abnormalities in axial muscle tone distribution during 43 

standing. The results suggest that the disorder in this case was due to a disruption in the 44 

automatic, tonic drive to the postural muscles and myogenic changes were secondary. 45 

  46 
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New & Noteworthy 47 

By studying an idiopathic camptocormia case with a detailed biomechanical and 48 

sensorimotor approach, we have demonstrated unique insights into the neural control of 49 

human bipedalism i) balance and postural control cannot be considered the same neural 50 

process, as there is a stereotyped abnormal flexed posture, without balance deficits, 51 

associated with camptocormia, and ii) posture during standing is controlled by automatic 52 

axial tone but ‘sensory tricks’ involving sensory biofeedback to direct voluntary attention to 53 

postural alignment can override, when required.  54 

 55 

Keywords: Camptocormia, Balance, Posture, Standing, Axial Tone  56 
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Introduction 57 

Terms such as ‘postural control’ and ‘balance’ are often used interchangeably in literature on 58 

human stance, but equating these control systems is misleading. Upright stance actually 59 

requires two different actions: i. posture, that is maintaining alignment of the body segments 60 

with respect to each other and to external references (gravitational vertical, visual vertical, or 61 

the support surface), and ii. balance, that is the ability to avoid falling in both static (e.g. quiet 62 

standing) and dynamic situations (e.g. walking, external perturbations).  63 

To maintain normal standing, the mechanisms of posture and balance are closely 64 

interdependent so it is easy to see why they may be considered a single process. The balance 65 

system may need to respond to a change of body alignment and conversely, changes in body 66 

alignment may occur in anticipation of, or following, a threat to balance. Despite this intimate 67 

relationship, the mechanisms by which the central nervous system controls balance and 68 

posture during standing may be different so it is unclear whether abnormal control of posture 69 

necessarily impairs control of balance.  70 

 71 

Camptocormia is a rare condition characterized by an involuntary forward flexion of the 72 

trunk that is present in standing and walking, but resolves when supine. Although postural 73 

alignment is impaired in this condition, it is unknown to what extent balance is also affected. 74 

A previous study has shown that when healthy subjects voluntarily assume a flexed posture 75 

they are more unstable when perturbed (Jacobs et al. 2005). In the current study, the flexed 76 

posture is the preferred posture, so the balance responses may be adapted to this position, or 77 

they may show similar impairment.  As balance control during quiet stance may not reflect 78 

the control during perturbations and movement, different domains of balance control need to 79 

be evaluated.  80 
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The pathogenesis of camptocormia can generally be divided into two camps: a disorder that 81 

causes weakness in extensor postural muscles (Laroche et al. 1995; Mahjneh et al. 2002; 82 

Margraf et al. 2010) or a central dystonic disorder that disrupts axial postural tone (Reichel et 83 

al. 2001; Slawek et al. 2003; Azher and Jankovic 2005; Melamed and Djaldetti 2006). 84 

Muscle fibers can be activated through either voluntary motor drive that requires conscious 85 

attention to achieve a particular goal, or through automatic tonic drive. Tonic drive is an 86 

unconscious process, whereby continuous nerve impulses activate the muscle to keep it in a 87 

partially contracted state. When humans stand upright, tonic drive is automatically increased 88 

in antigravity muscles to keep them extended in response to the low-intensity stretch from 89 

gravity. Voluntary drive has strong cortical projections, whereas muscle tone is derived from 90 

a number of subcortical structures, most notably the basal ganglia and brainstem (Takakusaki 91 

et al. 2003). Therefore, measuring the force generated from maximal voluntary contractions 92 

or muscle imaging does not reveal the extent to which automatic, tonic control of muscles 93 

used for postural alignment in stance is disturbed. Quantifying axial postural tone is 94 

traditionally problematic, however, our unique “twister” device (Gurfinkel et al. 2006) 95 

allowed us to measure, for the first time, automatic axial hip and trunk tone in a 96 

camptocormia subject during stance. We also manipulated the relative amount of voluntary 97 

versus automatic control to postural alignment with a dual task to divert attention or with 98 

sensory biofeedback (‘sensory tricks’) to add a voluntary postural goal.  99 

 100 

Case history 101 

The subject was an active and independent 81 year old female with a twenty-year history of 102 

camptocormia. She reported a sudden onset of her flexed posture that occurred while she was 103 

hiking.  Her posture was severely flexed forward when standing and walking (Figure 1A) but 104 

straight when supine (Figure 1C). She maintained an erect posture when using a rolling 105 
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walker (Figure 1B), but at home, she preferred the flexed posture to avoid using a walker. 106 

Ascending a staircase was performed “on all fours”. She slept comfortably on either her back 107 

or side. She had some intermittent lumbosacral pain but there was no evidence of stroke; no 108 

parkinsonian signs of bradykinesia, rigidity, or tremor; no mental status abnormalities and 109 

deep tendon reflexes were intact. MRI of the brain was unremarkable. MRI of the lumbar and 110 

thoracic spine indicated no structural problems, but the para-spinal (multifidus and 111 

longissimus) muscles showed some fatty infiltration (Figure 1D). The iliopsoas muscles by 112 

comparison looked normal.  Therapeutic strategies had been ineffectual, including; levodopa, 113 

trihexphenidyl, baclofen, and botulinum toxin A injections to the rectus abdominis and psoas 114 

muscles. 115 

 116 

[Figure 1] 117 

Methods & Results 118 

Signed consent was obtained and the OHSU Institutional review board had approved all 119 

experimental procedures. A healthy subject that matched the camptocormia subject by age, 120 

gender, height and weight was used as a control in some conditions.  121 

 122 

Posture versus Balance 123 

The transition from the upright to the flexed posture occurred over 2-3 minutes with a 124 

stereotyped time course when measured in 3 sessions over 6 months (exponential time 125 

constant of 32±1.2s, Figure 2A). To maintain equilibrium during quiet standing, the nervous 126 

system must maintain the vertical projection of the position of the body’s center of mass 127 

(CoM) over the base of support (the feet). The CoM represents the unique point where the 128 

weighted relative position of the distributed mass sums to zero. CoM position and segmental 129 

alignment were calculated from 29 reflective markers placed on body landmarks, sampling at 130 
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60 Hz (Motion Analysis, Santa Rosa, CA). An inertial sensor placed on the cervical spine, 131 

sampling at 50 Hz (Xsens, Enschede, The Netherlands) measured trunk tilt with respect to 132 

gravity and force plates measured ground reactive forces at 480Hz.   133 

 134 

The flexion did not simply involve the trunk (as implied by the “cormia”/trunk) rather, all 135 

axial segments underwent a change in alignment (Figure 2A). Flexion of the trunk and hips 136 

was accompanied by extension of the knee and ankle, acting to move the pelvis backward and 137 

thus stabilize balance. The overall effect was maintenance of the center of pressure (CoP) and 138 

the position of the CoM in the horizontal plane over the base of support (Figure 2B). The 139 

back extensor EMG increased as the trunk tilted off vertical and was maintained over the 140 

early phase of the forward trunk flexion. However, the muscle activity reduced and became 141 

relatively quiet after approximately 40 degrees of trunk flexion (Figure 2C). 142 

 143 

[Figure 2] 144 

 145 

Balance response latencies of the CoP in responding to unexpected forward (mean±S.D. 146 

122±9ms) and backwards (115±12ms) translations of the standing surface were normal 147 

relative to age-matched control subjects (Nashner 1993). In addition, postural sway measured 148 

from peak-to-peak displacement of the CoP was normal on all six items of the Neurocom 149 

Sensory Organization Test when standing; i) eyes open, ii) eyes closed, iii) sway referenced 150 

to visual field, iv) sway referenced to the standing surface, v) sway referenced to the standing 151 

surface without vision, vi) sway referenced to both the visual field and support surface. This 152 

demonstrates normal integration of visual, vestibular and proprioceptive input for balance. 153 

Also, postural responses elicited by vibrotactile stimulation (80Hz) of the bilateral achilles 154 
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tendons for 10 seconds resulted in, a transient forward CoP displacement (30 ± 3mm), 155 

consistent with normal responses (Thompson et al. 2007). 156 

 157 

To determine whether the deficit in postural alignment was due to a problem with a sense of 158 

verticality, as is often seen in PD (Vaugoyeau et al. 2010) or following brainstem (Yang et al. 159 

2014) or hemispheric stroke (Perennou et al. 2008), the tilt of a hand-held rod with respect to 160 

gravity was recorded while subjects were blindfolded for 3 minutes (Wright and Horak 161 

2007). The rod was held near to vertical (± 1degree) even while the body flexed forward, 162 

indicating a normal sense of verticality.  163 

 164 

Voluntary versus Automatic Postural Control 165 

The camptocormia subject had sufficient strength to rise from sitting to standing without the 166 

use of her arms. Furthermore, on the experimenter’s command, the subject was able to extend 167 

her body to the upright (Figure 2C). Maximum isometric strength in the trunk flexors and 168 

extensors was measured from a seated position with a dynamometer (Ametek MSC Series) 169 

attached with a strap under the arms. The dynamometer was attached to a fixed support in 170 

front, and then behind the subject to measure trunk extensor and flexor strength respectively. 171 

Three measurements were made with a rest period of 1 minute between each attempt and the 172 

average torque was calculated and normalized to body weight and height. Peak isometric 173 

trunk extension about the hip joint center was 4.16±0.36Nm and flexion force was 174 

4.04±0.19Nm, which was 48% and 77% respectively of normal adult female strength (Keller 175 

and Roy 2002). 176 

 177 

“Sensory Tricks”: While standing, the subject performed dual-tasks that either increased or 178 

decreased the attention given to postural alignment. Increasing attention to posture was 179 
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achieved in three ways: i) audio-biofeedback with a tone that increased in pitch and volume 180 

with forward sagittal tilt of the trunk measured with an inertial sensor; ii) visual biofeedback 181 

of the trunk angle in space was visually presented on a 2-D scale on a screen held in front of 182 

the subject; iii) aiming a laser attached to a toy pistol to a circular target located 3m away 183 

from the subject at shoulder height. The subject was given no instruction other than to keep 184 

the laser pointed on the target, however, the task was easier with an upright posture. The 185 

attention of the subject was diverted away from postural alignment by counting backwards by 186 

threes from a random number between 100 and 200.  187 

 188 

The subject was able to maintain an upright posture for over 3 minutes during both the visual 189 

and the auditory biofeedback tasks (Figure 3A). When the dual-task was to aim a laser pistol 190 

on a target, there was some forward tilt of the trunk relative to space but the amplitude of the 191 

flexion over the same time scale was reduced by half (32º versus 65º).  However, when 192 

attention was diverted by a serial subtraction dual-task, the rate of trunk bending occurred at a 193 

faster rate than quiet standing (time constants 22s versus 32s respectively). 194 

 195 

Walking: When the camptocormia subject walked forward, the rate of forward flexion of the 196 

trunk was similar to flexion during quiet stance with eyes open (time constant = 36 s) (Figure 197 

3Biii). In contrast, during backward and sideways walking, the tilt of the trunk had no 198 

significant flexion over 3 minutes. Both backward and sideways walking were associated 199 

with backward extension of the arms at the shoulders, the “backswept wing” sign (Margraf et 200 

al. 2016), which may have helped to limit forward motion of the trunk. Forward locomotion 201 

is suggested to be more automatic, unlike less habitual walking styles that require greater 202 

voluntary cortical control (Hackney and Earhart 2010). 203 

 204 
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[Figure 3] 205 

 206 

Axial tone: To measure axial tone during upright stance on the “twister” device the support 207 

surface slowly oscillated in the horizontal yaw plane with a triangle waveform back and 208 

forward at 1 deg/s over an amplitude of 5 degrees (Gurfinkel et al. 2006). The resistance to 209 

twisting between the lower body and upper body was measured by affixing either the pelvis 210 

(to measure hip tone) or the shoulders (to measure both trunk and hip tone) to an earth-fixed-211 

rigid frame. The peak resistance to the rotation was recorded over 5 continuous waveforms 212 

and an average was taken. The torsional resistance measured with this technique is a 213 

combination of the tone in both axial flexors and extensors.  214 

The camptocormia subject had higher hip torque than the age, sex, and BMI matched control 215 

subject by 11.4% (1.85±0.08 versus 1.66±0.01 Nm), and lower trunk torque by 42% 216 

(1.58±0.09 versus 2.71±0.01 Nm). The ratio of the higher trunk tone relative to the hips seen 217 

in the healthy subject is consistent with our previous studies of healthy control subjects 218 

(Wright et al. 2007). However this ratio of axial tone distribution was markedly disturbed in 219 

the camptocormia subject. 220 

 221 

Discussion 222 

This first biomechanical investigation into camptocormia has exposed some important 223 

insights into neural control of human standing. Despite severe impairment of postural 224 

alignment during standing and forward walking, balance control mechanisms were shown to 225 

be intact. This unique case strikingly underscores the fact that “postural control” is not 226 

“balance”. 227 

Previous research on camptocormia has only focused on the terminal, abnormal trunk 228 

position. In this study, we have observed the stereotyped transition from the upright to the 229 
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flexed posture, with a time constant of 32 seconds. The rate of forward trunk flexion was 230 

found to be consistent over three testing sessions months apart. This observation plus the 231 

observation that attention to posture influenced the degree of flexion indicates the difficulty 232 

with categorizing camptocormia by the angle of flexion (Margraf et al. 2016; 233 

Srivanitchapoom and Hallett 2016). The changes in alignment between body segments were 234 

highly correlated; with the forward flexion of the trunk and hips counterbalanced by the 235 

extension of the knee and ankle joint, acting to move the pelvis backward to maintain the 236 

projection of the body CoM over the base of support. Babinski (1899) described similar body 237 

compensation during fast voluntary bending in healthy subjects - the ‘Babinski synergy’ that 238 

was absent in people with cerebellar lesions. The dynamic relationship among the axial 239 

segments seen in camptocormia is consistent with a functional Babinski muscle synergy. To 240 

enact such a balance synergy, the central nervous system must integrate sensory input 241 

regarding joint angles with knowledge of segment lengths and mass distributions, which 242 

comes from the areas of the brain that store body schema representations (Holmes and 243 

Spence 2004). 244 

The subject also had normal balance reactions to visual, vestibular and vibrotactile 245 

stimuli, as well as to perturbations of the standing surface. Together, these results 246 

demonstrate that the subject had excellent balance control which is substantiated by the fact 247 

that she did not report falling and led an active, independent lifestyle.  248 

The pathogenesis of camptocormia is complex and controversial. The subject had 249 

reduced muscle mass and relative weakness of the trunk extensors. Based on similar 250 

evidence, others have concluded that the primary cause of camptocormia is myogenic 251 

(Margraf et al. 2010; Devic et al. 2012; Renard et al. 2012). However, secondary effects 252 

associated with reduced use of spinal extensors could produce similar findings. In fact, as 253 

normal people age, it is common to see fatty replacement of para-spinal muscles (Haig et al. 254 
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2006) and biopsy shows increased pathological abnormalities (Pearce 2005). Furthermore, 255 

prolonged passive stretching of lower back extensor muscles in static flexion may cause 256 

viscoelastic elongation of the muscles which reduces their force generating capacity (Shin et 257 

al. 2009). 258 

Before a causal link is drawn between loss of muscle mass and primary muscle 259 

pathology, biomechanical principles of standing posture must be considered. Upright posture 260 

during normal standing is the equilibrium point of competing forces on the body. To maintain 261 

upright standing, the tonic control of the dorsal muscles of the trunk and hips must counteract 262 

both the static forward moment of gravity and flexor tone. However, only relatively small 263 

extensor forces are needed to keep the torso erect. Experimental and biomechanical modeling 264 

work (Cholewicki et al. 1997; Kiefer et al. 1998)  shows that less than 5% of the trunk 265 

extensor MVC is used for upright standing and walking. A slightly larger percentage of the 266 

MVC would be required in this camptocormia case, given the absolute MVC is reduced for 267 

the same body mass (8.3% of the MVC). This suggests that even though the back extensors 268 

showed some weakness, our camptocormia subject still had sufficient strength to maintain 269 

upright posture - which she did, but only when posture was under voluntary control with 270 

“sensory tricks”. 271 

The ability to voluntarily generate muscle contractions that are sufficient for upright 272 

body stabilization have been reported in other severe cases of camptocormia (Lin 2004). 273 

When our subject performed dual-tasks that directed her attention toward her posture, body 274 

alignment could be maintained near to vertical. In contrast, by distracting attention away 275 

from her posture, the rate of forward flexion increased compared to quiet standing. If the 276 

disorder had a psychogenic origin the rate of flexion would be expected to decrease, not 277 

increase, with distraction. 278 
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We propose that geste antagoniste maneuvers, or “sensory tricks” over-ride failing tonogenic 279 

pathways either with voluntary cortical commands, or via augmented sensory inputs to 280 

modulate postural muscle tone directly (Franzen et al. 2011). There are many reports of 281 

camptocormia responding well to sensory tricks including: wearing a backpack (Gerton et al. 282 

2010), touching a support (Azher and Jankovic 2005; Shinjo et al. 2008) and walking 283 

backward (Van Gerpen and Van Gerpen 2006). We observed an improvement with each of 284 

these “tricks” as well as some new ones - auditory and visual biofeedback. These features are 285 

characteristic of dystonia. The ‘twister’ device showed the tonic activity of trunk and hip 286 

muscles in the camptocormia subject was disturbed compared to normal subjects. The results, 287 

considered in light of the physiological principles of standing, suggest a disruption in the 288 

automatic, tonic control of axial muscles as the primary cause of our participant’s 289 

camptocormia.  290 

 291 

Conclusions 292 

“Balance” and “postural control” should not be considered the same process and here is a 293 

unique example demonstrating why this is so: a woman with idiopathic camptocormia who 294 

had disrupted automatic, tonic control of posture during standing, had excellent balance. Her 295 

balance synergies during trunk flexion, and responses to mechanical and sensory 296 

perturbations, were all functionally normal despite her stereotyped, flexed posture.  297 
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Figure Captions 416 

 417 

 418 
 419 

Figure 1. The camptocormia subject’s preferred posture (A), walking with a rolling walker (B), lying 420 

supine (C), and MRI (T1 weighted) of the spine with the arrows indicating fatty replacement of the 421 

para-spinal muscles (D). 422 

  423 
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 424 

 425 
 426 

Figure 2. Quiet stance immediately following rising from a chair. A. Postural alignment. The upper 427 

graph shows the tilt of the body recorded from C3 with respect to gravity on three trials, each over one 428 

month apart. The lower graph shows the mean change in sagittal angle of separate body segments. 429 

The ankle angle was defined by the knee, ankle and metatarsal markers; the knee angle from the 430 

greater trochanter, knee and ankle markers; the trunk from the C3,T10 and PSIS; and the neck angle 431 

from the ear, C3 and T10 markers. The pelvis angle was defined by the angle between the ASIS and 432 

PSIS vector and the knee to greater trochanter vector. B. Static balance control. CoP (x,y plane) and 433 

CoM (x,y plane) remained stable over time, while CoM in the vertical (z) direction moved closer to the 434 

ground. C. Para-spinal EMG and trunk tilt. The camptocormia subject was instructed to “stand 435 

straight” after 120s. Paraspinal EMG activity was sampled at 480 Hz, amplified at a gain of 5–10K, 436 

band-pass filtered from 75–2000 Hz, and full-wave rectified.  437 

  438 
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 439 

Figure 3. Modulating the amount of voluntary control to postural muscles. All graphs show the tilt of 440 

the upper trunk (C3) relative to gravity. A. Erect posture was better controlled during dual-tasks that 441 

required an upright alignment to perform the task (visual/audio biofeedback and a pistol aiming task), 442 

whereas during the counting backwards task postural alignment degraded more rapidly compared 443 

with normal quiet standing. B. Mean (±S.D.) changes to the trunk alignment during walking: (i) 444 

backward, (ii) sideways and (iii) forward. 445 

 446 
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