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It is essential to study nuclide transport with undergroundwater in fractured rockmasses in order to evaluate potential radionuclide
leakage in nuclear waste disposal. A time-domain random-walk (TDRW) method was firstly implemented into a discrete element
method (DEM), that is, UDEC, in this paper to address the pressing challenges of modelling the nuclide transport in fractured rock
masses such as massive fractures and coupled hydromechanical effect. The implementation was then validated against analytical
solutions for nuclide transport in a single fracture and a simple fracture network. After that, the proposed implementation was
applied to model the nuclide transport in a complex fracture network investigated in the DECOVALEX 2011 project to analyze the
effect of matrix diffusion and stress on the nuclide transport in the fractured rockmasses. It was concluded that the implementation
of the TDRWmethod into UDEC provided a valuable tool to study the nuclide transport in the fractured rock masses. Moreover,
it was found that the total travel time of the nuclide particles in the fractured rock masses with the matrix diffusion and external
stress modelled was much longer than that without the matrix diffusion and external stress modelled.

1. Introduction

1.1. Significance. With the development of nuclear waste dis-
posal, nuclide transport with undergroundwater in fractured
rockmasses has been an important issue in recent decades [1].
Especially after the nuclear leakage accident in Fukushima in
Japan [2], this becomesmore andmore pressing.Therefore, it
is essential to understand the principal transportmechanisms
of radionuclides with underground water in fractured rock
masses and evaluate the potential of radionuclide leakage
from the repositories to the biosphere.

1.2. Literature Review about Nuclide Transport Simulation.
Once the radionuclide is released from the container, it will
flow with underground water in fractured rock masses to the
biosphere. Therefore, water flow process in fractured rock
masses should be studied firstly and foremost. Till now, five
models have been found in literatures to simulate the water

flow in fractured rock masses, that is, continuous model
[3–5], dual-continuum model [6–8], equivalent continuum
model [9–11], discrete fracture network (DFN) [12–14], and
hybrid model [15–17]. In continuous model, rock masses
are treated as continuum porous media with porosity and
permeability and continuum-mechanics formulations can be
used to describe flow and transport in media. It is a simple
way but does not reflect the real flow path and velocity
distribution in rock masses. In dual-continuum model, the
rock matrix and fractures are represented as two overlapping
and interactive continuum media with different mechanical
and flow characteristics. However, this model cannot be
applied to disconnected fractures in fractured media and
the evaluation of fluid exchange between the matrix and the
fractured domain is a complex task. In equivalent contin-
uum model, fractured rock masses are treated as equivalent
continua for large-scale analyses with equivalent mechanical
and hydraulic properties that are measured or calculated in
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Representative Element Volume (REV). Nevertheless, REV
may not exist for fractured rock masses in general. Moreover,
flow rate in fractures is much larger than that in rock matrix.
Thus, the DFN seems to be more suitable to simulate the
water flow in fractured rock masses, irrespective of its high
demand of computer resource. As a matter of fact, DFN has
already been implemented into several numerical methods
to simulate water flow in fractured rock masses, such as
distinct deformation analysis (DDA) [18, 18–22], numerical
manifold method (NMM) [23, 24], extended finite element
method (XFEM) [25–27], and discrete element method
(DEM) [28, 29]. Compared with other numerical methods,
DEM coupled with DFN shows the advantages of simulating
water flow through fractured rock masses, since it is capable
of simulating coupled hydromechanical effect and, especially,
massive fractures.

Secondly, radionuclide transport process associated with
water flow through fractured rockmasses should be analyzed.
According to former researches [30, 31], the difficulty of
discovering nuclide transport mechanism lies in solving
the partial differential transport equation. As mentioned
by Delay et al. [32], Lagrangian schemes (particle tracking
methods) are more accurate and less computationally inten-
sive than Eulerian schemes. The main Lagrangian schemes
include random-walk particle tracking (RWPT) method [33,
34], convolution-based particle tracking (CBPT)method [35,
36], and continuous-time random-walk (CTRW) method
[37, 38]. For very heterogeneousmedia such as fractured rock
mass, flow velocities may span several orders of magnitude.
With the RWPT method, a large number of jumps are
required in low-velocity areas to move the particles signifi-
cantly, whichmay cause the calculations to become inefficient
in terms of computational costs. The CBPT method is valid
formainly steady-state flowfield and linear transport process.
Some discrepancies are caused when the CTRW method
is employed to the advection-dispersion equation. Aiming
at removing these constraints, Delay and Bodin [39] firstly
proposed a new method called time-domain random-walk
(TDRW) method to simulate solute transport in heteroge-
neous media, which was further extended to simulate solute
transport in fractured rock masses [40–42].

As can be seen from the literature review above, DEMand
the TDRW method have the advantages of modelling water
flow and solute transport in fractured rock masses. Thus,
the TDRW method was firstly implemented into the DEM
software UDEC in this paper.

1.3. Objectives and Organization of Paper. The primary
objective of this paper is to propose a new numerical tool
to simulate nuclide transport with underground water in
fractured rock mass. In order to achieve this objective, the
paper is organized as follows.

Theoretical introduction about hydromechanical cou-
pling in UDEC is given in Section 2; Section 3 discusses
nuclide transport equation and theory about time-domain
random-walk method; the implementation of TDRW into
UDEC is given in Section 4; verification of implementation
program with analytical solution is given in Section 5;
Section 6 discusses application of implementation program

to DECOVALEX (DEmonstration of COupled models and
their VALidation against EXperiment) 2011 project to analyze
the effect of matrix diffusion and stress on nuclide transport
process; and conclusion is given in Section 7.

Throughout this study, it was concluded that, due to the
effects of both matrix diffusion and stress, it took much
more time for particles to outflow the fractured rock masses.
Moreover, the proposed numerical method is a valuable
numerical tool to study nuclide transport process through
fractured rock masses, which has also wide applications
in the field of underground water pollution, oil reservoir
engineering, and so on.

2. Principle of Flow in UDEC

In UDEC [43], fractured rock masses are divided into many
deformable blocks whose boundaries are fractures. Each
deformable block is meshed into triangle elements, as shown
in Figure 1. Motion is first calculated at the grid points of
triangle elements within blocks and the stresses within the
elements are then obtained according to the block material
constitutive relations. Moreover, a fully coupled mechanical-
hydraulic analysis can also be performed in UDEC, in which
matrix is regarded as impermeable and fluid flows only
through fractures.

2.1. Mechanical Behavior. For any grid point 𝑝 in a triangle
element, the total force is obtained as a sum of four terms:𝐹𝑝 = 𝐹𝑧𝑝 + 𝐹𝑐𝑝 + 𝐹𝑜𝑝 + 𝐹𝑔𝑝 , (1)

where 𝐹𝑜𝑝 are the external applied loads, 𝐹𝑧𝑝 are the internal
stresses contributed by zones adjacent to grid point 𝑝, 𝐹𝑐𝑝
are the contact forces from all the adjacent blocks, and 𝐹𝑔𝑝
are gravity forces. The internal stress is calculated using the
following equation:

𝐹𝑧𝑝 = ∫
𝐶
𝜎𝑖𝑗𝑛𝑗𝑑𝑠, (2)

where 𝜎𝑖𝑗 is element stress tensor and 𝑛𝑗 is the unit vector
outward normal to the integral path 𝐶, which follows the
closed polygonal line around the grid point 𝑝. The gravity
force is calculated using the following equation:

𝐹𝑔𝑝 = 𝑔𝑝𝑚𝑝, (3)

where 𝑚𝑝 is the lumped gravitational mass, defined as the
sum of one-third of the masses of triangles connected to the
grid point, and 𝑔𝑝 is the gravitational acceleration.

The contact force 𝐹𝑐𝑝 exists only when grid points are
on block boundaries (like grid point 𝑛 in Figure 1) and is
calculated according to the contact type and joint constitutive
model. Taking the Coulomb slide model as an example, the
contact force at the grid point from an adjacent block is
divided into two components:𝐹nc𝑝 (normal contact force) and𝐹sc𝑝 (shear contact force):

𝐹nc𝑝 fl 𝐹nc𝑝 − 𝑘𝑛Δ𝑢𝑛𝑙, (4)
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Figure 1: Deformable blocks.

where Δ𝑢𝑛 is the normal displacement increment for each
contact, 𝑘𝑛 is joint normal stiffness, and 𝑙 is the contact area,
and

𝐹sc𝑝 fl 𝐹sc𝑝 − 𝑘𝑠Δ𝑢𝑠𝑙, (5)

where Δ𝑢𝑠 is the shear displacement increment and 𝑘𝑠 is joint
shear stiffness. If the shear contact force exceeds the shear
strength, it is modified according to the following equation:

𝐹sc𝑝 = sign (Δ𝑢𝑠) (𝑐 + tan 0) , (6)

where 𝑐 is joint cohesion and 0 is joint frictional strength.
The motion of the grid point is obtained according to

Newton’s second law: 𝑑𝑢̇𝑝𝑑𝑡 = 𝐹𝑝𝑚𝑝 , (7)

where 𝑢̇𝑝 is the velocity of grid point 𝑝 and 𝑡 is time.
After the calculation of displacement of each grid point,

the strain and stress of each triangle element are obtained
according to the block constitutive model:

Δ𝜀𝑖𝑗 = 12 (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) Δ𝑡, (8)

where Δ𝑡 is time step.

Δ𝜎𝑖𝑗 = 𝜆Δ𝜀V𝛿𝑖𝑗 + 2𝜇Δ𝜀𝑖𝑗, (9)

where 𝜆 and 𝜇 are Lame’s constant and Δ𝜀V is the bulk strain.
2.2. Fluid Flow in Fractures. Depending on the different
contact type, the flow rate in contact domain is calculated

differently. For a point contact (from a domain with pressure𝑝1 to a domain with pressure 𝑝2),𝑞 = −𝑘𝑐Δ𝑝, (10)

where 𝑞 is the flow rate, 𝑘𝑐 is a point contact permeability
factor, and Δ𝑝 is the pressure difference calculated using the
following equation:

Δ𝑝 = 𝑝2 − 𝑝1 + 𝜌𝑤𝑔 (𝑦2 − 𝑦1) , (11)

where 𝜌𝑤 is the fluid density; 𝑔 is the acceleration of gravity;
and 𝑦2 and 𝑦1 are 𝑦-coordinates of the domain centers which
are perpendicular to the joint surface. For edge-edge contact
(an edge of one element contacts with an edge of another
element), the flow rate in contact domain is calculated using
the following equation:

𝑞 = −𝑘𝑗𝑎3Δ𝑝𝑙 , (12)

where 𝑘𝑗 is a joint permeability factor (whose theoretical
value is one-twelfth dynamic viscosity of fluid), 𝑎 is the
contact hydraulic aperture, and 𝑙 is the length assigned to the
contact between the domains. Fluid velocity can be obtained
using (13) according to the flow rate calculated according to
(10) and (12):

𝑢𝑓 = 𝑞𝐴, (13)

where 𝐴 is the fluid crossing area.

2.3. Coupled Mechanical-Hydraulic Analysis. When the fluid
flows in the contact domain, the fluid pressure is regarded
as an external force applied on the contact domain, which
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Figure 2: Fracture with an aperture of 2𝑏.

is added into 𝐹𝑜𝑝. The external force is calculated using the
following equation:

𝐹𝑃𝑝 = 𝑝𝑛𝑖𝐿, (14)

where 𝑝 is the fluid pressure in a contact domain, 𝑛𝑖 is the
normal direct of contact, and 𝐿 is the contact length.With the
motion of each block, the contact area will change following
(15), which causes flow rate variation:

𝑎 = 𝑎0 + Δ𝑢𝑛, (15)

where 𝑎0 is the initial fracture aperture and Δ𝑢𝑛 is the normal
displacement of contact area.

3. Nuclide Transport

3.1. Nuclide Transport Equation. It is known that nuclide
transport is the consequence of several physical mechanisms
such as advection, hydrodynamic dispersion, matrix diffu-
sion, decay, and adsorption. As mentioned by Bodin et al.
[42], the nuclide transport can be described in three media:
(1) fracture, (2) matrix, and (3) stagnant zone. The stagnant
zones in the fracture plane act as an additional “nonflowing”
pore space available for solute diffusion. Thus, transport
in the stagnant zone is ignored in this study. The nuclide
transport equation in 2D fracture can be written as follows
[42]: 𝜕𝑐𝑓𝜕𝑡 + 𝜆𝑐𝑓 = −𝑢𝑓𝑅𝑓 𝜕𝑐𝑓𝜕𝑥 + 1𝑅𝑓 𝜕𝜕𝑥 (𝐷𝑓 𝜕𝑐𝑓𝜕𝑥 )

+ 𝐷𝑓𝑏𝑅𝑓 𝜕𝑐𝑚𝜕𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑏 ,

(16)

where 𝑐𝑓 is the concentration of nuclide in fracture, 𝑢𝑓 is
the fluid velocity in fracture, 𝑏 is half of the aperture, 𝑐𝑚 is
the concentration of nuclide in rock matrix, 𝜆 is the decay
constant of nuclide, the term 𝜆𝑐𝑓 represents the decay effect,𝐷𝑓 is the hydrodynamic dispersion coefficient in fracture, 𝑅𝑓
is a retardation factor accounting for the sorption of nuclide
onto fracture surface, the last termon the right of the equation
represents the matrix diffusion effect, and 𝑥 and 𝑦 are the
space coordinates along and perpendicular to the fracture,
respectively, as shown in Figure 2. Not considering the effect
of decay and matrix diffusion, the equation becomes the
advection-dispersion-sorption (ADS) equation.

The retardation factor 𝑅𝑓 is defined using the following
equation [42]:

𝑅𝑓 = 1 + 𝐾𝑓𝑏 , (17)

where 𝐾𝑓 is the surface sorption coefficient of nuclide onto
the fracture surface. The nuclide transport equation in rock
matrix can be written as follows [42]:

𝜕𝑐𝑚𝜕𝑡 + 𝜆𝑐𝑚 = 𝐷𝑎 𝜕2𝑐𝑚𝜕𝑦2 , (18)

where 𝐷𝑎 is the apparent-diffusion coefficient of the nuclide
in the matrix, which is calculated as 𝐷𝑎 = 𝐷𝑒/(𝜃𝑚 + 𝜌𝑚𝐾𝑚);𝐷𝑒 is effective diffusion coefficient; 𝜃𝑚 is matrix porosity; 𝜌𝑚
is matrix density; and 𝐾𝑚 is volumetric-sorption coefficient
of the nuclide in the matrix.

3.2. Time-Domain Random-Walk Method

3.2.1. Advection-Dispersion-Sorption Equation. In TDRW
method, the solution of (16) can be divided into three steps:
(1) advection-dispersion-sorption (ADS) transport equation,
(2) decay effect, and (3) matrix diffusion effect. The ADS
equation can be rewritten as (19) [42], considering the change
of variable (𝜕𝑐𝑓/𝜕𝑡 = (𝜕𝑐𝑓/𝜕𝑥)(𝜕𝑥/𝜕𝑡) = (𝜕𝑐𝑓/𝜕𝑥)(𝑢𝑓/𝑅𝑓)):
𝜕𝑐𝑓𝜕𝑥 = −𝑅𝑓𝑢2

𝑓

𝜕𝜕𝑡 [(𝑢𝑓 + 𝜕𝐷𝑓𝜕𝑥 ) 𝑐𝑓] + 𝑅
2
𝑓𝑢3
𝑓

𝜕2𝜕𝑡2 (𝐷𝑓𝑐𝑓) . (19)

By applying an equivalent change of variable, (19) can be
written with Fokker-Planck formalism:𝜕𝜑𝜕𝑥 = − 1V2 𝜕 (V𝜑)𝜕𝑡 + 12V3 𝜕2 (0𝜑)𝜕𝑡2 . (20)

According to the solution of random-walk approach, the
mean and variance of nuclide transport time distribution
for a displacement of 𝑑𝑥 are obtained using (21a) and (21b),
respectively [42]:

𝜇𝑡 (𝑑𝑥) = 𝑅𝑓𝑢2
𝑓

(𝑢𝑓 + 𝜕𝐷𝑓𝜕𝑥 )𝑑𝑥, (21a)

𝜎2𝑡 (𝑑𝑥) = 𝑅2𝑓 2𝐷𝑓𝑢3
𝑓

𝑑𝑥. (21b)
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For Peclet number Pe = 𝑢𝑓𝑑𝑥/𝐷𝑓 larger than 10, it is
shown that the travel time distribution is lognormal for a
displacement of 𝑑𝑥 [30]:

ln (Δ𝑡𝑓) = 𝜇ln + 𝑍𝑁𝜎ln, (22a)

𝜇ln = ln( 𝜇𝑡√1 + 𝜎2𝑡 /𝜇2𝑡 ), (22b)

𝜎2ln = ln(1 + 𝜎2𝑡𝜇2𝑡 ) , (22c)

where Δ𝑡𝑓 is the travel time of the nuclide for a displacement𝑑𝑥 and 𝑍𝑁 is a random number that follows a standard
normal distribution.

For very low flow velocities in short fractures (i.e., the
Peclet number Pe is less than 10), the assumption of a
lognormal distribution is not accurate. Bodin et al. [30]
suggested that (22b) should be modified:

𝜇󸀠ln = 𝛽𝜇ln = (1 − 133Pe) ln( 𝜇𝑡√1 + 𝜎2𝑡 /𝜇2𝑡 ). (23)

The total travel time in a fracture of length 𝑑𝑥 can be written
as

Δ𝑡𝑓 = exp (𝜇ln + 𝑍𝑁𝜎ln) (for Pe > 10) . (24)

When Peclet number Pe is less than 10, the variable 𝜇ln is
replaced by 𝜇󸀠ln.
3.2.2. Matrix Diffusion. To account for the interaction
between ADS and matrix diffusion in a bond of length 𝑑𝑥,
the fluid velocity 𝑢𝑓 and dispersion coefficient 𝐷𝑓 in (22a)
and (22b) were replaced by an apparent fluid velocity 𝑢∗𝑓 and
an apparent dispersion coefficient𝐷∗𝑓 [42]:

𝑢∗𝑓 = 𝑅diff𝑢𝑓,
𝐷∗𝑓 = 𝑓 (𝑢∗𝑓) , like 𝐷∗𝑓 = 𝛼𝑢∗𝑓, or 𝐷∗𝑓 = 𝐷𝑓, (25)

where 𝛼 is a dispersivity constant and 𝑅diff is a retardation
factor accounting for matrix diffusion:

𝑅diff = 1 + Ω√2𝜎𝑡𝑅𝑓 ( exp (−𝜉2)√𝜋 erfc (𝜉) − 𝜉) , (26)

where 𝜉 = (Ω𝑑𝑥/𝑢𝑓)(√2/𝜎𝑡), Ω = √(𝜃𝑚 + 𝜌𝑚𝐾𝑚)𝐷𝑒/2𝑏, 𝜃𝑚
is the matrix porosity, 𝜌𝑚 is the bulk density of matrix, 𝐾𝑚 is
the volumetric-sorption coefficient of nuclide in matrix, and𝐷𝑒 is the effective diffusion coefficient of nuclide in matrix.

The modified (22a) and (22b) with 𝑢∗𝑓 and𝐷∗𝑓 in place of𝑢𝑓 and𝐷𝑓, respectively, were used to calculate the mean and
variance of the log transform 𝜇ln (or 𝜇󸀠ln) and 𝜎2ln according
to (22b) and (22c), respectively. The total travel time for the

coupled ADS andmatrix diffusion is calculated using (27) for
Pe > 10 [42]:

Δ𝑡𝑓𝑚 = exp (𝜇ln + 𝑍𝑁𝜎ln) + ( Ω𝑡0𝑅𝑓erfc−1 (𝑈01))
2

, (27)

where 𝑡0 is the particle residence time in the fracture for pure
advection delayed by sorption reactions onto the fracture
walls, expressed as 𝑡0 = 𝑅𝑓(𝑑𝑥/𝑢𝑓) and 𝑈01 is a random
number drawn from a uniform distribution between 0 and
1. For Pe < 10, the variable 𝜇ln in (27) is replaced by 𝜇󸀠ln.
3.2.3. Decay Effect. If the linear decay model is used, the
nuclide mass decreases according to the following equation
[42]:

𝑚𝑝𝑛+1 = 𝑚𝑝𝑛 exp (−𝜆 (𝑡𝑛+1 − 𝑡𝑛)) , (28)

where 𝑚𝑝𝑛+1 and 𝑚𝑝𝑛 represent the masses of the nuclide at
node 𝑛 + 1 and 𝑛, respectively.

For simplicity, the decay effect is not considered here,
which accords with the situation in DECOVALEX 2011
project.

3.2.4. Mass Partition Model at Fracture Intersection. Because
the nuclidewas tracked in fractures from the inflowboundary
to the outflow boundary in TDRW method, the mass parti-
tion model at fracture intersection is vital in the calculation.
There are three models: the perfect-mixing model [44], the
stream-tube model [45], and the diffusional-mixing model
[46]. The focus of this paper is not the mass partition law
of solute at fracture intersection. For simplicity, the perfect-
mixing model was adopted here:

𝑃𝑖𝑗 = 𝑄𝑗∑𝑄− , (29)

where 𝑃𝑖𝑗 is the probability of particle transition from an inlet
bond 𝑖 to an outlet bond 𝑗; 𝑄𝑗 is the flow rate in the outlet
bond 𝑗; and ∑𝑄− is the sum of the flow rates over all the
outlet bonds connected to the junction of interest. It can be
seen from (29) that mass partition is only related to the outlet
fluxes.

4. Implementation of TDRW into UDEC

In TDRW method, the fractures are regarded as the sum of
many bonds and a continuous connection of the bonds from
inlet to outlet boundaries is considered as a flow path (e.g.,
the dashed line shown in Figure 3). In a bond, the fluid flow
is a 1D flow with a constant fluid velocity. Therefore, the first
thing, before we do the particle tracking calculation, is to get
the flow paths of particle transport.

In UDEC, jointed rock masses are divided into blocks by
fractures. The geometric information of fracture and block,
such as corner coordinates and their connection, is stored
in list in files (e.g., BLOCK.FIN, DOMAIN.FIN, and CON-
TACT.FIN). According to the above files, the coordinates of
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fracture intersections can be obtained easily, as well as their
connective information.The TDRWmethod is implemented
into UDEC using the FISH language, as shown in Figure 4.

After the hydromechanical calculation with UDEC, the
final flow velocity at each fracture intersection can be
obtained and this is the input data for TDRW simulation.
At the beginning, nuclide particles are injected into the
fractured rockmasses through the inlet boundary. According
to the inlet flow rate, the injection location of each particle is
chosen.The particle transport time in each bond is calculated
with ((22a), (22b), (22c))–(28). At the fracture intersection,
the perfect-mixing model is adopted to decide the next step
of particles until they arrive at the outlet boundary. If the
injected mass is 𝑀0 and the total number of particles is 𝑁,
mass of each particle is expressed as

𝑚𝑝𝑖 = 𝑀0𝑁 . (30)

If the collected particle number on the outlet boundary is𝑁𝑖 in a period of time 𝑑𝑡, the outlet concentration is written
as

𝑐𝑖 = 𝑚𝑝𝑖𝑁𝑖∑𝑄out𝑑𝑡 , (31)

where ∑𝑄out is the total outlet fluid flow rate.
The following steps are adopted to obtain the curve of the
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Identify the next transport location by comparing 
the random number with the transport probability 
of each child point

Regard this child point as a new farther point and 
calculate the transport time with equation (28) in this 
bond between farther point and the chosen child point

Each particle roop

Figure 4: Flow chart of TDRWmethod’s implementation.

(2) Divide the travel time period (from minimum travel
time to maximum travel time) into𝑁 parts, in which
the time interval is Δ𝑡.

(3) Collect particles (number is𝑁𝑖) in each time interval
and calculate their concentration with (31).

5. Verification

Two numerical particle transport tests were performed to
verify the implementation of the TDRWmethod into UDEC,
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Figure 5: Comparison between numerical and analytical solutions
for nuclide particle transport in a single fracture.

that is, particle transports in a single fracture and in a simple
facture network.

5.1. Analytical Solution of the Nuclide Transport Equation.
Analytical solution for nuclide transport in a single fracture
has been deduced in literatures [47–49]. The analytical
solution is to be used later to verify the numerical results
obtained with combination of DEM and TDRW. For simplic-
ity, the analytical solution for advection-dispersion transport
equation with constant concentration injection is adopted,
which can be written as follows:

𝑐𝑓𝑐0 = 12 [[[erfc(
𝑥 − 𝑢𝑓𝑡2√𝐷𝑓𝑡)

− exp(𝑢𝑓𝑥𝐷𝑓 ) erfc(𝑥 + 𝑢𝑓𝑡2√𝐷𝑓𝑡)]]] ,
(32)

where 𝑐0 is the constant concentration injection; and erfc(𝑥)
is a complementary error function.

5.2. Calibration Test 1: Particle Transport in a Single Fracture.
In the calibration test 1 of particle transport in a single frac-
ture, the injection mass at the inlet boundary of the fracture
was 0.001 g, and the total number of nuclide particles was
30000. The trace of the fracture was 10m, fluid velocity was
4.0 × 10−4m/s, hydrodynamic dispersion coefficient in the
fracture was 2.0 × 10−5m2/s, and the aperture of the fracture
was 2.5× 10−4m.Thus, the Peclet number (Pe = 𝑢𝑓𝐿/𝐷𝑓) was
200. The analytical solution can be obtained using (32). The
corresponding numerical solution was obtained using the
TDRWmethod implemented intoUDEC, which is compared
in Figure 5 with the analytical solution. From Figure 5,
the maximum and minimum differences between numerical
and analytical solutions are 11% and 0.03%, respectively.

Figure 6: A simple fracture network.
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Numerical results with TDRW
Analytical results
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c 0

Time (×107 Ｍ)

Figure 7: Comparison between numerical and analytical solutions
of particle transport in a simple fracture network.

The reason for this difference is that the numerical results
are iterated. In general, the results from UDEC with the
TDRWmethod implemented agreed well with the analytical
solution.

5.3. Calibration Test 2: Particle Transport in a Simple Fracture
Network. Thesimple fracture networkwas shown in Figure 6.
A hydromechanical calculation was performed with UDEC
at first. The water heads at top and bottom boundaries were
100m and 99m, respectively, and two lateral sides were
impermeable. The aperture of the fractures was 2.5 × 10−6m.
The other parameters were the same as those in test 1. The
analytical solution was the summarizing solution of (32) for
each fracture. Figure 7 was the comparison between the
numerical solution and analytical solution for the particle
transport in this simple fracture network. From Figure 7, the
maximum andminimum differences between numerical and
analytical solutions are 10.1% and 0, respectively.

From the comparisons shown in Figures 5 and 7, it is
concluded that the numerical solution obtained using the
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Figure 8: Calculation model studied in the DECOVALEX 2011
project.

TDRW method implemented into UDEC was close to the
analytical solution.Thus, it is proven that the TDRWmethod
implemented into UDEC can well simulate nuclide particle
transport in fracture networks.

6. Application to Particle Transport in
Discrete Fracture Network

6.1. Calculation Models and Material. The proposed method
was used to evaluate the effect of matrix diffusion and stress
ratio on particle transport process in the fracture network
studied in the DECOVALEX 2011 project. The calculation
model was shown in Figure 8, which contained 771 fractures.
The hydromechanical boundary condition was depicted in
Figure 9. The hydraulic heads at the top and bottom bound-
aries were 30m and 10m, respectively. On the two lateral
sides, a linear distribution of hydraulic head was applied
with a maximum value of 30m and a minimum value of
10m; in order to analyze the effect of matrix diffusion, the
same hydromechanical boundaries were applied for the case
with matrix diffusion and the case without matrix diffusion.
Accounting for the effect of stress ratio, simulations without
stress (𝜎V = 𝜎ℎ = 0) and with different stress ratios were
performed. For the cases with stress, a constant vertical stress
of 5MPa was specified on the top and bottom boundaries.
And a horizontal stress, with ratios of vertical/horizontal
stress varying from 1 to 2, 3, and 5, was applied, respectively
(𝜎V/𝜎ℎ = 1, 2, 3, 5). For each calculation, 10000 particles
were injected at a time along the inflow boundary. At each
injected point, which is the intersection of fracture and inflow
boundary, the injecting particle number is proportional to
the local flow rate. This is equivalent to injecting a constant
concentration at the inflow boundary.

The block material property was𝐾 = 54.23GPa, and 𝐺 =34.11GPa.
The normal behavior of the fractures in the calculation

model was nonlinear, as shown in Figure 10 [28]. Other
parameters of the fractures were listed in Table 1 [28]. The
aperture of the fractures followed a lognormal distribution

Table 1: Material parameters of the fracture in the calculation
model.

Mechanical properties Values

Fractures

Shear stiffness, 𝐾𝑠 (GPa/m) 434
Friction angle (∘) 24.9
Dilation angle (∘) 5
Cohesion (MPa) 0

with a mean value of 65 𝜇m and a second moment of 1.0. The
minimum and maximum apertures were 1 𝜇m and 200𝜇m,
respectively. The residual aperture was assumed to be 20% of
the initial aperture.

The hydrodynamic dispersion coefficient in fractures was
1.0 × 10−5m2/s. The hydromechanical calculation was done
firstly and the fluid velocity could then be obtained.After that,
the TDRW simulation was performed.

6.2. Results and Discussion

6.2.1. Fluid Flow. Flow rates in fractures which intersect
the bottom, right, and left outlet boundaries with different
applied stress were shown in Figures 11–13. The location in
Figures 11–13 was the coordinates of intersections of fractures
along the corresponding boundary. On the bottom outlet
boundary, the maximum flow rate and average flow rate
without stress applied were 1.16 × 10−8m3/(s⋅m) and 4.06× 10−9m3/(s⋅m), respectively, which were larger than those
with stress applied. From Figure 11, it was shown that the
main outlet positions (intersections with flow rate larger
than the average flowrate) changed comparing the results
not considering stress with results considering stress effect.
When the stress was applied, the main outlet positions were
same for different stress ratio. However, the maximum and
average values of flow rate decreased with the increasing
of stress ratio. On the right boundary, the maximum and
average values of flow rate in intersections without stress were
8.59 × 10−8m3/(s⋅m) and 3.13 × 10−8m3/(s⋅m), respectively,
which were obviously larger than those considering stress
ratio. On the left boundary, the maximum and average
values of flow rate in intersections without stress were 5.38× 10−7m3/(s⋅m) and 8.02 × 10−8m3/(s⋅m), respectively, and
the same effect of stress ratio on fluid flow was observed.This
was because the fractures were compressed to be narrowwith
the increasing of external stress and the fluid flow became
smaller.

6.2.2. Nuclide Transport

(1) Without Matrix Diffusion. After the nuclide transport
calculationswith different stress ratio, nuclideswhich outflow
the outlet boundary at a certain time were collected.The ratio
of number of leaking nuclides from the outlet boundary to
the total number of nuclides was plotted versus traveling time
(i.e., breakthrough curve) in Figure 14. From Figure 14, it
was shown that the total traveling times with different stress
boundaries were 1.97 × 104 s, 2.58 × 104 s, 3.12 × 104 s, 1.95 ×
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stress.

105 s, and 2.4 × 105 s, respectively. The mean traveling time
for each calculation was 3.29 × 103 s, 4.31 × 103 s, 5.21 × 103 s,
1.27 × 104 s, and 2.19 × 104 s, respectively. Through dividing
the total traveling times without stress, the normalized total
travel times with stress ratio 1, 2, 3, and 5 are 1.3, 1.58, 9.89,
and 12.18.

The total and average travel times for all nuclides leaking
out from the fractured rock masses increased with the
increasing of stress ratio. The reason for this phenomenon
was that fractures were compressed to be narrow and it was
difficult for nuclides to leak.

(2) With Matrix Diffusion. In the case with matrix diffusion,
the porosity of the matrix 𝜃𝑚 was 0.316%. For simplicity,
advection, dispersion, and matrix diffusion were considered
in this case, while sorption in the matrix was not allowed
(𝐾𝑚 = 0m3/kg). The effective diffusion coefficient of the
nuclide in the matrix is 1.0 × 10−11m2/s. The breakthrough
curves with different stress applied considering the effect of
matrix diffusion were shown in Figure 15. From Figure 15, it
was shown that the total traveling times with different stress
boundaries were 3.03 × 107 s, 7.98 × 107 s, 1.086 × 108 s, 8.02 ×
108 s, and 8.42 × 108 s, respectively. The mean traveling time
for each calculation was 4.88 × 106 s, 1.77 × 107 s, 2.89 × 107 s,
5.2 × 107 s, and 7.7 × 107 s, respectively. Through dividing
the total traveling times without stress, the normalized total
travel times with stress ratio 1, 2, 3, and 5 are 2.63, 3.58, 26.5,
and 27.8. The total and average travel times for all nuclides
leaking out from the fractured rockmasses increasedwith the
increasing of stress ratio.

15

10

5

0
15

10

5

0

15

10

5

0

15

10

5

0
15

10

5

0
−15 −10 −5 0 5 10 15

Location

= 5

= 3No stress

Fl
ow

 ra
te

×
10

−
9

(Ｇ
3
/(

s·m
))

= 1Ratio
= 2Ratio

Ratio
Ratio

Figure 11: Flow rate distribution of fractures on the bottom outlet
boundary.

Comparing the breakthrough curves in Figure 14 with
those in Figure 15, it could be seen that the total travel time for
all particles outflowing from fractured rock masses without
the matrix diffusion was much shorter than that with matrix
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diffusion. Thus, the effect of matrix diffusion on the nuclide
particle transport was significant.

7. Conclusion

Although the nuclide transport with underground water
in fractured rock masses had been studied for decades
by many researchers, the coupled hydromechanical effect
and the effect of matrix diffusion and stress were still not
discussed systematically. Aiming at solving these problems,
the time-domain random-walk (TDRW) method was firstly
implemented into the discrete elementmethod (DEM) in this
study. During each time step of hydromechanical calculation,
hydraulic aperture of each fracture and fluid pressure on
fracture surface were calculated according to (15) and (14) to
consider the coupled hydromechanical effect. To present the
effect of matrix diffusion on nuclide transport, (24) and (27)
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boundary.
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were adopted to get the breakthrough curves.The implemen-
tation was then verified against the analytical solutions for
nuclide transport in a single fracture and a single fracture
network. After that, the implementation was applied to
simulate the nuclide transport in a complex fracture network
investigated in the DECOVALEX 2011 project. Finally, the
effect of matrix diffusion and stress on nuclide transport
was discussed in detail. Throughout this study, the following
conclusions were drawn:

(1) The implementation of the TDRW method into
UDEC could well simulate the nuclide transport with
underground water in fractured rock masses.

(2) Through the hydromechanical calculation forDECO-
VALEX 2011, the closure of fractures increased with
the increasing of applied stress and it caused decreas-
ing of fluid flow in fractured rock masses. More time
was needed for fluid or particle transport through a
narrower path. This finally resulted in the fact that
the total travel time of the nuclide particles with the
external stress applied on the fracture network was
longer than that without the applied stress.

(3) According to the numerical results for the nuclide
transport in the complex fracture network investi-
gated in the DECOVALEX 2011 project, matrix diffu-
sion has a significant effect on the nuclide transport.
The travel time of the nuclide particle with the
matrix diffusion modelled was much longer than that
without the matrix diffusion.
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