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Abstract

No-take marine reserves (NTMRs) are increasingly implemented for fisheries management

and biodiversity conservation. Yet, assessing NTMR effectiveness depends on partitioning

the effects of NTMR protection and benthic habitat on protected species. Such partitioning

is often difficult, since most studies lack well-designed sampling programs (i.e. Before-After-

Control-Impact-Pair designs) spanning long-term time scales. Spanning 31 years, this study

quantifies the effects of NTMR protection and changes to benthic habitat on the density of

tropical wrasses (F. Labridae) at Sumilon and Apo Islands, Philippines. Five species of

wrasse were studied: two species of large-bodied (40–50 cm TL) Hemigymnus that were

vulnerable to fishing, and three species of small-bodied (10–25 cm TL) Thalassoma and Cir-

rhilabrus that were not targeted by fishing. NTMR protection had no measurable effect on

wrasse density, irrespective of species or body size, over 20 (Sumilon) and 31 (Apo) years

of protection. However, the density of wrasses was often affected strongly by benthic cover.

Hemigymnus spp. had a positive association with hard coral cover, while Thalassoma

spp. and Cirrhilabrus spp. had strong positive associations with cover of rubble and dead

substratum. These associations were most apparent after environmental disturbances

(typhoons, coral bleaching, crown of thorns starfish (COTS) outbreaks, use of explosives

and drive nets) reduced live hard coral cover and increased cover of rubble, dead substra-

tum and sand. Disturbances that reduced hard coral cover often reduced the density of

Hemigymnus spp. and increased the density of Thalassoma spp. and Cirrhilabrus spp. rap-

idly (1–2 years). As hard coral recovered, density of Hemigymnus spp. often increased

while density of Thalassoma spp. and Cirrhilabrus spp. often decreased, often on scales of

5–10 years. This study demonstrates that wrasse population density was influenced more

by changes to benthic cover than by protection from fishing.
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Introduction

Coral reef ecosystems are under increasing threat from both natural and anthropogenic envi-

ronmental disturbances[1–3], and appear particularly vulnerable to global warming [2, 3],

increased frequency and intensity of storms [4, 5], declining water quality [4, 6] and overfish-

ing [7]. These disturbances often modify processes and structure in the benthic habitat, with

subsequent effects on reef fish populations [8–10]. For example, severe environmental distur-

bances such as typhoons and coral bleaching reduce coral cover, and often decrease structural

complexity and coral diversity [4, 9, 11]. Conversely, less intense environmental disturbances

may only result in minor changes to the benthos and thus reef fish assemblages [12]. Variation

in type, severity and frequency of environmental disturbance events, and the specific benthic

preferences of the reef fish, will determine the extent of response in density of coral reef fishes.

For example, live coral-dependant species (e.g. corallivores) are negatively impacted by coral

loss caused by environmental disturbances to the greatest degree [8, 13–15]. However, not all

reef fish will decline in density following environmental disturbances to the benthos [11, 16,

17]. For example, parrotfish and goatfish that often feed over dead surfaces (sand, rubble, dead

coral), commonly increase in density following shifts in benthic cover from live coral to dead

surfaces [11, 16, 17]. These changes in reef fish density can be sustained for years to decades,

but eventually fish populations return to pre-disturbance states as hard coral recovers [8–10].

While some reef fish increase in local density due to disturbance events, it is currently accepted

that environmental disturbances to the benthos affect density of more reef fish groups nega-

tively than positively [11, 14, 18].

While many studies have documented changes to benthos and fish assemblages following

environmental disturbances, few have focussed on species that may benefit from disturbance-

mediated coral loss [11, 14, 19]. Moreover, the paucity of appropriate sampling designs (e.g.

Before-After-Control-Impact-Pair designs) monitored on decadal scales has meant that many

studies are temporally limited, often focusing on a single environmental disturbance over a

1–3 year timescale [9, 11, 20]. Consequently, few studies have documented long-term post-dis-

turbance recovery of coral and fish assemblages [10, 21], or the impacts of multiple environ-

mental disturbance events on fish and benthic assemblages [22, 23] and subsequent recovery

from such events [8, 13–15]. Our understanding of how changes to benthic habitat affect the

densities of different reef fish taxa on decadal-scales represents a significant knowledge gap in

coral-reef ecology.

Fishing pressure is another important driver of density of reef-fish populations, and in

extreme cases can cause the collapse of entire fish stocks [24, 25]. No-take marine reserves

(NTMRs) are increasingly implemented to achieve sustainable fisheries management and con-

servation of targeted species. While NTMRs can increase body size, density and biomass of

fishery-targeted species [23, 26–28], research has documented differential effects of protection

on other moderately-targeted and non-targeted species, including declines in fish populations

[26, 27]. These differential responses are well documented [9, 11, 12], and have a number of

possible causes including the intensity and targeting of fishing pressure [29], variable recruit-

ment in time and space [29, 30], variable availability of resources (i.e. benthic habitat) [31, 32],

environmental stochasticity [33], fishing methods [27, 34], NTMR size and proximity to

humans [27], site history [35] and the compliance with NTMR regulations [27, 36]. Further-

more, the effects of NTMR protection on non-targeted species remain to be fully elucidated

[37]. Non-target species typically do not respond directly to NTMR protection, but may

respond to indirect effects of NTMR protection that often take decades to accrue [10, 21]. For

instance, non-target species may be indirectly affected if they are the prey or competitors of

species that do respond positively (i.e. increase in biomass or density) to NTMR protection

Partitioning reserve and habitat effects on tropical wrasses

PLOS ONE | https://doi.org/10.1371/journal.pone.0188515 December 7, 2017 2 / 21

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0188515


[21], or they may have a density response if the NTMR affects the quality of benthic habitat

[38]. Factors influencing the density responses of coral-reef fishes to NTMR protection can

vary greatly among, and within, taxonomic groups [26] and can become particularly complex

for targeted demersal fishes with a strong affinity to particular benthic habitats, such as

wrasses.

Wrasses (F. Labridae) are benthic and planktivorous feeding reef fishes that are common

on coral reefs [39]. Based on ecological characteristics and targeting of fishing, wrasses investi-

gated here can be split into two main groups: small-bodied, non-target wrasses (Thalassoma
hardwickii, T. lunare and Cirrhilabrus spp.) and large-bodied, targeted wrasses (Hemigymnus
melapterus and H. fasciatus). Species within each group were chosen due to their relatively

high abundance at the study sites. Thalassoma comprises 27 species, which are broadly distrib-

uted throughout the Indo-Pacific and Atlantic regions [40]. Like most wrasses, they possess

protruding caniniform teeth which are used to feed primarily on benthic invertebrates, fish

eggs [39, 41, 42], and occasionally small fish [43]. Thalassoma. hardwickii and T. lunare grow

to a maximum of 18cm and 25cm TL, respectively [43]. Thalassoma are found across the

majority of reef habitats [41, 44, 45]. Cirrhilabrus spp. are small planktivorous wrasses that

inhabit reefs (up to 90m deep) throughout the Pacific [46]. They have small conical teeth that

aid in capturing zooplankton, which forms their main food source [47]. Cirrhilabrus spp. can

grow to 11cm TL and are common inhabitants of the reef flat [48]. Hemigymnus melapterus
and H. fasciatus are large-bodied benthic carnivores that inhabit coral and rocky reefs through-

out the Indo-Pacific region [43, 49]. H. melapterus and H. fasciatus are reported to grow to

90cm and 80cm in length, respectively, yet most fish rarely exceed 50 cm TL [43]. No commer-

cial fishery exists for these two large wrasses in developed nations, but they are likely captured

incidentally in recreational hook and line fisheries. In developing regions of the tropical Indo-

Pacific, these large wrasses are commonly captured by spear, trap, hook and line and gill nets

in subsistence fisheries [25, 50, 51].

Wrasses, like many reef fish, tend to be species-specific in terms of their response to NTMR

protection [50, 52, 53]. Different body sizes, diets, vulnerabilities to fishing and habitat prefer-

ences among wrasses result in different rates and patterns of recovery of fish density in

NTMRs [21, 53, 54]. Determining the characteristics of particular wrasses that make them

respond to NTMR protection or benthic change in certain ways may be useful to reef manag-

ers. In terms of NTMR protection, small-bodied wrasses are not usually fishery targets in

developed or developing nations, and thus are not expected to directly benefit from NTMR

protection. Yet throughout the tropics, large-bodied wrasses are commonly harvested as pri-

mary and secondary targets of reef fisheries and thus these larger-bodied wrasses might be

expected to benefit from NTMR protection in developing nations where fishing pressure can

be moderate to high [51, 55, 56].

This study examines how wrasses are affected by changes to benthic habitat and NTMR

protection at two small NTMR’s in the central Philippines. Apo and Sumilon NTMRs were

first established in 1982 and 1974, respectively. Apo has had 31 years of continuous and effec-

tive protection. Sumilon reserve has had a complex history of protection including manage-

ment breakdowns and pulse fishing events (see S1 Table). The fish assemblages of the

Philippines have been subjected to major environmental disturbance events which have

resulted in substantial declines in coral cover in past decades [16, 17, 57]. Consequently, due to

the history of benthic change and a history of long-term NTMR protection, these sites are par-

ticularly useful for partitioning the relative importance of NTMR protection and benthic

change on the density of tropical wrasses. This study addresses two questions: (1) What are the

long-term effects of benthic habitat changes on the density and assemblage structure of Philip-

pine wrasses that differ in body size and thus vulnerability to fishing?; and (2) How does long-
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term NTMR protection affect the density and assemblage structure of both moderately-tar-

geted and non-targeted Philippine wrasses?

Materials and methods

Ethics statement

No animals were captured, manipulated or sacrificed during this study and no protected spe-

cies were sampled. No specific permits for sampling were required for this study as all data

were obtained via observational underwater visual fish counts on scuba. NTMR sites were pro-

tected from fishing by local fishing communities and all sites were positioned on public land.

Study sites

This study was conducted at Apo (9˚4’N, 123˚ 16’E) and Sumilon Islands (9˚21’N, 123˚23’E)

in the central Philippines (Fig 1). NTMR status was relatively well maintained by local fishing

communities during the investigation, with some breakdowns of NTMR protection at Sumilon

reserve in the 1980s and 1990s. Each of the two islands had a “fished” and a “NTMR protected”

site. These four sites were monitored for both benthic composition and reef fish density almost

annually (26 times in 31 years) from 1983 to 2014 by a single observer (GRR). Sumilon and

Apo NTMRs were both affected by coral bleaching in 1998. Apo NTMR was impacted in 2010

by a local storm and again in 2011 and 2012 by strong typhoons. Both Apo and Sumilon

Islands were exposed to intense fishing pressure (traps, hook and line, spear, gill nets) prior to

the implementation of NTMRs [35]. Apo NTMR has an excellent history of protection and

compliance since its implementation in 1982 (31 yrs.). Sumilon NTMR has a complex history

of protection (see S1 Table).

Surveys of fish density

Six replicate underwater visual censuses (UVC) were performed almost annually in both

NTMR and fished sites at Apo and Sumilon Islands. The 50m � 20m (1000m2) replicate UVCs

estimated wrasse density on the reef slope (3-17m in NTMRs, 9-17m in fished areas) in

November/December of each sampling year. Only fish> 5 cm TL were counted. These sam-

pling methods (i.e. location of replicates, census method, time of year and observer (GRR))

were consistent for the 31 years of study (1983–2014). However, to account for the high den-

sity of some small-bodied wrasses Log4 abundance categories (Category 1 = 1 fish, Category

2 = 2–4 fish, Category 3 = 5–16 fish, Category 4 = 17–64 fish, Category 5 = 65–256 fish, Cate-

gory 6 = 257–1024 fish, Category 7 = 1025–4096 fish, Category 8 = 4097–16384 fish) were used

to estimate density of Thalassoma spp. for the first�15 years of the study (T. hardwickii 1983–

1999, T. lunare 1983–2000). Actual counts of individual fish per replicate were made for these

species from 1999 for T. hardwickii and from 2000 for T. lunare, onward. The Log4 abundance

categories were used to estimate density of Cirrhilabrus spp. for the entire study. Density of

Hemigymnus spp. was based on actual counts of individuals per replicate.

The Log4 abundance categories (1–8) were converted to “best estimates” of actual density

in different ways for Thalassoma spp. and Cirrhilabrus spp. For Thalassoma spp., actual count

data from 1999 to 2014 were placed into a Log4 abundance category. The mode of the fre-

quency distribution of actual counts within an abundance category for the period 1999 to 2014

was used as the best estimate of actual density in a Log4 abundance category for the period

1983–1998 for T. harwickii and 1983–1999 for T. lunare, respectively. These “best estimates”

of density for T. hardwickii were Category 1 = 1 fish, 2 = 2, 3 = 5, 4 = 17, 5 = 180, 6 = 600,

7 = 1200, 8 = 4097, and for T. lunare Category 1 = 1 fish, 2 = 2, 3 = 10, 4 = 25, 5 = 100, 6 = 257,
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7 = 1026, 8 = 4097. For Cirrhilabrus spp., “best estimates” of density within an abundance cate-

gory were either the mid-point of the category (Categories 1–6 = 1, 3, 10, 40, 160, 640 fish,

respectively) or the minimum within that category (Categories 7 and 8 = 1025 and 4097 fish,

respectively).

Surveys of benthos

Benthic cover was estimated from 1983–1999 via line intercept transects in the same location

as the fish surveys. These transects were performed directly after the fish surveys. Benthic

cover was recorded every 20cm along a 50m transect tape. There were 6–9 replicate transects

per site for all fished and NTMR sites at Apo and Sumilon Islands. Major benthic categories

were: (1) branching and tabular coral (CBCT) (2) massive and encrusting coral (CMCE), (3)

soft coral (SC), (4) rubble (R), (5) sand (S), (6) hard dead substratum (HDS), (7) macroalgae

and (8) other. A structural complexity index (SCI) was estimated for each transect, on a scale

of 0–4, with 0 = flat and 4 = highly complex.

Post-1999, benthic cover and composition was obtained by subdividing each 50m�20m fish

transect into ten 10m�10m quadrats. Benthic cover was then estimated within each quadrat

visually to within approximately 5% accuracy. Mean benthic cover was calculated for each

transect (50m � 20m) by averaging data from the ten quadrats. For subsequent statistical analy-

ses, all dead substratum components (R, S and HDS) were grouped to form a single “dead sub-

stratum” (DS) category.

Fig 1. Location of the study sites in the central Philippines. Inset A: Sumilon Island. Inset B: Apo Island. Crosshatching indicates no-

take marine reserve area. Black rectangles show approximate positions of permanent 50 m * 20 m replicate transects for fish and benthic

surveys.

https://doi.org/10.1371/journal.pone.0188515.g001
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Polynomials were fitted to fish density and hard coral cover to emphasize trends over time

at each site, in particular to highlight where major changes to coral cover led to major changes

in fish density.

Data analysis

In order to account for changes in the sampling techniques for wrasse density, Thalasssoma
spp. densities were split into two separate time periods. These were 1983–1998 and 1999–2014

for T. hardwickii and 1983–1999 and 2000–2014 for T. lunare. These time periods were subse-

quently treated separately in all univariate data analyses, to avoid confounding results due to

differences in density estimation techniques.

Generalised additive mixed models (GAMMs), with a poisson error distribution, were used

to partition the effects of NTMR protection and benthic habitat on wrasse density. GAMMs

were chosen because they accounted for the possibility of nonlinear relationships between

response and predictor variables [58]. Predictor variables included effects of NTMR status,

time (duration of protection), and benthic variables (i.e. CBCT, CMCE, SC, DS, SCI) on

wrasse density. Separate GAMMs were performed at Apo and Sumilon Islands for each of

the fish groups/species (i.e. Hemigymnus melapterus, H. fasciatus, Thalassoma hardwickii, T.

lunare, and Cirrhilabrus spp.). NTMR status, time, and benthic variables were treated as fixed

effects, while replicate transects were treated as a random effect. GAMMs were fitted using the

mgcv package in R [59]. Model selection for GAMMs was based on minimization of the Akaike

Information Criterion corrected for small sample sizes (AICc) [60]. The smallest AICc value

identified the model with the greatest support. Relative support for one model was determined

by calculating the differences between its AICc and the smallest AICc (ΔAICc) and scaling

these differences into model weights (wAICc). All models with values of ΔAICc� 2 are pre-

sented, since values within this threshold can have similar explanatory power [60]. It should be

noted that while not all models are presented, model weights were calculated using AICc val-

ues from all models considered in the analysis (i.e. starting with a global model with all predic-

tor variables mentioned above). Detection of a positive NTMR effect required two things.

Firstly, an increase in fish density within the NTMR relative to the fished control site over

time. Secondly, an important NTMR Status � Time (duration of protection) interaction, where

important is defined as the interaction appearing in any GAMM model within 2 AIC values of

the top model for each species at each location.

Non-metric multidimensional scaling (nMDS) performed in PRIMER v6 [61], was used

to examine assemblage structure of wrasses. These nMDS were conducted using Bray-Curtis

dissimilarities and square-root transformed data, which were chosen to down-weigh abun-

dant species. Structure of the benthos was also assessed with nMDS, using Euclidean dis-

tances on data that were normalised and natural log-transformed in order to increase

spread. At each location the six replicate transects per site per year were averaged and ana-

lysed with mean fish density per species. Benthic surveys were not conducted at Apo Island

and Sumilon fished sites from 1988 to 1992, thus the corresponding data were not included

in analysis.

Results

NTMR effects on labrid density

Fifteen of thirty-nine NTMR Status � Time interactions were identified as important from

the GAMMs (Table 1). However, we did not detect any increases or decreases in fish density

in reserves relative to fished areas consistent with a NTMR effect. One example of a lack of

NTMR effect is Hemigymnus melapterus, a large-bodied, targeted wrasse (Fig 2). At Apo, just
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Table 1. Optimal generalized additive mixed models (GAMMs) estimating effects of NTMR status, time (duration of protection) and cover of ben-

thos on wrasse density at (a) Apo and (b) Sumilon Islands.

Location Model df LogLik AICc ΔAICc wAICc

(a) Apo

H. melapterus Status + Time + DS + SC 8 -382.46 781.60 0.00 0.21

Time + CBCT 5 -386.08 782.40 0.87 0.14

Status * Time 5 -386.12 782.50 0.95 0.13

Time + SC + CBCT 7 -384.45 783.40 1.87 0.08

H. fasciatus Time * Status + CBCT 8 -276.38 569.40 0.00 0.15

CBCT 5 -279.88 570.00 0.62 0.11

Status + CBCT 6 -279.33 571.00 1.63 0.07

T. hardwickii

1983–1998 CBCT 4 -142.31 293.30 0.00 0.53

DS 4 -143.28 295.20 1.93 0.20

1999–2014 Status + Time + CMCE 7 -216.73 448.20 0.00 0.16

Status + Time 5 -219.08 448.50 0.37 0.14

Status*Time 6 -218.76 450.00 1.89 0.06

Status*Time + CMCE 8 -216.62 450.10 1.99 0.06

T. lunare

1983–1999 Status + Time + CBCT + CMCE +DS + SC +SCI 14 -221.91 480.10 0.00 0.53

Time + CBCT + CMCE + DS + SC + SCI 13 -223.66 480.30 0.27 0.47

2000–2014 Status*Time + DS 8 -518.88 1054.70 0.00 0.24

DS + SCI 7 -520.48 1055.70 1.00 0.14

Cirrhilabrus spp. Stats*Time + CBCT + CMCE +DS + SC +SCI 15 -23671.51 47375.20 0.00 1.00

(b) Sumilon

H. melapterus Status + Time + CMCE + DS 8 -253.53 523.70 0.00 0.16

Status*Time + DS 7 -254.76 524.00 0.34 0.135

Status + Time + DS 6 -255.84 524.00 0.38 0.13

Status + Time + CMCE 6 -256.30 524.90 1.29 0.08

Status*Time + CMCE + DS 9 -253.45 525.70 1.99 0.06

H. fasciatus Status + Time 4 -240.89 490.00 0.00 0.17

Status*Time 5 -239.90 490.10 0.10 0.17

Status + Time + CMCE 6 -239.00 490.40 0.40 0.14

Status 3 -242.67 491.40 1.49 0.08

T. hardwickii

1983–1998 Status + SCI 6 -224.63 462.40 0.00 0.12

Status + DS 6 -224.63 462.40 0.00 0.12

Status + Time 5 -225.82 462.50 0.04 0.11

Status*Time 6 -224.84 462.80 0.42 0.09

Status + Time + SCI 7 -223.71 463.00 0.56 0.09

Status + Time +DS 7 -223.71 463.00 0.56 0.09

Status*Time + SCI 8 -223.19 464.40 2.00 0.04

Status*Time + DS 8 -223.19 464.40 2.00 0.04

1999–2014 Status + Time + CBCT + DS 8 -329.04 675.00 0.00 0.85

T. lunare

1983–1999 Status*Time + CMCE +DS + SC + SCI 13 -549.63 1130.80 0.00 1.00

2000–2014 Status*Time + CBCT + CMCE + DS + SC +SCI 15 -768.34 1569.80 0.00 1.00

Cirrhilabrus spp. Status*Time + CBCT + CMCE + DS + SC +SCI 15 -34550.23 69132.50 0.00 1.00

Substratum types are: CBCT = Coral Branching + Coral tabulate, CMCE = Coral Massive + Coral Encrusting, DS = dead substratum, SCI = structural

complexity, SC = soft coral. Top-ranked model is displayed in bold.

https://doi.org/10.1371/journal.pone.0188515.t001
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Fig 2. Long-term (1983–2014) trends of H. melapterus density. a) Sumilon NTMR and fished sites, b) Apo NTMR

and fished sites. Error bars are standard error (SE). Trend lines are polynomials.

https://doi.org/10.1371/journal.pone.0188515.g002
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three of eleven important NTMR Status � Time interactions were detected for the small non-

target wrasses (T. hardwickii, T. lunare and Cirrhilabrus spp.), reflecting patterns of fish den-

sity over time that were also not consistent with a NTMR effect (Table 1, Fig 3). A similar

result was obtained in the GAMMs for density of most wrasse species at Sumilon Island

(Table 1, Fig 4), but no species displayed a pattern of change in fish density over time consis-

tent with a NTMR effect. Rather, the GAMMs indicated that benthic habitat was often an

important driver of wrasse density. The frequent effects of benthic habitat variables on

wrasse density were relatively consistent at both sites (Table 1). The larger-bodied labrids

(H. melapterus and H. fasciatus) had an affinity for hard coral habitat, particularly branching

and tabular coral morphologies, while the smaller non-target wrasses (T. hardwickii, T.

lunare and Cirrhilabrus spp.) preferred dead substratum as a benthic habitat (Table 1, Figs 3

and 4).

Effects of environmental disturbances on benthos

Throughout the 31-year study, both Apo and Sumilon islands were affected by a number of

environmental disturbances (Figs 3 and 4). Between 1983 and 1985, an illegal breakdown in

reserve protection at Sumilon NTMR led to a use of destructive fishing techniques (explosives,

drive nets) that reduced hard coral cover by 50%, and substantially increased cover of dead

substratum (sand, rubble and hard dead substratum)(Fig 4). Coral bleaching in 1998 reduced

hard coral cover and increased cover of dead substratum at two of the four study sites (Apo

NTMR and Sumilon NTMR) (Figs 3 and 4). The reduction of hard coral cover at Sumilon

NTMR in 1998 was also associated with a COTS outbreak. Coral cover increased substantially

for�10 years in both reserves following the 1998 bleaching event (Figs 3b and 4b). At the Apo

fished site, the 1998 bleaching event killed soft corals which had been the dominant benthic

cover for the previous 15 years [13]. This bleaching event caused a marked shift at the Apo

fished site from a soft coral-dominated benthos to one dominated by hard corals (mostly

Acropora), with hard coral cover increasing from 10% in 1998 to 60% in 2014 (Fig 3a). Hard

coral cover again declined substantially within the Apo NTMR when a storm (2010) and two

typhoons (2011 and 2012) impacted the benthos (Fig 3a). These major disturbance events

resulted in hard coral cover dropping in the Apo NTMR from�60% to<5% from 2009 to

2012–2014 (Fig 3a). After the storm and typhoons, the reef slope of the Apo NTMR was domi-

nated by dead substratum (coral rubble, hard dead substratum and sand). The Sumilon fished

area was also impacted by the same typhoon in 2012, reducing hard coral cover from 20%

to< 5% (Fig 4a).

Effects of environmental disturbances on density of wrasses

Responses of wrasses to environmental disturbances were species-specific, but relatively con-

sistent among sites. In general, Hemigymnus density was positively related to hard coral cover

in the majority of the top GAMM models at each island, while density of Thalassoma and Cir-
rhilabrus spp. was positively correlated with dead substratum at each island (Table 1, Figs 3

and 4).

Hemigymnus melapterus increased in density at the Apo fished site for 14 years (1997–

2010) as hard coral cover, specifically branching and tabular corals, increased substantially

over the same period. This increase in hard coral cover at the Apo fished site was due to the

bleaching event in 1998 that caused a shift in dominance from soft coral to branching and

tabular hard coral (Fig 3a). H. melapterus density then declined at the Apo fished site for

unknown reasons. H. melapterus maintained density at Apo NTMR from 1983 to 2009 and

then declined in density following the storm in 2010 and two typhoons in 2011 and 2012 that
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Fig 3. Long-term temporal trends in density of (a) H. melapterus, (b) H. fasciatus, (c) T. hardwickii

(1999–2014), (d) T. lunare (2000–2014), (e) Cirrhilabrus spp., and temporal trends in cover of hard

corals (CBCT and CMCE combined) at Apo fished and NTMR (reserve) sites. Wrasse density is shown

by black points and continuous trend lines. Hard coral cover is shown by white data points and dotted trend

lines. Environmental disturbance events are indicated by arrows: 1998 coral bleaching event–white, 2011 and

2012 typhoon events–black. Standard errors (SE) are displayed on plots, along with polynomial trend lines.

https://doi.org/10.1371/journal.pone.0188515.g003
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Fig 4. Long-term temporal trends in density of (a) H. melapterus, (b) H. fasciatus, (c) T. hardwickii

(1999–2014), (d) T. lunare (1983–1999), (e) Cirrhilabrus spp., and temporal trends in cover of hard

corals (CBCT and CMCE combined) at Sumilon fished and NTMR (reserve) sites. Wrasse density is

shown by black points and continuous trend lines. Hard coral cover is shown by white data points and dotted

trend lines. Environmental disturbance events are indicated by arrows: 1984 to 1986 destructive fishing

event–grey, 1998 coral bleaching event–white, 2012 typhoon event–black. Standard errors (SE) are

displayed on plots, along with polynomial trend lines.

https://doi.org/10.1371/journal.pone.0188515.g004
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reduced coral cover substantially (Fig 3a). H. melapterus density had a positive relationship

with hard coral cover at the Sumilon fished site for 31 years, and declined substantially after

the 2012 typhoon decreased live coral cover (Fig 4a). At the Sumilon NTMR, H. melapterus
density declined sharply between 1983 and 1985 during the destructive fishing event (Fig

4a). Hard coral cover also declined sharply between 1983 and 1985 at Sumilon NTMR, then

recovered from 1987 to 1994 (Fig 4a). H. melapterus density at Sumilon NTMR increased as

coral cover increased from 1987 to the mid-1990s, declined after the 1998 bleaching and

crown of thorns starfish event, and then increased again from 2003–2007 as coral cover

increased (Fig 4a). H. melapterus density declined from 2008–2011 in the Sumilon NTMR,

despite coral cover being high, before recovering from 2012–2014 (Fig 4a). H. fasciatus den-

sities also had a positive relationship with hard coral cover (Table 1, Figs 3b and 4b). H. fas-
ciatus density increased at the Apo fished site from 1991 to 2006 and then maintained

density until 2014 (Fig 3b). H. fasciatus density increased at the Apo NTMR from 1991 to

2011 as hard coral cover increased (Fig 3b) but then declined sharply in 2012 to 2014, as hard

coral cover declined sharply after the two typhoons (Fig 3b). H. fasciatus density mirrored

cover of hard coral closely at the Sumilon fished site for most of the study, with density

decreasing sharply from 2012 to 2014 as hard coral cover declined due to the 2012 typhoon

(Fig 4b). At the Sumilon NTMR, H. fasciatus density increased from 1985 to 1995 as coral

recovered after the destructive fishing event, declined during the coral bleaching event in

1998, then recovered from 2001 onwards as coral cover increased again, declining for

unknown reasons from 2007–2012 (Fig 4b).

Density of Thalassoma and Cirrihilabrus spp. were, for the most part, positively associated

with cover of dead substratum. Density of Thalassoma hardwickii and T. lunare increased

sharply at the Apo NTMR from 2012 to 2014 after cover of hard coral declined due to the

typhoons in 2011 and 2012 (Fig 3c and 3d). T. lunare density declined for over a decade at

the Apo fished site (2000–2014) as cover of hard coral increased (Fig 3d), but such a pattern

was not clear for T. hardwickii at the same site over the same period (Fig 3d). T. hardwickii
declined in density from 2003 to 2014 at Sumilon NTMR as coral cover increased (Fig 4c),

but such a pattern was not as clear at the Sumilon fished site (Fig 4c). T. lunare increased in

density sharply at Sumilon NTMR between 1983 and 1985 as coral cover declined sharply

due to use of explosives and drive nets (Fig 4d), then declined to very low density from 1990

to 2000 as hard coral cover increased in Sumilon NTMR (Fig 4d). A negative relationship

between density and coral cover was not as clear for T. lunare at the Sumilon fished site (Fig

4d). Hard coral cover had a clear negative effect on T. lunare and T. hardwickii density in the

majority of GAMM models at each island (Table 1, Figs 3 and 4). Density of Cirrhilabrus
spp., after being relatively low for almost 15 years (1997–2011), increased substantially and

rapidly in the Apo NTMR from 2012 to 2014 after hard coral cover declined sharply due to

the typhoons in 2011 and 2012 (Fig 3e). Density of Cirrhilabrus spp. declined for almost

two decades at the Apo fished site (1994–2014) as cover of hard coral increased (Fig 3e).

The decrease in density of Cirrhilabrus spp. at the Sumilon fished site from 2011 to 2014 fol-

lowing the typhoon was likely due to the fact that this disturbance caused the reef slope to

be covered in sand (which is a less preferred benthic substratum for this genus), rather than

coral rubble (Fig 4e). At the Sumilon NTMR, density of Cirrhilabrus spp. increased sharply

between 1983 and 1985 following a sharp decline in coral cover due to use of explosives

and drive nets (Fig 4e), then declined from 1985–1994 as coral recovered, remaining at rela-

tively low density from 1995–2014 as coral cover remained high (Fig 4e). Cover of dead sub-

stratum had a positive effect on Cirrhilabrus spp. density in most GAMM models at each

island (Table 1, Figs 3 and 4).
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Assemblage structure of benthos and wrasses among sites and over

time

Assemblage structure of the benthos differed among the four sites at the outset, and these dif-

ferences remained relatively distinct over the 31 years of study (Fig 5a). NTMRs were charac-

terized by high percentage cover of hard corals and high structural complexity, while fished

sites were characterized by high percentage cover of dead substrata and soft corals (Fig 5a).

Assemblage structure of the benthos was very consistent over time in the two NTMRs, with

the exception of Apo NTMR and Sumilon fished site in 2012 to 2014 following the two

typhoons (Fig 5a). Assemblage structure of the benthos at the Apo fished site was not as clus-

tered in multidimensional space as the other three sites, reflecting the long-term change in

dominant benthos from soft corals (1983–1998) to hard corals (1999–2014) at this site (Fig

5a). The distinct benthic assemblages among sites and over time resulted in distinct assem-

blage structure of wrasses among sites for 31 years (Fig 5b). Fished sites, with higher cover of

dead substratum, were characterized by high density of Cirrhilabrus spp. and Thalassoma
lunare (Fig 5b). NTMRs tended to have higher coral cover and higher density of Hemigymnus
fasciatus and Thalassoma hardwickii. (Fig 5b).

Discussion

This study demonstrates the importance of benthic habitat as a determinant of wrasse density.

Three key findings stand out: 1) Densities of large-bodied wrasses targeted by fishing were not

affected by NTMR protection; 2) benthic composition drove densities of wrasses in the long-

term; 3) benthic composition drove assemblage structure of wrasses. The strong relationship

between benthic composition and density of tropical wrasses has previously been described [8,

14, 15], however this investigation is unique in that the influences of benthic composition on

targeted and non-targeted Philippine wrasses were examined in a 31 year “natural experiment”

that included multiple environmental disturbances to the benthos, and long-term recovery of

the benthos from these disturbances.

The lack of an even moderate NTMR effect on the larger-bodied H. melapterus and H. fas-
ciatus at either NTMR was unexpected, but is consistent with reports for H. melapterus at

Sumilon and Apo NTMRs for the first 13 and 25 years of protection, respectively [21]. It is pos-

sible that this lack of a direct NTMR effect on the density of these large-bodied wrasses may

have been due to an indirect effect of increased density of large predatory reef fish in these

NTMRs (12). However, availability of potential prey for predators had a larger influence than

the effect of potential predators on prey at these two NTMRs (12). Even for these large-bodied

wrasses, which are subject to an intermediate level of fishing pressure [62], benthic habitat was

an important driver of density and assemblage structure. Increases in hard coral cover gener-

ally resulted in higher densities of Hemigymnus. This is a slightly unexpected result considering

that the diet of Hemigymnus is benthic invertebrates and that there are high densities of ben-

thic invertebrates found on degraded reefs [63, 64]. Yet, positive habitat associations between

corals and Hemigymnus spp. have previously been observed [65, 66]. Recent research suggests

that the genus Hemigymnus has developed increased bite force, velocity and jaw protrusion as

functional adaptations to the challenges of capturing diverse prey types in shallow water envi-

ronments [67, 68]. Therefore, it is possible that Hemigymnus are adapted to feeding upon

invertebrates found commonly in structurally complex, high coral cover habitats of coral reefs.

The strong relationship between benthic habitat and wrasse density was evident, irrespec-

tive of species, body size, diet or vulnerability to fishing. Habitat effects outweighed the effects

of NTMR protection for all species examined. This result was consistent with previous studies

for smaller-bodied non-target wrasses (T. lunare, T. hardwickii and Cirrhilabrus spp.)[8, 9]. In

Partitioning reserve and habitat effects on tropical wrasses

PLOS ONE | https://doi.org/10.1371/journal.pone.0188515 December 7, 2017 13 / 21

https://doi.org/10.1371/journal.pone.0188515


Fig 5. Non-metric multidimensional scaling (nMDS) performed on distance matrices of benthic cover and wrasse assemblage

structure. a) Assemblage structure of the benthos at Sumilon and Apo Islands, b) assemblage structure of wrasses at Sumilon and Apo

Islands. Black shapes represent fished sites, white shapes represent NTMR sites. Benthic components include: DS = dead substratum,

HC = hard coral (CBCT and CMCE combined), SC = soft coral, SCI = structural complexity. Assemblage shifts from HC to DS dominance

post-2011 and2012 typhoon events at Apo NTMR and Sumilon fished sites are indicated by an eclipse.

https://doi.org/10.1371/journal.pone.0188515.g005
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the Philippines these small, non-target species are subject to low fishing pressure and thus do

not respond to decreased fishing effort that NTMRs provide [51].

The present study suggests that larger-bodied species of wrasse (H. melapterus and H. fas-
ciatus) were, for the most part, positively associated with hard coral cover, and, for the most

part, smaller-bodied species (T. hardwickii, T. lunare and Cirrhilabrus spp.) were negatively

correlated with hard coral cover. Other studies have reached similar conclusions [8, 9, 69],

but the present study was able to differentiate between the effects of benthic habitat change

and fishing pressure on local wrasse densities at two NTMRs and two control, fished sites.

This 31 year “natural experiment” included multiple environmental disturbance events, pro-

viding long-term trends in wrasse density that could be related to changes in benthic cover.

Temporal trends in wrasse density were related to temporal trends in live hard coral cover

for a number of reasons. First, preliminary data investigation indicated differential responses

of wrasses to particular benthic components, such as sand, hard dead substratum and rubble

that were grouped into one category “dead substratum” for presentation and analysis. The

“dead substratum” benthic category is most characteristic of disturbed coral reef environ-

ments. Second, the majority of the coral reef literature that reports on environmental distur-

bances generally concentrates on the loss of live hard coral cover and its effects, rather than

the increase in cover of dead substratum [8, 9, 11]. The present study has an added advan-

tage, in that it documents long-term (5–10 year scale) recovery of benthos and fish. Thus,

this study concentrated on loss and recovery of live hard coral and has been presented in a

way as to be consistent with the majority of literature on environmental disturbances to

coral reefs.

Assemblage structure of benthos and wrasses were spatially distinct among sites from the

beginning of the study, and these differences remained consistent over 31 years. NTMRs were

placed on the side of each island with a steep coralline wall with high coral cover, whereas

“fished” areas were placed on the opposite side of each island, where the reef slope was more

gradual and the benthos was dominated by sand, rubble and low hard coral cover [10, 16]. The

different benthos among sites largely explains the differences in wrasse assemblage structure

among sites. This confounding of NTMR protection and benthic habitat was largely unavoid-

able. Thus, from the outset, NTMR sites had higher slope, hard coral cover and structural com-

plexity than fished sites.

An increasing number of studies have addressed the importance of partitioning the effects

of benthic habitat and fishing on abundance and biomass of coral-reef fishes [10, 20, 70, 71].

However, partitioning these effects over large time scales is still rare [8, 9, 11, 14, 15, 72]. Previ-

ous attempts to partition the effects of benthic habitat and fishing pressure on the density of

tropical wrasses have been limited in temporal extent and often have grouped wrasse species

together [73–76]. When wrasses have been investigated at a level of genus or species [8, 9, 21]

wrasse densities appear to link strongly with disturbance-mediated coral loss [8, 9, 71]. To

date, the literature suggests that many species of tropical wrasse are habitat generalists [8, 9].

Furthermore, apart from very clear declines in density of obligate corallivores (e.g. Labrichthys
unilineatus), the density responses of tropical wrasses to coral loss caused by environmental

disturbances does not appear to be strongly linked to dietary preference [8, 9, 71]. For example,

a meta–analysis has reported different density responses to environmental disturbances for

two closely related tropical wrasse with similar diets: Hemigymnus melapterus and H. fasciatus
[9]. Thus, it is advantageous to examine density responses to coral loss by wrasses at a species

or functional level.

Decreases in density of the larger-bodied, moderately-targeted wrasses (Hemigymnus spp.)

following declines in coral cover may have reflected emigration from unsuitable to suitable

habitat rather than mortality. This response is common in larger-bodied species following
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disturbances that have resulted in substantial coral loss [9, 11, 16, 17] and in this case is likely a

product of the characteristically large home range of Hemigymnus, which can extend hundreds

of meters [77, 78]. Larger-bodied species often require additional resources [79, 80] and are

often more efficient in translocating from place to place than small-bodied fishes [80–85],

making emigration from unfavourable to favourable habitats less taxing for larger-bodied spe-

cies and thus more common [80, 84]. This large home range could also have contributed to

the lack of an NTMR effect on Hemigymnus density in this study. The marked increases in

density of smaller-bodied, non-target wrasses (Thalassoma spp., Cirrhilabrus spp.) after

declines in coral cover are likely explained by both the short-term migration of adults to areas

of dead substratum (favoured benthic habitat), and longer-term recruitment of juveniles into

these same areas. The smaller-bodied wrasses displayed rapid increases in density after envi-

ronmental disturbances resulted in decreased hard coral cover, particularly following the 2011

and 2012 typhoons at the Apo NTMR and Sumilon fished site. Previous studies which have

documented the increases in density of small, non-target species that commonly follow large-

scale disturbance events throughout the Pacific, have also suggested that mass immigration is

the likely driver of short-term population increase [11, 69, 86].

The long-term (decadal) correlation between hard coral cover and density of Hemigymnus
spp. is likely caused by real changes in local population density, rather than any short-term

migration effect. While environmental disturbances increase density of small-bodied wrasses

in the short term, long-term trends suggest that these changes to local populations of small-

bodied wrasses represent real changes in population density that are maintained only while

suitable benthic habitat remains. As coral recovers, these smaller-bodied labrids likely translo-

cate to preferred habitat nearby. The population dynamics of large–bodied, moderately-tar-

geted wrasses and small non-target wrasses are likely linked to habitat associations. Some

variation is expected between wrasses that differ in habitat preference, for example wrasses

associated with live hard coral would be expected to show opposite changes in density in

response to environmental disturbances to those wrasses preferring dead substratum. More

information on habitat selection of wrasses at settlement would be beneficial [87] to differenti-

ate migration from settlement and survival processes.

Our results indicate that wrasse densities on coral reefs in the central Philippines are

affected more by benthic habitat change than protection from fishing in NTMRs. For large-

bodied wrasses these results are somewhat surprising, given the intermediate harvest levels

that these wrasses are subject to in the central Philippines. Live hard coral cover was the

strongest driver of wrasse density, with smaller-bodied Thalassoma and Cirrhilabrus spp.

associated with dead substratum, while large-bodied Hemigymnus spp. were associated

with live hard coral cover. Any increase in severity and frequency of environmental distur-

bances [9, 11, 15] could have substantial consequences for the large and small-bodied

wrasses investigated in this study. Micro-invertivores such as tropical wrasses, are suggested

to have a low extinction risk from fishing but a moderate extinction risk from environmental

disturbances related to climate change [71]. Our findings support these suggestions for the

large-bodied wrasses, Hemigymnus melapterus and H. fasciatus, which declined in density

following coral loss and were not substantially impacted by fishing pressure. Conversely,

environmental disturbances that reduced live hard coral cover leads to increases in the den-

sity of small-bodied Thalassoma spp. and Cirrhilabrus spp. These small-bodied wrasses may

thus become more common components of benthic fish assemblages as coral cover and

reef health declines. The long-term (decadal) nature of the present study demonstrates the

importance of benthic composition, both inside and outside NTMRs, as a primary driver of

wrasse density.
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S1 Table. Protection history of study sites, 1974–2014. White bars = years that sites were

open to fishing, grey bars = years when sites were open to hook and line fishing, and black
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(XLSX)

Author Contributions

Conceptualization: Garry R. Russ, Angel C. Alcala.

Data curation: Garry R. Russ, Jake R. Lowe, Justin R. Rizzari.

Formal analysis: Garry R. Russ, Jake R. Lowe, Justin R. Rizzari.

Funding acquisition: Garry R. Russ.

Investigation: Garry R. Russ, Jake R. Lowe, Justin R. Rizzari, Angel C. Alcala.

Methodology: Garry R. Russ, Jake R. Lowe, Angel C. Alcala.

Project administration: Garry R. Russ, Jake R. Lowe, Angel C. Alcala.

Resources: Garry R. Russ, Angel C. Alcala.

Software: Garry R. Russ, Jake R. Lowe, Justin R. Rizzari.

Supervision: Garry R. Russ.

Validation: Garry R. Russ, Jake R. Lowe, Justin R. Rizzari, Brock J. Bergseth.

Visualization: Garry R. Russ, Jake R. Lowe.

Writing – original draft: Garry R. Russ, Jake R. Lowe.

Writing – review & editing: Garry R. Russ, Jake R. Lowe, Justin R. Rizzari, Brock J. Bergseth.

References
1. Halpern BS, Frazier M, Potapenko J, Casey KS, Koenig K, Longo C, et al. Spatial and temporal

changes in cumulative human impacts on the world0s ocean. Nature Communication. 2015; 6(7615):1–

7. https://doi.org/10.1038/ncomms8615 PMID: 26172980.

2. Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, et al. Coral reefs in the

Anthropocene. Nature. 2017; 546(7656):82–90. https://doi.org/10.1038/nature22901 http://www.

nature.com/nature/journal/v546/n7656/abs/nature22901.html#supplementary-information. PMID:

28569801
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