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Abstract

Antarctic coastal polynyas are persistent open water areas in the sea ice zone, and regions

of high biological productivity thought to be important foraging habitat for marine predators.

This study quantified southern elephant seal (Mirounga leonina) habitat use within and

around the polynyas of the Prydz Bay region (63˚E– 88˚E) in East Antarctica, and examined

the bio-physical characteristics structuring polynyas as foraging habitat. Output from a cli-

matological regional ocean model was used to provide context for in situ temperature-salin-

ity vertical profiles collected by tagged elephant seals and to characterise the physical

properties structuring polynyas. Biological properties were explored using remotely-sensed

surface chlorophyll (Chl-a) and, qualitatively, historical fish assemblage data. Spatially

gridded residence time of seals was examined in relation to habitat characteristics using

generalized additive mixed models. The results showed clear polynya usage during early

autumn and increasingly concentrated usage during early winter. Bathymetry, Chl-a, sur-

face net heat flux (representing polynya location), and bottom temperature were identified

as significant bio-physical predictors of the spatio-temporal habitat usage. The findings from

this study confirm that the most important marine habitats for juvenile male southern ele-

phant seals within Prydz Bay region are polynyas. A hypothesis exists regarding the sea-

sonal evolution of primary productivity, coupling from surface to subsurface productivity and

supporting elevated rates of secondary production in the upper water column during sum-

mer-autumn. An advancement to this hypothesis is proposed here, whereby this bio-physi-

cal coupling is likely to extend throughout the water column as it becomes fully convected

during autumn-winter, to also promote pelagic-benthic linkages important for benthic forag-

ing within polynyas.
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Introduction

Antarctic coastal polynyas are areas of reduced sea ice cover within the coastal sea ice zone,

largely maintained by offshore winds and oceanic currents advecting ice away from the coast

[1]. Although constituting a relatively small area of the Southern Ocean (~ 1% of maximum

sea ice area), coastal polynyas are responsible for an estimated 10% of sea ice production. The

brine rejection as a result of ice formation can lead to the formation of dense shelf water on the

continental shelf [2–4]. In certain areas, this may flow off-shelf to form Antarctic Bottom

Water (AABW). AABW formation is one important process driving the global thermohaline

(overturning) circulation and acts as a sink for both heat and CO2 [5, 6].

Due to the ice-free environment, particularly in early spring when solar radiation rapidly

increases, polynyas are regions of enhanced oceanic primary and secondary production rela-

tive to surrounding habitat [7]. Consequently, polynyas also support relatively high densities

of upper trophic level organisms [8]. The importance of sea-ice zones and in particular polynya

regions for successful foraging of several significant Antarctic predators, such as whales [9],

Antarctic fur and Weddell seals and seabird communities (especially Adelie penguins) [10–

12], is increasingly well documented [13–18]. To better understand why polynyas are impor-

tant to top predators requires some understanding of the processes operating within polynyas

that lead to the concentration and/or increase in food availability.

A major constraint to polynya research has been the difficulty in observing water properties

under the ice-covered regions. This is due to a combination of a lack of access by ships for

much of the year [5], expense and logistical difficulty in deployment and recovery of mooring

arrays [19] and the limited ability of satellites to remotely sense the water surface properties

when it is covered by ice [20] and/or cloud. Investigating circulation processes is possible

through the development of high-resolution ocean models such as the Regional Ocean Model-

ling System (ROMS) [21–24]; see also the user community guide (https://www.myroms.org/).

However, in situ observations are essential for verifying and constraining circulation models.

Marine predators equipped with oceanographic sensors provide a solution to the lack of in
situ observations, providing information on ocean structure and water mass processes in

regions and seasons rarely observed with traditional oceanographic platforms [20, 25]. South-

ern elephant seals (Mirounga leonina, or SES) are far-ranging, deep-diving predators that regu-

larly spend time within the sea ice environment and high-latitude waters during their lengthy

post-moult foraging trips [26–28]. Conductivity-Temperature-Depth Satellite Relay Data Log-

gers (CTD SRDLs) are used to simultaneously record animal location, dive behaviour and

hydrographic profiles [20]. The data can provide insight into animal behaviour (e.g. [27, 28])

as well as in situ environmental information (e.g. [5, 13, 20, 29]) over extended timescales.

Such tagging studies have significantly increased understanding of the use of oceanographic

features by foraging seals, showing SES widely exploit oceanic frontal systems, the marginal

and pack-ice and coastal shelf regions, and can display both pelagic and benthic diving behav-

iour [27, 28, 30–34]. During the post-moult migrations some individuals of the Kerguelen and

Macquarie Island populations forage along the East Antarctic shelf region [5, 20, 27, 35], and

various foraging indices (e.g. body condition, patch quality, prey encounter events) indicate

this may comprise the most lucrative foraging habitat [27, 35, 36].

While studies of SES foraging behaviour have identified the importance of on-shelf regions

in East Antarctica, the importance of specific habitat features within the region, such as polyn-

yas, and the properties structuring these, have not been fully explored. This study aims to pro-

vide a bio-physical characterisation of polynyas as foraging habitat for SES specifically within

the greater Prydz Bay region (63˚E– 88˚E) (Fig 1). Here, four coastal polynyas (Cape Darnley,

Mackenzie, Prydz Bay and West Ice Shelf) play an important role in the sea-ice cycle [29], with
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the Cape Darnley polynya responsible for the second highest rate of polynya sea-ice produc-

tion around Antarctica [1]. Additionally, this region is characterised by high rates of primary

productivity [7] and significant benthic diversity [37].

The in situ CTD data collected from tagged seals provide invaluable observations of ocean

properties; however, these can only describe the water characteristics in locations where SES

were present. Model output from a climatological realisation of ROMS was used to provide a

more complete spatial context for the region [21, 22]. Spatial bio-physical predictor fields,

from ROMS and additionally satellite chlorophyll (Chl-a) data are examined as explanatory

variables for statistical models predicting seal residence time. The results are used to develop a

general hypothesis regarding the underlying physical-biological and pelagic-benthic coupling

that supports where and how foraging habitat for marine predators occurs.

Methodology

Data sources

The spatial extent of the greater Prydz Bay study region from 63˚E to 88˚E includes four signif-

icant polynyas: Cape Darnley, Mackenzie Bay, Prydz Bay and West Ice Shelf (nomenclature as

per Arrigo and Dijken [7]). The northern boundary of the study region was set at 65˚S, in

Fig 1. Map of the Prydz Bay study region. a) ROMS mean surface heat flux (expressed as W m-2) during

the freezing season (March to October) and b) instrumented southern elephant seal CTD cast locations from

the MEOP portal, 2007–2015 where data points are coloured by the deepest temperature readings per cast.

In panel a) Heat flux contours of -40 W m-2 (black), -70 W m-2 (red), -150 W m-2 (cyan), -210 W m-2 (white) and

-260 W m-2 (green) are shown. Polynyas from west to east are Cape Darnley (70˚E), Mackenzie (72˚E), Prydz

Bay (82˚E) and West Ice shelf (85˚E). Centroid locations are indicated by a white or black star (Fig 1A). The

Antarctic shelf break is represented by a black dashed line.

https://doi.org/10.1371/journal.pone.0184536.g001
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order to include the shelf break (Fig 1A), while the southern boundary was the Antarctic coast-

line (including the Amery ice shelf).

Several different datasets were integrated in this study. A ROMS implementation [21] pro-

vided the regional oceanographic context for the in situ observations collected by instru-

mented seals, and the two were used in conjunction to investigate dynamics within the four

polynyas of interest. Additional biological information was obtained from remotely-sensed

surface Chl-a data and an historical fish trawl database [38]. The habitat usage of seals within

the greater Prydz Bay region was summarised as gridded residence time, as calculated from

complete telemetry tracks, and modelled in response to selected bio-physical predictor fields.

These datasets and the approaches used are detailed below.

Configuration of the Regional Ocean Modelling System (ROMS). An existing climato-

logical run of ROMS using present conditions (1992–2008) was used to provide oceanographic

context for seal habitat. This implementation was a circumpolar expansion of an existing

model [21] with a northern boundary at 30˚ S; however, this study focused on model output

within the Prydz Bay region described above. Model output was available on a daily time step

at a horizontal grid resolution of 0.25˚ and included depth-structured physical variables such

as temperature, salinity, horizontal and vertical velocities. Daily atmospheric forcing was from

the NCEPII reanalysis [39], with the northern boundary condition sourced from the ECCO2

reanalysis [40, 41]. The model used a mean state for surface initial condition and analytical ini-

tial conditions at depth.

This ROMS implementation used prescribed climatological surface heat and salt fluxes, to

simulate ice production and coverage. These prescribed fluxes were based on ice concentra-

tions from a climatology derived model using Special Sensor Microwave Imager (SSM/I)

observations [1, 21]. This method forced heat and salt into the top of the water column [1] to

overcome the poor performance of most ocean models in representing polynya locations and

circulation processes.

Seal Conductivity-Temperature-Depth (CTD) casts. No new data was collected for this

study; a previously collected seal dataset was utilised instead. Animal handlings were per-

formed in accordance with relevant guidelines and regulations, after approval by the Univer-

sity of Tasmania and Macquarie University’s Animal Ethics Committees for Australian

deployments and by the Institut Paul-Emile Victor (IPEV) Ethics Committee for French

deployments. For complete tagging and handling information, refer to Roquet et al. [25]. In

brief, the seals were chemically sedated [42], weighed and measured [43], and a CTD-SRDL-

9000 (Conductivity-Temperature-Depth Satellite Relay Data Logger, Sea Mammal Research

Unit, St Andrews, UK) attached to the hair on the seal’s head [44]. The combined weight of

the tag and glue did not exceed 0.5 kg i.e. 0.15% of the mean departure weight of the seals.

There is confidence that the instruments did not affect seal at-sea behaviour given that the

smallest instrumented seal weighed 169 kg, making the tag<0.3% of the seal’s weight. It has

been demonstrated that seals carrying twice this load (instruments of up to 0.6% of their mass)

were unaffected in either the short-term (growth rates) or the long-term (survival) [45].

CTD-SRDLs collect and summarise data and transmit via the ARGOS satellite system when

animals surface. These CTD data have been described in detail elsewhere [25, 46, 47], but

briefly every vertical profile consists of temperature and salinity measurements at 17 depths

(inflection points) determined on-board by a broken stick algorithm [47]. The tag deploy-

ments were supported under the Australian Integrated Marine Observing System through

which all data are made publicly available(www.imos.org.au; [48]). The post-processed CTD

data [25, 49] was sourced from the Marine Mammals Exploring the Oceans Pole to Pole public

portal (www.meop.net/database).
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The Prydz Bay regional subset included 58 SES that visited the study region during 2007,

2009 and 2011–2015. This included both French and Australian deployments at Kerguelen

Island (n = 16) and at Davis Station (n = 42), Antarctica. These comprised almost all juvenile/

sub-adult males (and one female seal), so age and sex effects were not considered. For the pur-

poses of this study, population level habitat selection was the focus. The dataset was collated

across all years to enable comparison with the climatological ROMS output and focus upon

seasonal trends. For this, four periods were defined based on the distinct stages in the annual

cycle of elephant seals [35, 50]; post-breeding (PB, November–January), post-moult 1 (PM1,

February–April), post-moult 2 (PM2, May–July) and post-moult 3 (PM3, August–October).

Due to the data availability (Table 1) for the purposes of statistical analysis only PM1 and PM2

are included.

Remotely sensed surface chlorophyll (Chl-a). To provide information about the biologi-

cal characteristics of the study region, and in particular polynyas, surface Chl-a data was exam-

ined. Two climatological fields were constructed for the study domain from monthly 8km

gridded SeaWiFS/MODIS remotely sensed images over the period November 1997 to October

2008 (http://oceandata.sci.gsfc.nasa.gov/SeaWiFS/Mapped/Monthly/9km/Chlor_a/) using the

R (R core development team 2015) package raadtools [51]. The climatologies were defined

based on the elephant seal seasons as described above. There is a time lag between the develop-

ment of phytoplankton blooms and the energy transfer up through trophic levels to higher

order predators. Modelled estimates of the time lag to increases in the concentration of zoo-

plankton grazers are in the order of 15–20 days [52] to around 30 days [53, 54] and most likely

<90 days [53]. From this, there is a further time lag for the development of other secondary

production (i.e.an ecological community of krill and other crustaceans, small to large fishes

and squids) that is directly preyed upon by seals. To allow time for energy transfer between

trophic levels, the Chl-a average for the season prior to each of PM1 and PM2 was used. It is

known that SeaWiFS/MODIS underestimates Chl-a for the Southern Ocean, however a cor-

rected product [55] was not available for the full time span of this study. As there is no compar-

ison between Southern Ocean values with other oceanic regions, the relative values provided

by this dataset are considered suitable for this analysis.

Historical fish data. The available historical pelagic and benthic fish data [56] was col-

lated from the demersal trawls (Otter and Beam) on two historical voyages, AAMBER1 (17/2–

5/3 1987) and AAMBER2 (17/2–28/2 1991) [38]. This dataset was spatially patchy but used as

a qualitative indicator of species richness (total number of species) and approximate fish bio-

mass within the region. There was greater availability of fish length records than weights

within the database, and given that these parameters are related, length (mm) was used as a

Table 1. SES data summaries per season.

Season

PM1 PM2 PM3 PB Entire Dataset

Years Available 2007, 2009,

2011–2015

2009, 2011–2013 2009, 2011–2013 2007, 2011–2015 2007, 2009, 2011–2015

Number of seals 57 29 11 9 58

Number of CTD Casts 9514 4185 1456 527 15682

Number of KF Locations 29936 10349 2302 410 42997

The years in which data was available and the number of seals are displayed, as well as the number of CTD casts and Kalman filtered (KF) track locations

(see Methods). PM1 = Post-moult 1 (Feb–Apr), PM2 = Post-moult 2 (May–Jul), PM3 = Post-moult 3 (Aug–Oct) and PB = Post-breeding (Nov–Jan).

https://doi.org/10.1371/journal.pone.0184536.t001
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mass proxy. Total lengths for pelagic and benthic species were summed and divided by trawl

effort; trawl effort was calculated from Speed (kn) x Tow Duration (min)/60.

ROMS characterisation of polynyas

An animation of ROMS daily surface temperatures, which shows activity especially within the

Cape Darnley and Mackenzie polynyas, can be found in S1 Video.

Virtual moorings. Virtual moorings were used to ensure ROMS was adequately simulat-

ing oceanographic conditions, as well as to characterise each polynya’s seasonal trends. Con-

tours of net surface heat flux during the freezing season, March–October [1] were used to

define the broader polynya region (Fig 1A) and a small centroid area defined for finer scale

investigation. Due to the differing polynyas sizes the Cape Darnley and Mackenzie polynya

centroids were a 3 x 3 (~0.75˚ x 0.75˚) grid cell area, whereas Prydz polynya was 2 x 2 (~0.5˚ x

0.5˚) and the West Ice shelf 1 x 2 (~0.25˚ x 0.5˚). It was ensured that the grid cells were neither

bordering land nor ice shelves as a precaution to avoid artefacts on the environmental variables

of focus. Oceanographic time-series were constructed from ocean properties averaged across

cells within the centroid regions, within the top and bottom 50 m of the water column. Supple-

mentary time-series showing full-year temperatures and salinities at depth can be found in S1

Appendix.

Temperature-Salinity plots. Temperature-Salinity (T-S) plots are oceanographic tools

used to represent the physical properties of water masses. Such plots can provide insights on

how the water column develops throughout a season. T-S plots were created to compare

ROMS output with seal CTD data. For each polynya, all unique seal CTD casts were extracted

from a heat flux contour larger than the centroid region (see S2 Appendix; due to the differing

activity intensities these thresholds differed: Cape Darnley = -150 W m-2, Mackenzie = -210 W

m-2, Prydz Bay = -110 W m-2, West Ice Shelf = -60 W m-2) and combined for all years to dis-

play seasonal changes in the water column. Within each polynya, a ROMS T-S profile was

extracted for each grid cell within the centroid (e.g. 9 for Cape Darnley), over the time period

equivalent to that represented by the SES data. The larger area of the contour was used to cap-

ture the SES data (see S2 Appendix), rather than the smaller ROMS centroid area, to account

for potential error in position and to give a broader representation of polynya processes. A

potential density surface (σ2 = 37.16 kg m-3) was used to approximate the neutral density of

AABW (γn = 28.27) [2] and plotted together with the approximate freezing point of sea-water

(-1.85˚C) on all T-S plots.

Virtual transects. Spatial transects were constructed to further explore oceanographic

conditions and seal distribution in and around polynyas. A transect running north-south from

each polynya centroid was defined, ensuring the origin was at least two grid cells north of any

land or ice shelves, and extending north past the shelf break. Each transect was 3 grid cells

wide, approximating a width of 0.5˚ +/- 0.2˚.

Temperature and salinity were averaged throughout the freezing period (March–October)

and across longitude, but resolved vertically through the water column. The total number of

individual seals and unique CTD casts were calculated per 0.25˚ grid cell along each transect to

provide a visual representation of seal density and the quantity of available data in relation to

the transect features. Full-year time-series animations of temperature along each polynya tran-

sect can be found in S2–S5 Videos.

Characterisation of SES habitat use

Spatial residence time. The ARGOS tracks for all SES (n = 58) were filtered using a Kal-

man filter (KF) [57] to minimise positional errors and to estimate location points along

East Antarctic polynyas as southern elephant seal foraging habitat
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movement paths at regular 2-hour intervals [35]. From this the average residence time (hours)

within the study region was calculated for each seal and then averaged across all individuals,

on a regular 0.25˚ x 0.25˚ longitude/latitude grid to match the ROMS resolution. This was

calculated using the R package trip [58]. Results were calculated for both an annual average

representation of time spent, and the two focal post-moult seasons (PM1 and PM2), and

reprojected on to the ROMS grid for analyses. Since tracking data are presence-only, to make

inference about habitat preference or selectivity would require some generation of pseudo-

absences for habitat availability [59, 60] (e.g. via a Poisson point process or random track sim-

ulation). However, this process was considered overly sophisticated for the small spatial scale

of this work. The entire modelled region is easily traversable by seals in a matter of days; and

they could clearly cover this domain many times over during the post-moult period at sea of

up to 8 months [25]. Rather than habitat preference or selectivity it is important to note only

habitat usage was directly modelled here.

Statistical models. Habitat use (residence time) was modelled in response to a selected set

of biophysical variables. Using the R package mgcv [61] initial models were tested fitting gener-

alised additive models (GAMs) to the two seasonal residency datasets. The two final models

were fitted using the gamm() function (for generalised additive mixed models, GAMMs)

which interfaces to the R package nlme [62]. This enables the incorporation of a spatial correla-

tion structure in the models to account for autocorrelation in the data [63].

Predictor variables. A total of 9 predictor variables were initially considered for each sea-

son, comprising 8 physical variables extracted from ROMS plus the remotely sensed surface

Chl-a. These were: bathymetry, surface heat flux, surface temperature, bottom temperature,

bottom velocity magnitude, the eastward (U), northward (V) and vertical (W) components of

bottom velocity. Each of these was chosen because of their assumed relevance to structuring

polynyas as foraging habitat.

The heat flux variable was averaged over the entire freezing period (March–October) to rep-

resent polynya location and intensity even post-activity i.e. during summer. This averaged heat

flux was used to develop both PM1 and PM2 models. The magnitude of bottom velocity was

calculated from
p

(u2 + v2). As previously described, Chl-a predictor represented an average

of the previous season to allow for a biological lag between primary and secondary production.

To account for skewed distributions, Chl-a and bathymetry were log-transformed; the

response variable (residence time) was also log-transformed (natural logarithm).

Variance inflation factors (VIFs) and correlation coefficients amongst predictor vari-

ables [64] were checked to reduce collinearity effects [65]. A fairly stringent threshold was

employed, allowing a maximum VIF of 3 [64]; this reduced maximum correlation between

variables to less than 0.8, which was considered reasonable (Figs B and D in S3 Appendix).

Once the appropriate set of predictor variables had been identified (i.e. selected predictor

variables had both correlation and VIFs lower than the defined thresholds) Akaike’s Infor-

mation Criterion (AIC) [66] was used to build up models manually via a forward stepwise

procedure (only complete observations were used; PM1 n = 3408; PM2 n = 2448). This

process was chosen as addressing all possible combinations of terms would have been too

computationally intensive. Furthermore, this method facilitated understanding of the con-

tribution of individual terms. Initially, a generalised additive model (GAM) was fitted to

each individual predictor and the variable with the smallest AIC value (indicating compar-

ative model fit) selected as the first covariate. Further predictors were added until F-tests

indicated non-significance (i.e. p > 0.05).

The final combination of predictors from each seasonal GAM was used to build a GAMM

for each of the seasons PM1 and PM2. These GAMMs included a Gaussian correlation struc-

ture on latitude and longitude to address the spatial autocorrelation inherent within the data

East Antarctic polynyas as southern elephant seal foraging habitat
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[67]. The complete statistical procedure and results, including the partial residual plots for the

two final GAMMs, can be found in S3 Appendix. The fitted values from the final model for

each season were mapped to show the predicted habitat usage across the greater Prydz Bay

region.

Results

The CTD casts and tracking locations from the 58 seals (Table 1) provided information across

most years between 2007 and 2015 (Table 2) with most data (~90%) recorded during PM1 and

PM2. This reflects the tendency for seals to arrive early in the year and stay in the shelf region

for varying lengths of time (see also S2 Appendix). Overall the CTD dataset provided good spa-

tial coverage of the study region, with observations across the shelf, within all four polynyas,

and along the shelf break (Fig 1B).

ROMS evaluation

During the freezing period (March–October, Fig 1A) the polynyas were clearly far more active,

in terms of a much greater negative heat flux, than the surrounding ocean. Mackenzie and

Cape Darnley had the two most active cores, with a peak heat flux of -260 W m-2 and -210 W

m-2 respectively. For the weaker Prydz and West Ice Shelf polynyas, the maximum heat flux

was -150 W m-2 and -70 W m-2 respectively. The polynya centroids were defined within these

contours.

Seasonal temperature and salinity trends. ROMS output for the four polynyas demon-

strated a clear seasonal cycle of cooling and increasing salinity from the start of the freezing

period (March-April), and the reverse in spring (mid-October; best seen in Fig 2D). Greater

variability was evident in the top layer (Fig 2B and 2D) than the bottom layer (Fig 2A and 2C).

The relationship between salinity and temperature was clear in both layers, with a temperature

decrease corresponding to a (slightly lagged) salinity increase. This lag was most noticeable in

Cape Darnley and Mackenzie leading into the freezing season, where surface and bottom tem-

peratures were at a minimum. Cape Darnley polynya was the coldest and most saline polynya

and showed the most variability within each month.

The ROMS time-series revealed unique signatures for each polynya (Fig 2 and S1 Appen-

dix), but with similarities evident between the western (i.e. Cape Darnley and Mackenzie), and

eastern (i.e. Prydz Bay and West Ice Shelf) pairs. Prydz Bay polynya and West Ice Shelf polynya

were generally both warmer and fresher. While the seasonal and regional patterns were rela-

tively well represented, in fact the ROMS representation of temperatures rarely approached

the absolute freezing point of seawater (~ -1.85˚C) in the western polynyas and not at all for

the two easternmost polynyas; possibly in compensation to this the salinities were extremely

high (e.g. commonly above 34.8 psu, Fig 2C and 2D).

Temperature-Salinity plots. The T-S plots for each polynya (Fig 3) illustrated that the

ROMS generated characteristics were more saline, by as much as 0.5–1 psu, than the in situ
seal observations. More important than the absolute values from each data source is that the

Table 2. SES data summaries per polynya.

Polynya Seals Unique Casts Total Weeks (Non-Continuous) Total Year

Cape Darnley 20 817 36 (Jan–Nov) 2007, 2011–2015

Mackenzie 32 1649 18 (Feb–Sept) 2011–2013, 2015

Prydz 13 1642 33 (Mar–Nov) 2009, 2011–2012

West Ice Shelf 3 272 23 (May–Oct) 2013

https://doi.org/10.1371/journal.pone.0184536.t002
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evolution of the water column from the seal observations (Fig 3A, 3C, 3E and 3G) was consis-

tent with the evolution of water properties shown in the ROMS output (Fig 3B, 3D, 3F and

3H). Specifically, as the year progresses (plot points change from red, through orange, yellow,

green then blue) the water gets colder and saltier. However, the seal observations were some-

what noisier than the ROMS output, which tended to occupy a smaller region of T-S space;

this is particularly the case in summer (Fig 3A and 3B). This may be expected, simply due to

the multi-year seal observations capturing more natural variability than a climatological model

can produce. In general, AABW may potentially form when the cold, saline shelf waters reach

sufficient density (i.e. potential density is greater than 37.16 kg m-3; the curve representing this

density was shown as the diagonal line on all panels in Fig 3). ROMS represented most waters

as sufficiently dense to be AABW precursor within all polynyas, and as such a realistic evalua-

tion of this water mass formation was not possible. Due to the ROMS bias and difference in

scale between the gridded ROMs output and seal observations, a one-to-one match between

point values cannot be expected. Despite this bias, there was similarity in overall seasonal

trends displayed between observed and modelled characteristics. For example, the water col-

umn structure at Cape Darnley from both observations and model output showed cooling

throughout the season (Fig 3, panels a and b, light to dark blue), collapsing into a cold and

highly saline water mass. For the other three polynyas, the seal observations throughout the

autumn-winter were cold and saline while the ROMS representation was somewhat warmer.

Transects. The virtual transects provided a spatial summary of ocean conditions and seal

distribution within and around the four Prydz Bay polynyas (Fig 4 and time-series animations

in S2–S5 Videos). The polynya centres were clearly apparent as areas of cold, saline water.

There was some evidence of a downslope flow of cold, salty water from both Mackenzie (Fig

4A) and Cape Darnley polynyas (S1 Appendix), with potential off-shelf flow also in the vicinity

of West Ice shelf polynya. The northern section of the transects approaching and crossing the

shelf break, were dominated by a lens of warmer, fresher water. This lens overlaid the polynya

water particularly in the vicinity north of Mackenzie, which represents the deepest and most

southerly polynya.

Fig 2. Annual temperature (a) and (c) and salinity (b) and (d) time series from ROMS. Temperature and

salinity averaged over the centroid for each of the four polynyas, for approximately the lower 50m (LHS) and top

50m (RHS) of the water column, respectively. Bathymetry was extracted from the ROMS output. Legend for colours

as shown in panel (a).

https://doi.org/10.1371/journal.pone.0184536.g002
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Fig 3. Comparative T-S plots between SES CTD (LHS) and ROMS (RHS) profiles within four East

Antarctic polynyas. a, b) Cape Darnley (Jan–Nov), c, d) Mackenzie Bay (Feb–Sept), e, f) Prydz Bay (Mar–

Nov) and g, h) West Ice Shelf (May–Oct). Profiles are coloured by day of year to show the seasonal

East Antarctic polynyas as southern elephant seal foraging habitat
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For the Prydz Bay (Fig 4B) and West Ice Shelf polynyas, there was a concentration of seal

CTD casts close to the Antarctic continent, with a greater number of tracked seals evident

within the most active core areas (e.g. the cold, saline pocket around 67˚S, Fig 4B). Along the

progression, where summer is deep red leading into dark blue during the middle of winter. Seal data include

all observations at all depths extracted from within a surface heat flux contour defining the most active region

of each polynya (see S2 Appendix). The ROMS output displays a profile from every grid cell within the

centroid, at fortnightly intervals. The approximate freezing point of water (-1.85˚C) and the potential density

curve representing AABW (σ2 = 37.16 kg m-3) are shown in black.

https://doi.org/10.1371/journal.pone.0184536.g003

Fig 4. Virtual transects showing ROMS temperature and salinity in relation to the number of observed seals

and seal CTD casts. Virtual transects ran north-south from polynya centres to the shelf break. Modelled

temperature and salinity was averaged over the freezing period (March–October). Transects represent a)

Mackenzie Bay and b) Prydz Bay polynyas. The other two polynya transects are available in S1 Appendix, Fig B.

The number of seals (top panel) was multiplied by a factor (x10) for clarity. Centroid location is represented by a

black triangle.

https://doi.org/10.1371/journal.pone.0184536.g004
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Prydz Bay transect there was a second area of seal activity in a depression (~ 66˚S) at the shelf

break. The Cape Darnley transect also showed the greatest number of observations and seals

not within the polynya core but closer to the shelf break (~ 66.9˚S, S1 Appendix). Cape Darn-

ley represents the shallowest polynya, with much of the shelf area being very cold and saline.

For Mackenzie (Fig 4A) there was a high number of seals around both 68.5˚S and 67˚S,

although the greatest number of observations were directly adjacent to the Amery Ice Shelf.

Taken together, the virtual moorings, consistent trends shown in the T-S plots and transect

information indicated that the ROMS output for the polynyas was adequately reproducing sea-

sonal water column trends. Furthermore, the differences between the modelled polynyas were

sufficient to suggest that the model was satisfactorily capturing distinct regional behaviours.

Characterisation of SES habitat use

Residence time results. The spatially gridded time-spent data revealed habitat usage pat-

terns strongly centred on polynyas (Fig 5). The annual summary clearly showed that of all the

available foraging locations the greatest time was spent in the region of the four polynyas (Fig

5A). Although visited by a high number of individual seals (Table 2) the Cape Darnley polynya

had less concentrated use (~8 hours maximum per grid cell) compared to the other 3 polynyas

(~20 hours). Also apparent was a concentrated usage of the shelf break area north of the Prydz

Bay polynya, as previously identified within the virtual transect.

During Post-moult 1 (n = 29936 KF locations, N = 57 seals) (Fig 5B) the highest residence

time was in the Prydz Bay polynya and the shelf break area to the north (also indicated as a

potentially active area by the -40 W m-2 contour). There was also evidence of a north-south

transit route into the region, from a relatively concentrated usage observed along a route into

Mackenzie Bay polynya near 71˚E. For PM1 there was generally high usage across the entire

shelf as compared with off-shelf, indicating that the entire area was largely accessible at this

time. Though there was less data available during early winter (PM2, n = 10349, N = 29 seals)

Fig 5. Maps showing the mean time spent per ROMS grid cell across all southern elephant seal individuals.

Residence time represented a) annually and during b) Post-Moult 1 (PM1, February to April) and c) Post-Moult 2

(PM2, May to July). Greater Polynya regions are outlined with the -40 W m-2 heat flux threshold (black) and the

1500m isobath (dotted line) indicates the shelf break.

https://doi.org/10.1371/journal.pone.0184536.g005
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(Fig 5C), the spatial usage patterns showed a stronger contraction towards the polynya areas

during sea-ice advance; West Ice Shelf, Prydz Bay and Mackenzie polynyas were all regions of

concentrated time spent during PM2. While the concentration of seals in Cape Darnley was

lower, there was still evidence of increased use in this polynya relative to the surrounding

region.

Predictor fields. Due to the similarities between the predictor fields from each of the two

seasons considered, only the fields for PM1 are shown (Fig 6). The predictor fields for PM2 are

available in S3 Appendix.

ROMS surface water temperature for PM1 showed Cape Darnley and Mackenzie polynyas

as distinctly colder than the surrounding region (Fig 6B). Bottom temperature (Fig 6C) addi-

tionally highlighted the cold core of Prydz Bay polynya. A warm on-shelf flow originating in

the north-east of Prydz Bay near 84˚E, and flowing westward was evident in the bottom tem-

perature as well as the bottom velocity (Fig 6D) and eastward (U) velocity (Fig 6E) fields,

Fig 6. Physical and biological predictors fields used to build the seasonal GAMM for PM1. a) Polynya

location, surface heat flux (W m-2) averaged over the freezing period (March to October); b) surface water

temperature (˚C); c) bottom temperature (˚C); and the d) total magnitude (m s-2), e) eastward (m s-1) (U), f) northward

(m s-1) (V), and g) vertical (cm s-1) (W) components of bottom water velocity; and h) log transformed surface Chl-a

concentration (mg/m3) averaged over the previous season (November to January).

https://doi.org/10.1371/journal.pone.0184536.g006
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revealing the cyclonic circulation in the middle of the bay. Additionally, there was evidence of

a strong westward jet along the shelf break representing the Antarctic Slope Current. When

examining northward velocity (V) (Fig 6F), off-shelf flows of cold water originating from Cape

Darnley were evident. Surface Chl-a (Fig 6H) for the preceding spring season (i.e. November–

January) showed highest concentrations in the middle of Prydz Bay, with elevated levels evi-

dent within Prydz Bay and Mackenzie polynyas.

Model predictions. The goodness-of-fit statistics available for the full GAMs (PM1:

adjusted R2 = 0.484, deviance explained = 49.2%; PM2: adjusted R2 = 0.589, deviance

explained = 59.6%) and GAMMs (PM1: adjusted R2 = 0.415; PM2: adjusted R2 = 0.538)

indicated a good fit from the final models, particularly given the complex spatial ecological

data. The predictor variables reported as significant for the final PM1 and PM2 GAMMs are

given in Table 3. The three most significant individual predictors for PM1 were: bathymetry

(AIC = 4540.483, R2 = 0.284), Chl-a (AIC = 4969.957, R2 = 0.188) and bottom temperature

(AIC = 5001.159, R2 = 0.181) (these cited values relate to single predictor models, see S3

Appendix). These three predictors were the primary focus, as the deviance explained

dropped substantially for the rest of the variables. The U and W bottom velocities were not

retained in the final GAMM for PM1 (Fig 7A), and surface temperature and U bottom

velocity were not retained for PM2 (Fig 7B). The influence of bathymetry is clear in the gen-

erally increased time spent across the entire shelf region (Fig 7A); partial residual plots (S3

Appendix) revealed a preference for shelf depths (200–700 m), with lower residence time

Table 3. Statistical results from GAMMs fitted for (a) PM1 (residence time averaged over n = 57 seals,

observations in N = 3408 grid cells), R2 (adjusted) = 0.415, and (b) PM2 (residence time averaged over

n = 29 seals, observations in N = 2448 grid cells), R2 (adjusted) = 0.538.

Estimated degrees of freedom F value p value

(a)

s(heat) 4.690 15.456 <0.001 (***)

s(s_temp) 5.590 8.079 <0.001 (***)

s(b_temp) 5.070 5.295 <0.001 (***)

s(vel) 3.115 22.143 <0.001 (***)

s(V) 1.000 30.421 <0.001 (***)

s(log.bath) 8.661 35.041 <0.001 (***)

s(log.Chlo) 6.629 13.353 <0.001 (***)

(b)

s(heat) 8.593 52.031 <0.001 (***)

s(b_temp) 8.433 15.618 <0.001 (***)

s(vel) 6.313 4.380 <0.001 (***)

s(V) 1.000 21.124 <0.001 (***)

s(log.bath) 7.347 27.868 <0.001 (***)

s(log.Chlo) 4.208 10.060 <0.001 (***)

s(W) 1.873 5.291 <0.01 (**)

Heat = net surface heat flux average over the freezing period (March–October); used to represent polynya

location; all other were variables seasonally averaged: s_temp = surface temperature, b_temp = bottom

temperature, vel = bottom velocity magnitude; V = northward and W = vertical components of bottom

velocity; log.bath = log transformed bathymetry, log.Chlo = log transformed surface Chl-a (data from the

previous season).

** = p value <0.01

*** = p value <0.001.

https://doi.org/10.1371/journal.pone.0184536.t003
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offshore. Bottom temperature, associated with surface heat flux (or polynya location), influ-

enced the concentrated polynya usage; cold bottom temperatures were especially evident

within the Mackenzie and Prydz Bay polynyas (Fig 6C). Increased residence time was asso-

ciated with higher surface heat flux, and this predictor became more influential in PM2

(Figs C and E in S3 Appendix). Increasingly concentrated polynya usage was predicted for

all four polynyas during PM2 relative to PM1 (Fig 7B).

Statistical relationships for PM2 were similar to PM1, with heat flux followed in influence

by bathymetry and Chl-a (Table D in S3 Appendix). In both seasons, the magnitude of cur-

rents also played an important role: habitat usage increased with lower levels of water move-

ment, with seals spending relatively less time in the vicinity of higher speed flows along the

shelf-break. Higher rates of downward vertical velocity along the shelf-break were weakly

linked to an increase in predicted time spent (Figs D and E) in PM2.

The available historical fish data (Fig 8) had patchy spatial coverage, with trawls inside

polynyas only occurring at Cape Darnley and around the boundary regions for the other three.

Fig 7. Generalised additive mixed model predictions of SES habitat selection. For (a) Post-Moult 1 (PM1) and

(b) Post-Moult 2 (PM2). Grid cell resolution of 0.25˚× 0.25˚. For PM1, surface heat flux (W m-2), surface

temperature (˚C), bottom temperature (˚C), current magnitude (m s-2) and northward (m s-1) velocities, log

transformed bathymetry (m) and log transformed Chl-a (mg/m3) were retained. For PM2, surface heat flux (W m-2),

bottom temperature (˚C), current magnitude (m s-2), vertical (cm s-1) and northward (m s-1) water velocities, log

transformed bathymetry (m) and log transformed Chl-a (mg/m3) were retained.

https://doi.org/10.1371/journal.pone.0184536.g007

Fig 8. Historical pelagic and benthic fish data distribution, showing species richness (red) and proxy fish

biomass (cyan). The size of the circle indicates the relative value of both indicators. Species richness is the total

number of species, and the proxy biomass was obtained from the total summed fish length (mm) for pelagic and

benthic species standardized by trawl effort (Speed [kn] x Tow Duration [min]/60, see Methods). Background shows

predicted habitat selection for PM1.

https://doi.org/10.1371/journal.pone.0184536.g008
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Consequently, this dataset was only used to qualitatively examine spatial patterns. The greatest

proxy fish biomass occurred around the shelf break and within the centre of the bay, with high

biomass also apparent in the vicinity of the warm shelf inflow near 84˚E. Trawls within the

Cape Darnley polynya revealed a relatively abundant number of species as did one trawl

immediately adjacent to the Amery ice shelf.

Discussion

Southern elephant seals from breeding colonies in the South Indian Ocean (Kerguelen and

Macquarie Islands) are known to forage around the Antarctic continental shelf and slope (e.g.

[28, 30, 35, 36]) where they locate high-quality prey patches [36]. Characterising this key forag-

ing habitat is not only ecologically important for our understanding of species responses to

specific environmental conditions; the process also informs a more integrated understanding

of these under-sampled regions. The physical importance of Antarctic coastal polynyas has

been previously described (e.g. [1, 29]), and this study provides important new insights into

the bio-physical properties structuring these as predator foraging habitat. This study clearly

showed seals spending greater time on-shelf within the Prydz Bay vicinity in East Antarctica,

and exhibiting concentrated residence times within the four coastal polynyas in the region.

Statistical analyses relating a suite of bio-physical predictors showed an influence of bathyme-

try, Chl-a, surface heat flux, bottom temperature and velocity on seal residence time. This

provides the first statistical description of polynya characteristics as a foraging habitat for

southern elephant seals using an oceanographic model. A hypothesis has been previously pro-

posed regarding surface-subsurface coupling of biological productivity in coastal polynyas

[68]; an extension is proposed here to include pelagic-benthic coupling in the vicinity of

coastal polynyas, which leads to favourable conditions in terms of resources for predators.

Evaluation of ocean model output

The model evaluation process demonstrated that ROMS adequately represented the ocean

properties and circulation in the study region for the purposes of this study. The ROMS output

provided oceanographic context that supported two spatially correlated GAMMs with good fit

to observed seal residence time enabling realistic predictions of habitat usage based upon bio-

physical predictors.

Reproduction of main oceanographic features. Cape Darnley was the coldest and saltiest

of the polynyas throughout all seasons, most likely a product of high rates of ice formation.

Cape Darnley has been identified as having the second highest rate of ice production around

Antarctica, behind the Ross Sea [1]. It is an important regional source of AABW, a cold dense

water mass that is a major contributor to global overturning circulation [3, 5]. AABW origi-

nates as Dense Shelf Water formed through brine rejection during sea-ice production [2–4].

The formation of Dense Shelf Water begins in March, at the start of the freezing period [5].

ROMS model output (with the imposed surface heat and salt fluxes) demonstrated such a

trend with an increase in salinity and a drop in temperature throughout the water column at

the start of March. Additionally, downslope flows of Dense Shelf Water in a north-west direc-

tion from Cape Darnley during the freezing period have been described [5]. The ROMS bot-

tom velocity components (U and V) showed some evidence of this outflow.

The Prydz Bay and West Ice Shelf polynyas exhibited warmer and less saline trends than

Cape Darnley and Mackenzie. A large cyclonic gyre in the centre of Prydz Bay has been associ-

ated with a coastal current that circulates warm Modified Circumpolar Deep Water into the

bay and across the calving front of Amery Ice Shelf (which forms the southern border of the

bay) [21] and continues westward [69]. The various ROMS velocity components represented
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this flow, and the ROMS temperature time series for the Prydz Bay and West Ice Shelf polyn-

yas reflected the influence of this warmer water.

The potential influence of the gyre and other circulation features such as eddies [70], or

physical forcing from wind patterns [71] may explain the weekly cycles apparent in the tem-

perature and salinity time series within both Prydz Bay and Mackenzie polynyas (Fig 2 and S1

Appendix). Additionally, the small T-S phase space occupied by the Mackenzie Bay polynya

could be attributed to the accumulation of High Salinity Shelf Water due to the outflows from

the Amery Ice Shelf. This cold, saline water mass, along with the isolation of Mackenzie due to

surrounding bathymetry [29], may have contributed to the model simulating intensely cold,

highly saline water throughout the year.

Model limitations. When comparing ROMS output to SES CTD profiles, a definite saline

bias was evident in the modelled output. One likely cause is resolution of the model. The cir-

cumpolar domain of the model meant that the horizontal grid resolution was configured at

0.25˚. This is at the coarse end of a ‘high’ resolution regional model and it is possible this was

not adequate for simulating the fine scale processes within the region. In particular the model

struggled to represent water properties as the column approached the freezing point, overcom-

pensating regarding salinity [21, 72]. While it is known that CTD tags experience a shift in

salinity due to the effect of the animal on conductance, the correction applied to the dataset

[25] eliminates this potential issue. Furthermore, the seal observations were consistent with

recorded figures for the region (e.g. the saltiest mooring observations documented within

Cape Darnley approach a maximum salinity of 34.8 psu [5]). Therefore, the bias observed was

most likely a ROMS issue.

Improvements may be obtained via a finer-scale ocean model configured to the specific

study region, enabling tuning to better represent specific local processes [21, 72]. The ROMS

implementation was also climatological; a more direct comparison with the observational

dataset would be possible from an inter-annual ROMS implementation (e.g. with forcing that

coincides with the SES data, i.e. 2007–2015). Future developments may explore a fully-coupled

sea-ice component in the model (as opposed to prescribed heat and salt fluxes) to reproduce

the evolution of water masses and allow an investigation of finer scale processes; and/or con-

figure a bio-geochemical sub-model (e.g. [73]).

Despite the saline bias found within the ocean model output, for the purposes of this study

regional spatial dynamics and seasonal trends were considered priority in evaluating the mod-

el’s performance. The absolute values of salinity and temperature were less important than a

sufficient representation of differences between polynyas and seasonal differences within each

polynya.

Elephant seal habitat use: Observed and predicted

Examining elephant seal tracking data, combined with ocean model output to provide regional

context, revealed new insights into factors influencing habitat usage within Prydz Bay. Overall,

the observed and modelled habitat usage showed high residence times in the four coastal

polynyas relative to the surrounding region. The most concentrated occupancy occurred

within the Mackenzie and Prydz Bay polynyas, increasingly so as the season progressed to

early winter.

Interestingly, the Cape Darnley polynya was visited by a relatively high number of individu-

als but they spent less time here overall compared to the Mackenzie and Prydz Bay polynyas.

Models relating bio-physical characteristics of polynyas with seal residency time predicted this

as a suitable foraging location, with concentrated seal usage especially during PM2 (May–July)

in the Cape Darnley polynya. Thus, this polynya had presumably (i.e. based on models)
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favourable bio-physical conditions for seal foraging activity despite the lower observed time

spent. Tagging location may have played some role in the observed lower rates of residency;

for those individuals tagged at Davis Station (n = 42) Cape Darnley is certainly available/acces-

sible (in terms of travel distance) but may be less optimal than the more proximate options of

Mackenzie and Prydz Bay.

It is appropriate here to also consider the issue of temporal scale. This study examined habi-

tat use summarised at the seasonal scale (PM1 and PM2), suitable for a first investigation.

Beyond this, the heat flux predictor field we used (averaged over the entire freezing period

March–October) represents relatively static information on polynya location and area, some-

what analogous to studies including ‘distance to polynya’ as a predictor field [13, 37]. This may

be considered the expected spatial “ecological footprint” of polynya activity even post-activity,

i.e. during summer, and contains additional information about relative intensity of activity

across polynyas. The remaining physical predictor variables we used from ROMS (e.g. surface

temperatures, bottom velocities etc.) all contain more dynamic information relevant at the sea-

sonal scale. The earlier results evaluating the ROMS model clearly showed strong seasonal

changes dominating the water column structure (Figs 2 and 3), but within this also finer scale

temporal dynamics (S1 Appendix). The relationship between foraging behaviour and oceano-

graphic conditions may change with the scale investigated [30].

Further investigation examining full time-series (movement and behavioural data) obtained

from individual seals will no doubt prove fruitful, and may provide insight into how individual

animals respond dynamically to physical processes; for example, whether individuals reside

near polynya cores or edges (or vacate) during the periods of most intense ice production. The

aggregation scales (spatial and temporal) used in this study may have been too coarse to detect

dynamic (also potentially interannual) environmental influences on seals foraging within the

region. A finer-scale investigation may also reveal why the Cape Darnley polynya had high vis-

itation but a lower average residency time.

Foraging of SES around Antarctica has been described in deep oceanic waters [35]

around the Antarctic shelf break [28] and in shelf waters. Within the greater Prydz Bay

region, this study revealed the significance of bathymetry as a physical predictor for both

seasonal GAMMs, describing a predominant depth for SES habitat usage between ~200–

700 m. While this study did not examine open ocean foraging, those seals that migrate

to this area clearly focus their time in the shelf and shelf-break vicinities, supporting the

concept that the shelf region generally represents favourable foraging habitat [30, 35, 36].

Within this region, coastal polynyas have been described as key oceanographic features [1,

5, 29]; the importance of surface heat flux (a proxy for polynya area) as a predictor of habitat

usage implicated polynyas as ecologically important regions for SES within the Prydz Bay

region during both PM1 (February–April) and PM2 (May–July).

Residence time during PM2 showed concentrated polynya use and a reduced usage of other

available shelf habitat. SES are influenced by the extent of sea-ice [74], and the majority of Prydz

Bay is ice-covered during PM2. Concentrated polynya use during this season may have been

due to habitat contraction because of ice formation and subsequent breathing constraints; how-

ever, the persistence of polynya usage during the previous season (PM1) suggested that there

may be foraging benefits for polynya fidelity across seasons. The potential negative influence of

colder waters on the mobility of prey such as fish and squid [30, 75] is a phenomenon that may

be at play in the cold bottom waters of polynyas. Polynyas support high phytoplankton blooms

compared to surrounding ice-covered waters in early spring and have been described as sites of

concentrated biological activity supporting rich ecosystems throughout the year [7, 76]. Primary

productivity (surface Chl-a) was represented within each seasonal predictive model as an aver-

age of the previous season to support the development of secondary production. The
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significance of this predictor, as well as surface heat flux and bathymetry, suggested that

together polynya location and biological production were important factors determining rela-

tive rates of habitat usage within the Prydz Bay region, especially leading into winter.

In the Commonwealth Bay polynya, East Antarctica, it has been hypothesised that towards

the end of summer, surface productivity is convected through the water column [68] leading to

a sub-surface Chl-a maximum that supports secondary productivity (zooplankton, small fish

etc.) used by seals later in the season. The influence of Chl-a within both statistical models was

likely due to this relationship between high rates of primary productivity during early spring

and summer and the effect this has on secondary production within polynyas. Vertical ROMS

velocities (W), a product of brine rejection from sea-ice production [2–4], revealed sinking

water specifically within Prydz Bay polynya and Mackenzie polynya. This vertical movement,

which may have entrained primary production down through the water column, was significant

in describing habitat use during PM2. A higher resolution ocean model could enable an investi-

gation of these fine-scale water movement features to verify this transfer of biomass.

Notably, diving behaviour of SES over the Antarctic shelf (and other continental shelves) is

thought to be predominantly benthic (e.g. >75% of dives) [30, 31]. With this information, an

expansion to the above hypothesis [68] can be proposed, whereby the bio-physical coupling

from surface to subsurface productivity is likely to extend throughout the water column as it

becomes fully convected later in the season to promote pelagic-benthic coupling, a linkage

between the surface pelagic system and the benthos. Recent work has highlighted the diversity

of benthic community assemblages that are strongly influenced by bathymetry and other

water characteristics, including distance to polynyas [37]. Through enhanced vertical carbon

flux, polynyas may support rich benthic communities [77]. A productive benthic community

could represent a relatively stable foraging opportunity for migratory predators, in comparison

to seasonally transient pelagic production in oceanic waters.

Future research should endeavour to collect observations which would enable the validation

of this hypothesis. Historical fish data suggested a greater number of species and increased bio-

mass around regions of warm inflow, and within the Cape Darnley polynya. However, the

dataset provided poor spatial coverage and there was little information for the other polynyas.

The age and scarcity of this dataset highlighted the need for updated sampling of ecological

communities within the Prydz Bay region. Specifically, benthic and pelagic trawl surveys of

polynya and non-polynya areas within the region and ideally targeting of both inflow and out-

flow areas. This would further our understanding of the coupling between bottom and upper

water layers, and the implications for benthic communities, and be of great value in providing

a better biological description of prey availability for SES and other diving marine predators.

Conclusion

The results of this study suggest that the most important foraging locations for juvenile

male southern elephant seals within Prydz Bay region are polynyas, particularly the Cape

Darnley, Mackenzie and Prydz Bay polynyas. These polynyas vary in their levels of activity,

are impacted by the central gyre within the region and correspond to areas of cold water

outflows and warm water inflows, respectively. Future vessel-based survey work targeting

the question of whether benthic communities and associated fish assemblages are more pro-

ductive inside or outside of these areas would provide valuable insights into the true nature

of the proposed pelagic-benthic coupling. Obtaining prey field data at relevant spatio-tem-

poral scales is expensive but necessary to enable a better biological understanding of how

prime foraging habitat is structured, and provide a pathway into characterising the region

as habitat for other marine predators such as other seals, penguins and flying seabirds.
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33. Bailleul F, Cotté C, Guinet C. Mesoscale eddies as foraging area of a deep-diving predator, the southern

elephant seal. Marine Ecology Progress Series. 2010; 408:251–64.

East Antarctic polynyas as southern elephant seal foraging habitat

PLOS ONE | https://doi.org/10.1371/journal.pone.0184536 September 13, 2017 22 / 24

https://doi.org/10.1073/pnas.0800790105
http://www.ncbi.nlm.nih.gov/pubmed/18695241
https://doi.org/10.1016/j.dsr2.2010.11.013
https://doi.org/10.1038/sdata.2014.28
http://www.ncbi.nlm.nih.gov/pubmed/25977785
https://doi.org/10.1098/rstb.2007.2109
http://www.ncbi.nlm.nih.gov/pubmed/17472917
https://doi.org/10.3354/meps09498
https://doi.org/10.1371/journal.pone.0184536


34. Maxwell SM, Frank JJ, Breed GA, Robinson PW, Simmons SE, Crocker DE, et al. Benthic foraging on

seamounts: A specialized foraging behavior in a deep-diving pinniped. Marine Mammal Science. 2012;

28(3):E333–E44.

35. Hindell MA, McMahon CR, Bester MN, Boehme L, Costa D, Fedak MA, et al. Circumpolar habitat use in

the southern elephant seal: implications for foraging success and population trajectories. Ecosphere.

2016; 7(5).

36. Thums M, Bradshaw CJ, Hindell MA. In situ measures of foraging success and prey encounter reveal

marine habitat-dependent search strategies. Ecology. 2011; 92(6):1258–70. PMID: 21797154

37. Hibberd T. Describing and predicting the spatial distribution of benthic biodiversity in the Subantarctic

and Antarctic [Unpublished PhD thesis]: University of Tasmania; 2016.

38. Williams D. Aurora Australis Voyage 6 (AAMBER2) 1990–91 pelagic fish data. http://data.aad.gov.au/

aadc/metadata/metadata_redirect.cfm?md=/AMD/AU/AADC-00082: Australian Antarctica Data Centre

—CAASM Metadata; 1999, updated 2014.

39. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, et al. The NCEP/NCAR 40-year

reanalysis project. Bulletin of the American meteorological Society. 1996; 77(3):437–71.

40. Menemenlis D, Campin J-M, Heimbach P, Hill C, Lee T, Nguyen A, et al. ECCO2: High resolution global

ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter. 2008; 31:13–21.

41. Brzeziński A, Nastula J, Kołaczek B. Seasonal excitation of polar motion estimated from recent geo-

physical models and observations. Journal of Geodynamics. 2009; 48(3):235–40.

42. McMahon C, Burton H, McLean S, Slip D, Bester M. Field immobilisation of southern elephant. The Vet-

erinary Record. 2000; 146(25):254.

43. Field I, Bradshaw C, McMahon C, Harrington J, Burton H. Effects of age, size and condition of elephant

seals (Mirounga leonina) on their intravenous anaesthesia with tiletamine and zolazepam. The Veteri-

nary Record. 2002; 151(8):235–40. PMID: 12219901

44. Field IC, Harcourt RG, Boehme L, Bruyn P, Charrassin JB, McMahon CR, et al. Refining instrument

attachment on phocid seals. Marine Mammal Science. 2012; 28(3):E325–E32.

45. McMahon CR, Field IC, Bradshaw CJ, White GC, Hindell MA. Tracking and data–logging devices

attached to elephant seals do not affect individual mass gain or survival. Journal of Experimental Marine

Biology and Ecology. 2008; 360(2):71–7.

46. Photopoulou T, Fedak MA, Matthiopoulos J, McConnell B, Lovell P. The generalized data management

and collection protocol for Conductivity-Temperature-Depth Satellite Relay Data Loggers. Animal Biote-

lemetry. 2015; 3(1):1–11.

47. Boehme L, Lovell P, Biuw M, Roquet F, Nicholson J, Thorpe SE, et al. Technical Note: Animal-borne

CTD-Satellite Relay Data Loggers for real-time oceanographic data collection. Ocean Science. 2009; 5

(4):685–95.

48. IMOS. 2015 [cited 31-05-2015]. Available from: https://catalogue-imos.aodn.org.au/geonetwork/srv/

eng/metadata.show?uuid=06b09398-d3d0-47dc-a54a-a745319fbece.

49. Roquet F, Wunsch C, Forget G, Heimbach P, Guinet C, Reverdin G, et al. Estimates of the Southern

Ocean general circulation improved by animal-borne instruments. Geophysical Research Letters. 2013;

40(23):6176–80.

50. Hindell MA, Burton HR. Seasonal haul-out patterns of the southern elephant seal (Mirounga leonina L.),

at Macquarie Island. Journal of Mammalogy. 1988; 69(1):81–8.

51. Sumner MD. raadtools: Tools for Synoptic Environmental Spatial Data. R package version 0.3.2.9002.

https://githubcom/AustralianAntarcticDivision/raadtools. 2016.

52. Melbourne-Thomas J, Wotherspoon S, Corney S, Molina-Balari E, Marini O, Constable A. Optimal con-

trol and system limitation in a Southern Ocean ecosystem model. Deep Sea Research Part II: Topical

Studies in Oceanography. 2015; 114:64–73.

53. Lehodey P,ANDRE JM, Bertignac M, Hampton J, Stoens A, Menkès C, et al. Predicting skipjack tuna

forage distributions in the equatorial Pacific using a coupled dynamical bio-geochemical model. Fisher-

ies Oceanography. 1998; 7(3-4):317–25.

54. Dalpadado P, Arrigo KR, Hjøllo SS, Rey F, Ingvaldsen RB, Sperfeld E, et al. Productivity in the Barents

Sea-response to recent climate variability. PloS one. 2014; 9(5):e95273. https://doi.org/10.1371/

journal.pone.0095273 PMID: 24788513

55. Johnson R, Strutton PG, Wright SW, McMinn A, Meiners KM. Three improved satellite chlorophyll algo-

rithms for the Southern Ocean. Journal of Geophysical Research: Oceans. 2013; 118(7):3694–703.

56. De Broyer C, Koubbi P, Griffiths H, Grant S. Biogeographic Atlas of the Southern Ocean: Scientific

Committee on Antarctic Research Cambridge, UK; 2014.

East Antarctic polynyas as southern elephant seal foraging habitat

PLOS ONE | https://doi.org/10.1371/journal.pone.0184536 September 13, 2017 23 / 24

http://www.ncbi.nlm.nih.gov/pubmed/21797154
http://data.aad.gov.au/aadc/metadata/metadata_redirect.cfm?md=/AMD/AU/AADC-00082
http://data.aad.gov.au/aadc/metadata/metadata_redirect.cfm?md=/AMD/AU/AADC-00082
http://www.ncbi.nlm.nih.gov/pubmed/12219901
https://catalogue-imos.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=06b09398-d3d0-47dc-a54a-a745319fbece
https://catalogue-imos.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=06b09398-d3d0-47dc-a54a-a745319fbece
https://githubcom/AustralianAntarcticDivision/raadtools
https://doi.org/10.1371/journal.pone.0095273
https://doi.org/10.1371/journal.pone.0095273
http://www.ncbi.nlm.nih.gov/pubmed/24788513
https://doi.org/10.1371/journal.pone.0184536


57. Patterson TA, McConnell BJ, Fedak MA, Bravington MV, Hindell MA. Using GPS data to evaluate the

accuracy of state–space methods for correction of Argos satellite telemetry error. Ecology. 2010; 91

(1):273–85. PMID: 20380216

58. Sumner MD. trip: Tools for the analysis of animal track data. R package version 1.1–21; 2015.

59. Aarts G, MacKenzie M, McConnell B, Fedak M, Matthiopoulos J. Estimating space-use and habitat pref-

erence from wildlife telemetry data. Ecography. 2008; 31(1):140–60.

60. Wakefield ED, Phillips RA, Matthiopoulos J. Quantifying habitat use and preferences of pelagic seabirds

using individual movement data: a review. Marine Ecology Progress Series. 2009; 391:165–82.

61. Wood S. Generalized additive models: an introduction with R: CRC press; 2006.

62. Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC. nlme: Linear and Nonlinear Mixed Effects Models.

R package version 3.1–120 h ttp. CRAN R-project org/package = nlme. 2015.

63. Zuur A, Ieno E, Walker N, Saveliev A, Smith G. Mixed effects models and extensions in ecology with R.

Gail M, Krickeberg K, Samet JM, Tsiatis A, Wong W, editors. New York, NY: Spring Science and Busi-

ness Media. 2009.

64. Zuur AF, Ieno EN, Elphick CS. A protocol for data exploration to avoid common statistical problems.

Methods in Ecology and Evolution. 2010; 1(1):3–14.

65. Brauner N, Shacham M. Role of range and precision of the independent variable in regression of data.

AIChE journal. 1998; 44(3):603–11.

66. Akaike H. Information theory and an extension of the maximum likelihood principle. Selected Papers of

Hirotugu Akaike: Springer; 1998. p. 199–213.

67. Pinheiro J, Bates D. Mixed-effects models in S and S-PLUS: Springer Science & Business Media;

2006.

68. Williams G, Hindell M, Houssais M-N, Tamura T, Field I. Upper ocean stratification and sea ice growth

rates during the summer-fall transition, as revealed by Elephant seal foraging in the Adélie Depression,
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