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Abstract

The “Law of Practice” – a simple nonlinear function describing the relation-

ship between mean response time (RT) and practice – has provided a practically

and theoretically useful way of quantifying the speed-up that characterizes skill ac-

quisition. Early work favored a power law, but this was shown to be an artifact of

biases caused by averaging over participants who are individually better described

by an exponential law. However, both power and exponential functions make the

strong assumption that the speedup always proceeds at a steadily decreasing rate,

even though there are sometimes clear exceptions. We propose a new law that can

both accommodate an initial delay resulting in a slower-faster-slower rate of learning,

with either power or exponential forms as limiting cases, and which can account for

not only mean RT but also the effect of practice on the entire distribution of RT.

We evaluate this proposal with data from a broad array of tasks using hierarchical

Bayesian modeling, which pools data across participants while minimizing averaging

artifacts, and using inference procedures that take into account differences in flexi-

bility among laws. In a clear majority of paradigms our results supported a delayed

exponential law.

Keywords:

Law of practice — Learning — Skill Acquisition — Bayesian hierarchical mod-

els
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Introduction

Across a broad array of tasks, practice leads to a speed-up that is mono-

tonic, but non-linear, with early large gains later giving way to diminishing returns.

Whether the function relating mean response time (RT) to practice has a single

simple mathematical form has been the subject of much debate, focusing mainly

on power vs. exponential functions. Both functions have a long history of support

(Crossman, 1959; Newell & Rosenbloom, 1981; Seibel, 1963; Snoddy, 1926; Suppes,

Fletcher, & Zanotti, 1976; Heathcote, Brown, & Mewhort, 2000; Josephs, Silvera, &

Giesler, 1996; Rosenbloom & Newell, 1987), and continue to influence theorizing and

analysis in many fields, such as motor ability (Yarrow, Brown, & Krakauer, 2009),

memory (Pavlik & Anderson, 2005; Roediger, 2008a), complex task learning (Lee &

Anderson, 2001), and sub-task learning (Anglim & Wynton, 2015), just to name a

few.

As typically applied to practice data, power (Equation 1) and exponential

(Equation 2) functions describe the change in mean RT as a function of practice,

N (usually measured by number of trials), in terms of three estimated parameters

that quantify: 1) mean asymptotic performance (α′), 2) the amount by which initial

performance is slower than the asymptote (β), and 3) the rate of learning (r):

α′+ βN−r (1)

α′+ βe−rN (2)
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Figure 1 illustrates the two functions and their fit to two sets of simulated data:

one from the power function, and one from the exponential function. Both functions

potentially provide a useful “measurement model”, compactly describing the salient

features of practice data in terms of a small number of reliably estimated parameters.

The parameters α′ and β are practically useful, quantifying, respectively, the best

possible level of performance after extended practice and the gain in performance

that can be achieved by practice (relative to trial zero for the exponential function

and trial one for the power function). The r parameter relates to the theoretically

crucial difference between these functions in terms of their “relative learning rates”,

the current rate of improvement divided by the amount of potential remaining im-

provement. For the exponential function, the relative learning rate is a constant, r,

so each extra practice trial improves performance by a constant proportion of the

amount of possible improvement that remains. For the power function, the relative

learning rate is r/N , so the amount learned from each trial is a decreasing proportion

of the remaining available improvement, indicating a depletion or exhaustion in the

ability to learn, such as when there are initially multiple learning processes operating

at different time scales, with fast scale processes completing early in practice so only

the slow scale processes are responsible for improvements later in practice (Newell &

Rosenbloom, 1981).

Early empirical investigations of the law of practice usually averaged data over

participants, and consistently favored a power function (e.g., Crossman, 1959; Seibel,

1963; Snoddy, 1926; Suppes et al., 1976). In a seminal paper, Newell and Rosenbloom

(1981) examined 15 experiments using a wide variety of tasks including motor-skills,
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elementary perceptual and memory decisions, complex routines, and problem solving.

After averaging each data set across participants, they found that the power function

provided a better fit than the exponential function for all 15 data sets. This strong

regularity was very influential, with the power function taking on the status of a

behavioral law. This “Power Law of Practice” guided many subsequent cognitive

theories, including Instance Theory (Logan, 1988, 1992), transfer of automaticity

(Kramer, Strayer, & Buckely, 1990), parallel distributed processing models (Cohen,

Dunbar, & McClelland, 1990), and cognitive architectures such as SOAR (Laird,

Newell, & Rosenbloom, 1987) and ACT-R (J. R. Anderson & Lebiere, 1998).

In the decades that followed statistical approaches to model selection advanced

considerably, leading Heathcote et al. (2000) to re-assess the evidence with improved

methods. Most importantly, they fit practice functions to data from each subject

and condition (where a condition was sometime a single item) separately, because

averaging over exponential functions can approximate a power function when – as

is invariably the case – there are individual differences in learning rates (R. B. An-

derson & Tweney, 1997; Brown & Heathcote, 2003; Estes, 1956; Myung, Kim, &

Pitt, 2000), or differences between conditions. For example, in the case of indi-

vidual differences, a power function can emerge because all learners contribute to

improvements in the average function early in practice, whereas only slow learners

contribute later in practice. Heathcote et al. found that practice curves were better

fit by the exponential function in the majority of participants and conditions across

17 data sets from all areas of experimental psychology, including tasks such as visual

and memory search, mental arithmetic, alphabetic arithmetic, counting, and motor
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learning. Given the consistency of their results, Heathcote et al. suggested repealing

the Power Law of Practice in favor of an Exponential Law of Practice.

Our article has two main aims. First, we extend the previous exponential

and power laws in two ways, to account for slower learning early in practice, and

to account for the entire distribution of RT. It has been reported (e.g., Rickard,

1997) that there can be an initial delay in learning, sometimes followed by very

fast learning (Rickard, 2004). Neither the exponential nor power laws can account

for these findings, so we extend them to do so. Our second extension not only

provides a description of the variability which is always observed in performance,

and its decrease with practice (Logan, 1992), it also links the laws to a process-based

explanation of that variability – the Lognormal Race evidence accumulation model

(LNR; Heathcote & Love, 2012). Our second aim is to re-assess the evidence for the

exponential and power laws, and our new extensions of them. This assessment uses

state-of-the-art model-selection methods that take account of differences in flexibility

due to their different mathematical forms. This allows the investigation of whether

learning is best described by a power or exponential law, as well as how widespread

is the occurrence of learning delays.

Transitions in Practice Functions

It has long been recognized (e.g., Bryan & Harter, 1897, 1899) that learning

curves can sometimes display one or more plateaus – regions where little improve-

ment occurs – or even periods of deteriorating performance typically associated with

fatigue. Such phenomena are of considerable applied relevance, but it has also long

been known that under conditions that both allow for rests, and give initial train-
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ing instructions that provide the optimal strategy – conditions typical of controlled

experimental settings – such plateaus tend to disappear (e.g., Keller, 1958). How-

ever, the strong assumption made by power and exponential functions that the rate

of learning always decreases over the course of practice fails to account for a phe-

nomenon that can remain even in optimal experimental settings: an initial period of

slower learning followed by a speed-up before the final approach to asymptote. This

S-shaped pattern has been attributed to a transition between performance based

on an algorithm and direct retrieval, with the transition either mediated by a race

between (Logan, 1988), or probabilistic mixture of (Rickard, 1997), these two strate-

gies.

This failure compromises the usefulness of a “Law of Practice” as a measure-

ment model, because it cannot describe potentially important variations in the tran-

sition process. It may also compromise its utility in terms of theoretical implications

through introducing systematic biases. For example, a power function speedup is a

core theoretical tenant of Instance Theory, derived from a direct retrieval mechanism

based on race between memory instances. As a power function has an initial very

rapid decrease, it will be disadvantaged relative to alternatives with a slower initial

decrease (e.g., an exponential function) in fits to data that contain a flat initial region

due to a slow algorithm-to-retrieval transition.

Rather than trying to address this issue with a process model, which typically

requires estimation of many additional parameters (and so can compromise desir-

able measurement model properties such as providing a simple and stably estimated

summary), we propose the following new practice functions, with a single additional
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parameter, τ ≥ 0:

α′+ β
τ + 1

τ +N r
(3)

α′+ β
τ + 1

τ + erN
(4)

When τ = 0 the new functions reduce to the standard power and exponential forms.

As τ increases an initial period of slow decrease emerges, delaying the transition to

power or exponential learning. Hence, we call these new forms the “delayed-power”

and “delayed-exponential” functions, and the τ parameter as a “delay” parameter.

When both τ and the learning rate (r) are large the initial slow period is

followed by a rapid decrease. This regime has the potential to model the cases

where, after a period of slow performance and little improvement, participants gain

insight into the availability of a more efficient strategy, whose application results in

a rapid transition to improved performance followed by more gradual learning before

an asymptote is achieved. For example, Rickard (2004) found rapid transitions of

this sort for some items in a difficult alphabet arithmetic problems (e.g., verifying

that F + 9 = 0 is true, where the addition signifies the number of letters to be

counted in alphabetical order from the “F” to check whether it results in the letter

on the right, “O”).

Figure 2 illustrates the descriptive flexibility of the delayed functions with fits

of the exponential and delayed-exponential functions to simulated data from four

different data-generating processes: the standard exponential (top left), the delayed



REFINING THE LAW OF PRACTICE 9

exponential (bottom left), and on the right two cases mimicking data patterns re-

ported by (Rickard, 2004). On the top right there is an initial period of slow constant

performance that then becomes a faster standard exponential (similar to “Type 2”

items in Rickard’s Figure 6). On the bottom right the data were generated in the

same way but with a small probability of samples from the initial slow performance

occurring later (similar to “Type 1” items in Rickard’s Figure 5). Note that neither

data generating process directly corresponds to a fitted function in these latter two

cases. The exponential function is so tightly constrained that it struggles to predict

any data other than its own, with over-estimation where initial learning is slow. More

importantly, it also shows distortions in later regions where it is the true model. In

contrast, the delayed exponential is able to provide a good account of almost all of

the data. It can, of course, accommodate standard exponential function data, as it

is a special case, but also data where learning is initially slow or completely absent.

Its only failing is evident in the lower right panel, where it over-estimates the central

tendency of the bulk of the data late in practice due to contamination by occasional

very slow responses.

Accounting for the RT Distribution

There are a number of strong and general regularities that might be described

as “Laws” of RT measurement. First, RTs are variable, so even when the same

response is made under nearly identical conditions the observed RT can vary quite

widely. RT almost always has a unimodal positively skewed distribution, and that

distribution has a lower bound greater than zero below which responses cannot be

stimulus-contingent (Luce, 1986). Further, changes in mean RT are accompanied
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by proportionate changes in its standard deviation, both in general (Wagenmakers

& Brown, 2007), and in the particular domain of practice effects (Logan, 1992).

The practice laws described so far are descriptively inadequate as they do not take

account of these pervasive regularities. This flaw also means it is unclear how to fit

the functions to data, as fitting must take account of variability. For example, the

most commonly used method, unweighted least squares (e.g., Heathcote et al., 2000),

makes RTs early in practice overly influential, as they should be down-weighted due

to their greater variability.

We propose to approximate all of the afore-mentioned regularities while re-

quiring the estimation of only two extra parameters. In particular, we assume a

shifted multiplicative lognormal model of the RT distribution, where the practice

function is multiplied by a lognormally distributed random variable, and then pos-

itively shifted by some constant that reflects the lower bound of response time for

stimulus contingent responses. A random variable has lognormal (LN ) distribution

if its logarithm is normally distributed. The lognormal distribution is unimodal and

positively skewed, and has a long history of use in RT analyses, both as a mea-

surement model (see, e.g., Woodworth & Schlosberg, 1954) and more recently as a

cognitive-process model (Heathcote & Love, 2012; Rouder, Province, Morey, Gomez,

& Heathcote, 2014; Terry et al., 2015; Ulrich & Miller, 1993). We parameterized

the lognormal distribution in terms of the mean and standard deviation of the un-

derlying normal distribution; to avoid ambiguity we refer to them, respectively, as

the “log-mean” (µ) and “log-sd” (σ). The log-mean uniquely determines the median

of the longormal distribution and log-mean and log-sd together determine its mo-
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ments (e.g., mean, standard deviation, skew etc.). The only extra parameter to be

estimated is σ, as the log-mean is given by the practice functions already described.

We also estimate a shift parameter (t0 ≥ 0) corresponding to the fastest possible

RT, which we assume does not change with practice. As shown in the following

equations (which specify the practice functions as random variables), we partitioned

the mean asymptote parameters (α′) in Equations 3 and 4 into constant (t0) and

variable (α = α′ − t0) asymptote parameters. The variable parts of the equation

(i.e., α plus the practice function) are multiplied by a lognormal random variable

with a log-mean fixed at zero (and hence a median fixed at one) and log-sd of σ.

As a consequence, median RT equals Equations 3 or 4. We describe these functions

as the “delayed random power function” and the “delayed random exponential”

function.

RT ∼ t0 +
(
α + β

τ + 1

τ +N r

)
LN (0, σ) (5)

RT ∼ t0 +
(
α + β

τ + 1

τ + erN

)
LN (0, σ) (6)

Even though σ is fixed across practice, the standard deviation of RT decreases

in proportion to the decrease in both median and mean RT with practice (once t0 is

subtracted; Figure 1, bottom row). This occurs because both the mean and standard

deviation of the lognormal distribution are proportional to eµ. Hence, the practice

function for mean RT (with t0 subtracted) and for the standard deviation of RT are

exactly proportional to the median practice function (again with t0 subtracted).
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The addition of an explicit model of variability to the practice functions affords

a comprehensive and practically useful characterization of behavior. For example,

it supports quantification of best-case performance in terms of the lower percentiles

of RT distribution, at the start, during, and after extensive practice. Similarly, it

supports quantification of worst-case performance throughout practice in terms of the

higher percentiles, enabling quantitative management of risks associated with slow

responses. This addition also allows easy computation of the likelihood of any set

of parameters given the data. The likelihood quantifies all of the information in the

data relevant to model estimation. Thus, optimal fitting methods are supported, such

as maximum likelihood estimation and the method we adopt, hierarchical Bayesian

estimation.

Hierarchical Bayesian Estimation and Model Flexibility

We fit hierarchical models because they enable enhanced measurement by pool-

ing information over participants without introducing the distortions associated with

fitting to averaged data. They also avoid the implausible assumption, implicit in

individual fitting, that estimates from one participant provide no constraint on esti-

mates for other participants (Shiffrin, Lee, Kim, & Wagenmakers, 2008, see Evans &

Brown, 2017b and Evans, Rae, Bushmakin, Rubin, & Brown, 2017, for applications).

Bayesian methods make estimation of hierarchical models easier in practice. More

importantly, they also allow us to address the important issue of model flexibility.

More flexible models usually provide a better fit to data than simpler mod-

els, regardless of whether they reflect the data-generating process or whether they

provide the best predictions of future data. Basic approaches to this issue, such
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as AIC and BIC, balance goodness-of-fit against model flexibility measured by the

number of estimated parameters (e.g., Akaike, 1974; Schwarz, 1978; Burnham &

Anderson, 2004). However, these basic approaches fail to take account of differences

in complexity due to differences in functional form, which occur because the increase

in flexibility endowed by adding a parameter depends on the mathematical form of

a parametric model (Myung, 2000; Myung & Pitt, 1997; Evans & Brown, 2017a;

Evans, Howard, Heathcote, & Brown, 2017). In the domain of forgetting curves,

for example, Averell and Heathcote (2011) found that the addition of an asymp-

tote parameter made exponential functions were more flexible than power functions,

whereas the opposite held with no asymptote. Hence, it is possible that the advan-

tage for the exponential over power function found by Heathcote et al. (2000) may

be an artifact of greater flexibility. The issue of functional-form complexity is also

paramount in determining whether the addition of a delay parameter is justified.

Here, we address model flexibility using the Widely Applicable Information

Criterion (WAIC: Vehtari, Gelman, & Gabry, 2017; Gelman, Hwang, & Vehtari,

2014) to select the model that is best in the sense of being able to predict future

data. WAIC is more stable to compute than DIC, which has been used in the past

for hierarchical models (Spiegelhalter, Best, Carlin, & Van Der Linde, 2002). It is

an approximation to leave-one-out cross validation, that is, selecting the model that,

when fit to all but one data point, and on average over all possible such exclusions,

best predicts the left out data.

In the next section we apply these methods to fit and compare the two models

specified in Equations 5 and 6. We also compare these delayed laws to the simpler
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power and exponential laws without delays by fixing τ = 0. We analyzed data from

the same 17 experiments as Heathcote et al. (2000). In addition, we also analyzed

Rickard’s (2004) data in order to test whether the delay functions could account for

rapid transitions.

Method

Data

Table 1 provides a brief description of each data set examined by Heathcote et

al. (2000); more details are provided by Heathcote et al., and the original sources.

These data are available online (http://www.newcl.org/node/6).

Data Analysis

In order to minimize the influence of assumptions about the psychological ef-

fects of experimental manipulations, we allowed all five parameters for the random

power and exponential practice functions, t0, α, β, r, and σ, as well as the τ pa-

rameter for their delayed forms, to differ across experimental conditions in each data

set. Different test items were treated as different conditions within our analyses,

to avoid the potential biases that can result from averaging over different learn-

ing functions with different rates. We assumed a hierarchical structure in which

each parameter in each experiment – and where applicable each group within each

experiment – was drawn from independent normal population distributions, each

with separate mean (m) and a standard deviation (s) parameters. The popula-

tion distributions were truncated to positive values in accordance with the defini-
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tion of the τ and σ parameters, and to enforce non-negative RT values and non-

increasing effects of practice: t0 ∼ T N (mt0 , st0), β ∼ T N (mβ, sβ), r ∼ T N (mr, sr),

σ ∼ T N (mσ, sσ), α ∼ T N (mα, sα), and τ ∼ T N (mτ , sτ ). We chose vague pri-

ors for the m and s parameters, having, respectively, positive truncated normal

(T N ) and gamma (Γ) distributions: mt0 ∼ T N (1, 1), mr,exponential ∼ T N (0.2, 0.2),

mr,power ∼ T N (0.5, 0.5), mα,mβ ∼ T N (1, 2), mσ ∼ T N (2, 2), mτ ∼ T N (0, 3), and

st0 , sr, sα, sβ, sσ, sτ ∼ Γ(1, 1)

We used the Metropolis-Hastings algorithm with proposals generated by the

differential evolution algorithm (Turner, Sederberg, Brown, & Steyvers, 2013) to

obtain posterior parameter samples. Differential evolution involves running mul-

tiple parallel Markov chains, and generating the new parameter proposal for each

chain by adding the existing value to the difference between the values of two other

randomly selected chains. The generation of proposals also involves two tuning pa-

rameters. One is a small random perturbation added to all proposals, which was set

at 10−7. The other, a “step length” measure, was set according to the dimension of

the subject-level parameter space, at 2.38√
2k

, where k is the dimension. For each data

set we sampled 5k Markov chains, and for each chain we generated 19,000 samples as

burn-in. Posterior convergence was confirmed by visual inspection. In the vast ma-

jority of posteriors (99.9%) the R̂ measure of chain mixing (Brooks & Gelman, 1998)

was below 1.1 (the generally recommended maximum value), and in all cases it was

less than 1.25. After burn-in, we drew 21,000 samples from each chain, and thinned

to use every 10th iteration for further analysis. Data points from all subjects in each

data set were combined in order to calculate a single WAIC value for each data sets.



REFINING THE LAW OF PRACTICE 16

We report WAIC on the deviance scale, meaning that, as with AIC/BIC/DIC, lower

WAIC values indicate a better model.

We also fit another variant of the power function, termed the “general power

function” by Heathcote et al. (2000), which was originally proposed by Newell and

Rosenbloom (1981). The general power function includes an additional parameter,

P , which allows for learning before the start of the experiment 1:

α′+ β(N + P )−r (7)

As discussed by Heathcote et al. (2000), with high values of P this function can have

slower rate of learning early in practice than the regular power function, and mimic

the regular exponential function to some extent. However, this function is unable

to produce the S-shape of the delayed functions, and produced a worse WAIC value

than the delayed-power model in all data sets, so we do discuss it further.

Results

Table 2 provides the WAIC values for each law for each data set, with the

winning function’s WAIC in bold for each data set. In terms of the preferred function,

one of the two exponential laws was selected in 15 of the 17 data sets, with only

two data sets showing a preference for a power law. In 13 of the 17 data sets

WAIC selected functions with a delay parameter, with one each of the motor learning

(K1), mental arithmetic (M3) and memory and visual search (S1 and V3) data sets

constituting the four exceptions, which were all exponential. In 11 cases, coming from

1For the exponential function the effect of pre-experimental learning can be accounted for by
the value of β as the exponential has a translation-invariant shape.
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every task, including all three counting tasks, the delayed exponential was selected.

The delayed power model was selected in two of the five mental arithmetic data sets.

The standard power model was never selected.

In order to quantify the strength of these selections we divided the difference in

WAIC between the best and second best model by the standard error of the difference.

Standardized differences (which are analogous to a z-score) less than two provide

only tentative evidence (Gelman, Carlin, et al., 2014). All of the four data sets that

rejected a delay parameter in the exponential, the rejection was strong. In nine of

the 11 selections favoring the inclusion of a delay in the exponential function were

strong. The two cases only tentatively favoring a delay in the exponential were from

mental arithmetic tasks. Of the two selections favoring the delayed power function,

which were also both in mental arithmetic, one was strong relative to the standard

exponential, and the other was very tentative relative to a delayed exponential.

Figure 3 illustrates fits to data from the motor learning (K1, upper) and alpha-

bet arithmetic (A1, lower) experiments. In order to avoid the well known distortions

associated with averaging, we only plot as examples data for a single subject and

condition. The upper panel shows data from the motor learning experiment, where

there was little evidence for an initial flat section, so that standard and delayed func-

tion fits are almost identical (only the standard versions are plotted in the figure).

The parameter for the exponential function (see figure caption) predict a median

RT of 1.71s (i.e,. t0 + α) and standard deviation of 0.25s after extensive practice2,

with a lower bound for RT of 0.19s (i.e., t0). In contrast, for the power function the

2The asymptotic standard deviation is the product of the variable part of asymptotic median
RT, α+ β, and the standard deviation of LN(0, σ), which is

√
eσ2 × (eσ2 − 1).
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corresponding estimates are implausibly small, 0.11s, 0.006s and 0.07s, respectively.

At the other end of practice, the exponential function has a median RT on trial

one of 6.3s, while for the power function it is 15.9s; the power estimate is clearly

implausibly high.

The lower panel shows a subject from the alphabet arithmetic experiment,

where there was clear evidence for a delay. Learning is of the type classified as a

“smooth speed-up” by Rickard (2004; see his Figure 4). The parameters for the

delayed exponential function predict a median RT of 0.84s and standard deviation of

0.23s after extensive practice, with a lower bound for RT of 0.43s. The correspond-

ing estimates for the delayed power are 0.32s, 0.007s and 0.31s, with the standard

deviation clearly being an underestimate, due to an implausibly small estimate the

variable portion of asymptotic RT (0.01s). Indeed, in both of the cases shown in Fig-

ure 3 the power functions displayed the tendency noted by Heathcote et al. (2000)

to predict faster asymptotic performance than is plausible for empirical data. The

delayed exponential function has a median RT of 5.7s on the first trial, whereas the

delayed power provides what appears to be an overestimate of 14.7s. Examination

of Table 1 shows that the delayed exponential function provided plausible asymp-

totic estimates of the wide range of performance in the 17 data sets examined by

Heathcote et al. (2000), ranging from the the fastest case in involving memory search

(S3: median = 0.35s, SD = 0.06s and lower bound = 0.13s) to the slowest involving

the production of a complex sequence of key presses (K1: median = 2.32s, SD =

0.42s and lower bound = 0.93s). Similarly, estimates of median RT on the first trial

ranged widely (e.g, 0.41s in S3 and 5.43s in K1).
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Although much of the behavior in practice paradigms appears lawful it is in-

evitable that there will also be outlying data points. Such outliers are important

to identify, both theoretically, because they may indicate the presence of a mixture

of processes that underpin performance, and practically in cases where they distort

parameter estimates and goodness-of-fit to the main body of the data. However,

outliers can be hard to discern in the present context because of the non-linear ef-

fects of practice and the systematic decrease in variability with practice, so that

deviations later in practice (when variability is lower) should be given more weight

than variations earlier in practice.

Figure 4 show a method of summarizing goodness-of-fit and detecting outliers

using a “QQ” (quantile-quantile) plot. This plot enables an easy determination of

whether a model’s characterization of RT data is accurate, not only in terms of

its central tendency, but also the full distribution of RT. This compact graphical

summary, which can be used with all of the practice functions considered here, is

obtained by transforming the data for a participant and condition using the model’s

posterior median parameters. Other measures of the posterior central tendency, or

even maximum likelihood estimates, could also be used. Firstly, the t0 estimates

are subtracted from the data, and the remainder divided by the values given by

the term in brackets in Equation 6 (or Equation 5). Lastly, the natural logarithm

is taken, and the result divided by the lognormal standard deviation estimate. If

the model is accurate, the results of these transformations should have a standard

normal distribution.

To display the results graphically the sorted transformed data (i.e., its quan-
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tiles or “order statistics”) are plotted as a function of the corresponding theoretical

quantiles for a standard normal distribution3. This allows every data point to be

shown on the same scale on a single QQ-plot (data from multiple conditions and/or

participants can also be plotted together in this way as they are all also put on the

same scale). If the fit is good the points on the QQ plot should fall on the main

diagonal. Figure 4 shows QQ plots for the delayed exponential law for the sets in

Figure 3 is indeed very good, lacking any systematic deviations from the main diag-

onal that would be indicative of a failure of its assumptions or distortion in the fit

caused by influential outliers. For example, although the alphabet arithmetic QQ

plot does bring attention to two potential positive outliers, corresponding to the two

high points at trials 1749 and 1868 in the lower panel of Figure 3, they do not appear

to have had much effect on the overall fit.

Lastly, Figure 5 provides an experiment-level assessment of the goodness-of-

fit for the delayed exponential law. These plots were based on the transformed

mean RT for nineteen evenly spaced trials for each condition for each subject. The

transformed mean RTs for these semi-deciles were then averaged over subjects and

conditions, forming a single set of deciles for the entire experiment. We used trial

semi-deciles in order to align practice series of different lengths before averaging. A

good fit is indicated by the points in the plot clustering around the main diagonal,

and, in general, the model predictions do appear to quite closely match the empirical

data, suggesting that the delayed exponential provides a fairly accurate account of

3The cumulative probability of the ith of n sorted observations can be estimated as pi = i/(n+1),
and corresponding standard normal quantile is z(pi), where z is the inverse standard cumulative
normal transformation.
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all datasets at the experiment-level. The fits to K1 and A1 datasets are better

at the experimental-level than the individual conditions for the individual subjects

displayed before, suggesting that some of the misfit in the latter was likely due

to random variation rather than systematic misfit. As might be expected, fit is

somewhat worse in datasets with very few trials (e.g., M3, M4, M5).

Fitting Sharp Transitions

None of the data examined by Heathcote et al. (2000) had sharp transitions

of the type simulated in Figure 2. In contrast, they were evident in the majority

(71%) of practice series in Rickard’s (2004) data. For this data WAIC clearly favored

the exponential functions, and selected the delayed exponential law (13359) over the

standard exponential law (13965), and the delayed power law (14422) was selected

over the standard power law (15818). In terms of standardized differences the evi-

dence favoring the inclusion of a delay parameter in the exponential law (15.0) was

the stronger than anything else previously reported, and was even stronger for the

inclusion of a delay parameter in the power law (27.5). These results reinforce the

inadequacy of the standard power and exponential functions, but a question remains

as to whether the new delayed versions provide an adequate account. Answering this

question requires model checking rather than model selection.

Figure 6 displays the goodness of fit of the delayed exponential model to the

data from a single subject in two cases displaying Rickard’s (2004) Type 1 and Type

2 transitions. For the Type 2 transition on the right of Figure 6, analogous to the

top right panel of Figure 2, most of the data lie along the main diagonal of the QQ

plot, consistent with a good fit. This may be somewhat surprising given that there
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are some apparent slow outliers in the practice function plot, particularly trials 15

and 16 early in practice, trials 24 and 25 in the middle and trial 46 late in practice.

The latter three values are indeed the largest positive values in the QQ plot, but

the former two are only 4th and 6th largest, because they occur where RT variation

would be expected to be much larger. Further, stronger positive deviations are to

be expected given RT distribution is positively skewed, so few of these points lie far

from the main diagonal. Although we do not claim that this fit is perfect, it does

serve to illustrate the importance of judging outliers relative to a reasonable model

RT variability and its modulation by practice.

In a Type 1 transition, shown on the left of Figure 6, there are strong slow

outliers late in practice (a cluster of three on trials 29, 30 and 31 and one on trial

45) when the majority of performance is fast (analogous to the bottom right panel

of Figure 2). Figure 6 also show a complimentary type of fast outlier that occurred

early in practice (trial 11) when the majority of performance is slow. The QQ plot

shows that the outliers (the four points on the upper right and one on the lower

left) strongly distort the fits to the main part of the data, which is quite linear in

the QQ plot but with a shallower slope, indicating that the level of variability (σ)

is over-estimated. In the practice function plot it is also evident that performance

later in practice is over-estimated. This also results in the fast data point at trial 33

having the second largest negative deviation in the QQ plot. These shortcomings,

particularly given the prevalence of Type 1 transitions (around half of all practice

series), suggest the delayed random exponential practice law is not an adequate model

for Rickard’s (2004) data. As we now discuss, we believe that one of the most useful



REFINING THE LAW OF PRACTICE 23

features of general laws (in this case not only the shape of the practice function but

the nature of RT variability) is their ability to highlight exceptions requiring further

investigation.

Discussion

In an influential review titled “Why the Laws of Memory Vanished” (Roediger,

2008b) argued that simple laws do not hold because of “the complex, interactive

nature of memory phenomena” (p. 225). Although we agree about the complexity

of learning and memory we believe it is this very complexity that makes valuable

as a benchmark the widely applicable – if not perfect – regularities encapsulated by

laws. This is particularly so when the laws are quantitative and comprehensive, in

the sense of taking account of not only the central tendency but also the variability in

behavior. For example, in the domain of response time measurement (RT) exceptions

to unimodal positively skewed RT distribution call attention to the likely presence

of a mixture of underlying cognitive processes. Similarly, in the domain of practice

Heathcote et al. (2000) argued that exceptions to their finding for an exponential

law likely signal the presence of a mixture of learning processes operating at different

time scales. Here we have brought together these pervasive regularities, along with a

linear relationship between the mean and standard deviation of RT (Wagenmakers &

Brown, 2007), and the presence of a slower period of learning early in practice, into

a single law. We have presented evidence that this “Delayed Random Exponential

Law of Practice” holds widely and provides a useful measurement model that distills

complex patterns of behavior into few psychologically meaningful and practically
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useful parameters.

However, we acknowledge that outside of controlled experimental settings, and

sometimes even within them, there may be exceptions: practice can slow rather than

speed performance when fatigue sets in, performance can plateau when the potential

for improvement in one method is exhausted, only to commence improving again

when a new and better method is found, improvement can be sudden rather than

gradual when insight is gained into a new much better method, but improvement can

be inconsistent with occasional reversions back to the slower method. In the light

of these facts, we have also sought to complement our refined law of practice with a

sensitive method that detects when it does not hold. We contend that, against the

background of a quantitative account of simple lawful behavior, exceptions – and

the attendant need for deeper examination – become most evident. This can help

motivate a need for the development of more complex theories.

One of our initial motivations of undertaking a re-analysis of the 17 data sets

examined by of Heathcote et al. (2000), which are all well described by a smooth and

monotonic decrease in RT with practice, was the possibility that two factors may

have confounded their rejection of the Power Law of Practice. First, their analysis

did not take account for functional form complexity, so it is possible that the expo-

nential function won only because it is more flexible than a power function having

the same number of parameters. Second, neglecting an early period of slow learn-

ing would particularly disadvantage the power function, because it decreases more

rapidly than the exponential function early in practice. Our re-analysis addressed

both issues, using a Bayesian model-selection method that takes account of func-
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tional form complexity and by fitting practice functions that allowed for an early

period of slow learning.

We found only one of the 17 data sets where the latter problem likely occurred,

a mental arithmetic task (M1 in Table 2) where the standard exponential function

beat the standard power function, but was clearly worse than a power function that

allowed for a delay in the onset of more rapid learning. In all but one other case

exponential functions were superior, and in most cases strongly so, with the only

other exception, again in a mental arithmetic task (M4), being equivocal. Although

rare, we do not wish to discount the exceptions; instead they highlight that our

methods can find in favor of a power function and likely indicate the potential for

learning in mental arithmetic to be multi-scale.

However, at a more general level, our refined analysis clearly indicates that

Heathcote et al.’s (2000) repeal of the Power Law of Practice, and their proclamation

of an Exponential Law of Practice, was justified. There would, then, seem to be no

reason for the continued use of power functions to characterize practice effects. This

is especially so as power functions demonstrably produce parameter estimates that

provide an implausible characterization of both initial and asymptotic behavior as

well as misfit of the behavior in between. This makes them likely to be misleading in

any practical application. Further, our results have the strong theoretical implication

that practice effects usually have a single scale, suggesting a re-evaluation of theories

that fundamentally assume a Power Law of Practice (e.g., Logan, 1988, 1992), and

a re-formulation of those that assume it (e.g., J. R. Anderson & Lebiere, 1998)

Our results provided strong support for the addition of several extensions to
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the law of practice. First, there was a clear need to account for a delay in the

onset of more rapid learning in 15 of the 18 data sets examined here. In the three

exceptions there was strong evidence against the need to include a delay, so a delay

is clearly not obligatory. However, the often strong evidence in favor of a delay in

the remaining cases, as well as the single case where its omission may have caused

a bias against detecting multi-scale learning, argues for the customary inclusion of a

delay parameter when fitting practice functions.

A further addition, of a Lognormal RT distribution along with the assumption

that it interacts multiplicatively with the practice function, was supported by the

accurate characterization it provides of RT variability. These additions are not only

necessary to provide a more complete description of behavior in practice paradigms;

we would argue some assumptions about variability are unavoidable because they

must be made, if only implicitly, when fitting practice data.4 Instead, we think it is

preferable to make explicit assumptions on this issue, and that to do so is especially

advantageous when, as was the case with our assumptions, they have attendant

benefits: efficient estimation, rigorous model selection, and model checking via a

graphical characterization of all aspects of fit in the from of easily constructed QQ

plots.

This method of characterizing behavioral variability also underpins future po-

tential developments in the quantitative characterization of practice effects, address-

4For example least squares fitting implicitly assumes a Gaussian error model. A reviewer sug-
gested that in some cases this type of fitting might be preferable when interest focuses on the
expected values. However, in a parameter recovery study we found that the τ and r parameters
were less well estimated using least squares, and that this problem became more marked as RT
variability increased.
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ing limitations in the present approach. First, although we neglected the occurrence

of errors in our analysis here (all RTs were from correctly answered trials), the

Lognormal distribution is compatible with an evidence-accumulation approach to

modeling not only the distribution of RT but also the probability of making different

response choices (Heathcote & Love, 2012; Rouder et al., 2014; Terry et al., 2015).

Although simultaneously modeling both types of data is challenging, as errors tend

to be relatively rare especially later in practice, the progress that has already been

made in very large data sets with relatively modest learning (Dutilh, Vandekerck-

hove, Tuerlinckx, & Wagenmakers, 2009; Heathcote & Hayes, 2012) could be built

upon by expanding the approach taken here.

Second, for practical applications more exploration is needed of how the de-

layed random exponential function can be used as a measurement model. Our anal-

ysis assumed one pair of population location and scale parameters for each model

parameter in each condition in order to impose minimal assumptions. Better psy-

chometric properties are likely to be obtained by a more parsimonious approach that

shares scale parameters across conditions, and provides an account of within-subject

correlations at the population level using an effect sizes parameterization. This could

also potentially support a more informed or perhaps default prior specifications, and

the use of Bayes Factors for model selection as in (Rouder, Morey, Speckman, &

Province, 2012).

Finally, we think it is important to acknowledge that practice data alone, and

hence laws that are fit to those data, may not provide a full account of effects of prac-

tice. For example, recent evidence from brain imaging (Tenison & Anderson, 2016;
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Tenison, Fincham, & Anderson, 2016) suggests practice impacts progress through

three stages in solving math problems, first characterized by a predominance of al-

gorithmic processing, then retrieval and finally automatic processing. The first two

stages might reasonably map to our delay and learning parameters respectively, and

the third to our asymptote parameter. However, because performance is unchanging

at asymptote, it is difficult investigate the nature of the automatic stage without al-

ternative approaches, such as neuroimaging measures or behavioural manipulations

such as imposing a dual-task load.
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Figure 1. Fits to two simulated data sets (black circles), generated by the exponential
function (left panel; parameters: α = 1, β = 2, r = 0.2, t0 = 0.3, and σ = 0.1) and the
power function (right panel; parameters: α = 1, β = 2, r = 0.7, t0 = 0.3, and σ = 0.1). The
exact exponential and power models used to simulate the data are the shifted multiplicative
lognormal forms discussed later in the “Accounting for the RT Distributions” section. The
lines are maximum likelihood estimated best fitting power and exponential functions, in
green and blue respectively. In each graph, the x-axis represents the trial number, and
the y-axis represents the response time on each trial. For the exponential data in the
left panel the best-fitting power function overestimates response times in the middle, and
underestimates them late in practice. For the power data in the right panel the best-fitting
exponential function underestimates response times in the middle, and overestimates them
late in practice. The error bars presented before the first trial provide the inter-quartile
range of the data-generating model for the first trial, showing the predicted variability
in the data at the start of practice. The error bars presented after the last trial provide
the inter-quartile range for the last trial, showing both data-generating models decrease
variability with practice.
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Figure 2. Maximum likelihood estimated best fits for the standard exponential (blue) and
delayed exponential (red) models to four simulated data sets (black circles). Each data
set was generated with the following common exponential parameters: α = 1, β = 2, r =
0.2, t0 = 0.3, and σ = 0.1 (see Equation 6). The data sets in the left column came from
exponential (top left), and delayed exponential (bottom left, with τ = 10) functions. The
data sets on the top right came from a model with an initial period of no learning (the first
15 trials) generated from a lognormal distribution (µ = 1.5, σ = 0.1), and the later trials
generated by a standard exponential with multiplicative lognormal noise (σ = 0.1). The
same model was used for the bottom right panel, except that trials after the 15th have a
0.2 probability of being samples from the same distribution as the initial 15 trials.
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Table 1: Summary information about the data sets from Heathcote et al. (2000). The
“Data set” column defines a name used to refer to the data set throughout this paper, and
the “Source” column provides the corresponding key to the following citations: 1 = Strayer
& Kramer (1994b), 2 = Strayer & Kramer (1994c), 3 = Strayer & Kramer (1994a), 4 =
Palmeri (1997), 5 = Rickard & Bourne Jr (1996), 6 = Rickard (1997), 7 = Reder & Ritter
(1992), 8 = Schunn et al. (1997), 9 = Heathcote & Mewhort (1993), 10 = Carrasco et al.
(1998), 11 = Verwey (1996). The “Subs” column defines the number of subjects that are
in the data set, and the “Conds” column the number of within-subjects conditions. All
conditions were manipulated within subjects, except in M1 and V3 data sets, which also
had three and two groups respectively (Note that M1 was manipulated in a non-factorial
manner). The “Task” column refers to the type of task used in the data set, with the
following key: 1 = Memory Search, 2 = Counting, 3 = Mental Arithmetic, 4 = Alphabetic
Arithmetic, 5 = Visual Search, 6 = Motor Learning. The final 6 columns are the medians
of the hyper-mean posteriors for the delayed exponential model, averaged over conditions.

Data set Source Task Subs Conds τ α β r t0 σ
S1 1,2 1 6 6 2.3 0.23 0.09 0.0012 0.25 0.41
S2 1,2 1 32 6 0.87 0.19 0.12 0.00086 0.24 0.35
S3 3 1 22 6 2.1 0.23 0.05 0.00065 0.13 0.26
C1 4 2 4 30 2.7 0.21 1.77 0.0019 0.4 0.41
C2 4 2 4 72 2 0.20 1.79 0.00084 0.43 0.44
C3 4 2 5 72 1.4 0.21 1.30 0.0007 0.44 0.41
M1 5 3 24 16 0.5 0.26 0.62 0.061 0.55 0.49
M2 6 3 19 12 0.9 0.28 7.44 0.0061 0.58 0.58
M3 7 3 20 4 2.8 0.47 4.53 0.16 0.14 0.85
M4 7 3 16 4 2.7 0.34 0.49 0.16 0.19 0.51
M5 8 3 22 3 3.7 0.28 0.63 0.11 0.20 0.65
A1 6 4 21 24 1.7 0.29 3.54 0.0035 0.46 0.52
V1 9 5 24 8 2.3 0.21 0.44 0.0035 0.31 0.49
V2 10 5 10 12 3.5 0.33 0.25 0.011 0.22 0.36
V3 9 5 8 16 1.6 0.25 0.23 0.0084 0.35 0.50
K1 11 6 36 2 0.5 1.80 3.14 0.0097 0.52 0.23
K2 11 6 36 2 4.2 0.40 0.83 0.0014 0.93 0.37
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Table 2: WAIC values for each data set, where smaller values indicate a superior model,
and the number in bold indicates the winning model for each data set. The final column
is the standardized difference between the best and second best models.

Dataset
SE: Standard
Exponential

DE: Delayed
Exponential

SP: Standard
Power

DP: Delayed
Power

z(Best-Next)

k1 20742 20759 22642 20854 (SE > DE) 3.0
k2 -667 -968 31 -23 (DE > SE) 14.0

m1 -19779 -19585 -19679 -19974 (DP > SE) 4.3
m2 44051 44021 49205 46419 (DE > SE) 1.1
m3 3164 3176 3209 3195 (SE > DE) 2.2
m4 -411 -414 -403 -424 (DP > DE) 0.8
m5 4431 4414 4583 4499 (DE > SE) 1.5
s1 -36868 -36836 -36721 -36760 (SE > DE) 3.9
s2 -310045 -310132 -308662 -309522 (DE > SE) 3.7
s3 -287100 -287174 -286537 -286798 (DE > SE) 2.7
v1 -28228 -28380 -24868 -27019 (DE > SE) 5.7
v2 -11177 -11232 -10660 -10880 (DE > SE) 3.3
v3 -29065 -28947 -27702 -28381 (SE > DE) 7.0
a1 45602 45186 55228 50665 (DE > SE) 8.4
c1 -14358 -15053 -7712 -9886 (DE > SE) 13.1
c2 -24426 -24937 -13764 -16574 (DE > SE) 8.4
c3 -41478 -41705 -29766 -34099 (DE > SE) 3.9
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Figure 3. The upper panel displays data (black circles) and posterior median parameter
fits of the median standard random exponential (SE; blue line: t0 = 0.19, α = 1.52, β =
4.6, r = 0.0022, and σ = 0.16) and power (SP; green line: t0 = 0.066, α = 0.035, β = 15.8,
r = 0.26, and σ = 0.18) functions to condition 1 for subject 9 in the K1 data set. The
lower panel displays same type of fits of the standard exponential (SE; blue line: t0 = 0.42,
α = 0.155, β = 6.8, r = 0.0016, and σ = 0.5) and power (SP; green line: t0 = 0.4, α =
0.014, β = 106, r = 0.63, and σ = 0.67) and delayed exponential (DE; red line: t0 = 0.43,
α = 0.41, β = 4.9, r = 0.0033, σ = 0.48, and τ = 8.2) and delayed power (DP; orange line:
t0 = 0.31, α = 0.01, β = 14.4, r = 0.88, σ = 0.56, and τ = 50), to data from condition
24 of subject 21 in Experiment A1. The two filled black dots are the outlier data points
discussed in the main text, in reference to Figure 4: trials 1749 and 1868
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Figure 4. Quantile-quantile plots of residuals from the delayed exponential model for the
data displayed in Figure 3. The X axis displays the quantiles under the standard normal,
and the Y axis displays the sorted data transformed as described in the main text.
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Figure 5. Quantile-quantile plots of residuals from the delayed exponential model for
the group-averaged semi-deciles trials for each experiment, with different points for each
experimental condition. Error bars provide the 95% posterior credible intervals, which
were generated by transforming the data generated by 100 different posterior samples, and
then for each semi-decile, taking the 0.025 and 0.975 quantiles over the posterior samples.
The X axis displays the quantiles under the standard normal, and the Y axis displays the
sorted data transformed as described in the main text.
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Figure 6. Practice series (upper panels) and corresponding QQ plots (lower panels) for
subject 13 of Rickard (2004). The data in the left column is for an item displaying at Type
1 transition (slow late outliers and a fast earlier outlier) and a Type 2 transition, where
such outliers are less prevalent. The red lines in the top panels show the fit of the posterior
median of the median of the delayed random exponential function. In the top panels, the
filled black dots are the outlier data points discussed in the main text, in reference to the
bottom panels.


