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ABSTRACT 

The air-seeding threshold water potential establishes a hydraulic limit on the ability of woody 

species to survive in water-limiting environments, but herbs may be more plastic in terms of 

their ability to adapt to drying conditions. Here we examined the capacity of sunflower 

(Helianthus annuus L.) leaves to adapt to reduced water availability by modifying the 

sensitivity of xylem and stomata to soil water deficit. We found that sunflower plants grown 

under water-limited conditions significantly adjusted leaf osmotic potential, which was linked 

to a prolongation of stomatal opening as soil dried and a reduced sensitivity of photosynthesis 

to water-stress induced damage. At the same time, the vulnerability of midrib xylem to water-

stress induced cavitation was observed to be highly responsive to growth conditions, with 

water-limited plants producing conduits with thicker cell walls which were more resistant to 

xylem cavitation. Coordinated plasticity in osmotic potential and xylem vulnerability enabled 

water-limited sunflowers to safely extract water from the soil, while protecting leaf xylem 

against embolism. High plasticity in sunflower xylem contrasts with data from woody plants, 

and may suggest an alternative strategy in herbs. 

 

Key-words: cavitation; herbaceous species; osmotic adjustment; stomatal movement; xylem 

vulnerability.  
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INTRODUCTION  

Plant water transport through xylem cells is mostly driven by tension gradients 

generated at air-water interfaces within leaves (Dixon  Joly 1895). Transporting water 

under tension is free of metabolic costs, however, the instability of water at high tension 

results in an inevitable consequence: a vulnerability of the xylem to cavitation (Sperry  

Tyree 1988). When plants are exposed to drying soils or high evaporative demands, tensions 

generated in the xylem vasculature can exceed a limit (i.e. ‘air-seeding’ threshold) where an 

air bubble is pulled into the conduit lumen, where it rapidly expands to form an air cavity that 

blocks the xylem (i.e. cavitation; Tyree  Sperry 1989). Drought-induced cavitation reduces 

the plant hydraulic conductance, including leaf hydraulic conductance (Kleaf; Brodribb et al. 

2016), negatively impacting photosynthetic gas exchange (Sack  Holbrook 2006; Brodribb 

et al. 2007). The xylem vulnerability to cavitation emerges therefore as a primary constraint 

on vascular plant-function (Tyree  Sperry 1989). 

Xylem vulnerability in herbs has been traditionally difficult to measure due to 

technical limitations (Lens et al. 2016), but the available data suggest that herbs are highly 

sensitive to cavitation (Stiller  Sperry 2002; Li et al. 2009; Saha et al. 2009). Recent studies 

showed that the entire xylem system of tomato plants, including roots, stems and leaves, 

experienced c. 40% of cavitation at the very mild water potential of c. –1.5 MPa (Skelton et 

al. 2017). Given the tendency for high xylem vulnerability to be associated with low 

construction cost and high transport efficiency (Hacke et al. 2006; Larter et al. 2015), the 

expression of vulnerable xylem in herbs certainly accords with the general impression of 

herbaceousness as occupying the “fast” end of the plant economics spectrum (Reich 2014). 

Yet at the same time, high vulnerability to cavitation poses questions about the functionality 

of herbs during water stress. Two scenarios threaten to cause cavitation and loss of 
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productivity in vulnerable herbaceous plants; the first is the possibility of cavitation caused 

by strong transpiration in well-watered plants, and the second is cavitation produced by soil 

drying. Many herbs have very high maximum stomatal conductances (gs), potentially 

exposing them to massive rates of transpiration, which could drive leaf water potentials 

(Ψleaf) sufficiently low to induce cavitation (Oren et al. 1999; Sperry 2000). Stomatal closure 

in response to declining Ψleaf has been observed to arrest leaf dehydration before xylem 

cavitation occurs (Cochard et al. 2002; Brodribb  McAdam 2017; Martin-StPaul et al. 

2017). Yet the possibility of wrong-way stomatal responses (Buckley 2005) caused by very 

rapid changes in transpiration could allow transient water potential excursions into the danger 

zone for cavitation. However, the danger of cavitation induced by excessive transpiration in 

wet soil, may not be especially problematic for herbaceous plants because xylem should refill 

either by capillarity or by root pressure if plants are allowed to equilibrate with wet soil 

overnight (Gleason et al. 2017).  

Cavitation caused by drying soil poses a potentially more significant threat to herbs 

with highly vulnerable xylem because cavitation-induced embolisms are unlikely to be 

repairable until soils return to full hydration and atmospheric humidity approaches 100%. 

Thus, herbs with highly vulnerable xylem appear to be precariously exposed to changes in 

soil water content that could cause damage or death. Even if stomatal closure delays the 

dehydration of the plant body, species with highly vulnerable xylem would be incapable of 

extracting water from drying soil, without risking xylem failure (Choat et al. 2012). This 

means stomata in water-limited herbs are forced to remain closed, and plants are unable to 

take up CO2 for photosynthesis. These potential costs must be balanced by the likely benefits 

of producing vulnerable xylem, such as reduced construction costs or improved efficiency. 

Quantifying these risks and benefits is essential in order to understand the ecology of 

herbaceousness. 
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Here we focus on the risk component associated with constructing highly vulnerable 

xylem. Of particular interest for herbaceous species living very close to the cavitation limits 

of their xylem, is whether the potential exists for plastic modification of xylem vulnerability 

under conditions of water limitation. It is known that herbaceous species are often highly 

plastic in terms of leaf osmotic adjustment under water limitation, which extends the water 

potential range of stomatal opening (Turner & Jones 1980). However, such adjustment would 

appear to expose the xylem to heightened risk of cavitation unless xylem vulnerability could 

also be shifted to accommodate lower water potentials.  Such plasticity could greatly extend 

the tolerance of otherwise sensitive plants to more negative soil water potentials. The 

possibility of xylem acclimation during exposure to reduced water availability has been 

identified as a potentially important issue in woody plants (Anderegg 2014), yet there is little 

information about plasticity in herbs, where the threat of cavitation is likely to be most 

profound. Sunflower (Helianthus annuus L.) makes an ideal subject for examining the impact 

of water stress on hydraulic vulnerability because this species is known to exhibit plasticity in 

stomatal response to water potential and leaf turgor in response to changes in growth 

conditions (Tardieu et al. 1996). 

In order to understand whether sunflower plants are able to modify their hydraulic 

system to accommodate drier growth conditions we measured the leaf xylem vulnerability 

and stomatal responsiveness to leaf-air vapor pressure deficit (VPD) of plants grown under 

both well-watered and water-limited soil. We hypothesised that sunflower plants grown under 

water-limited soils would exhibit leaf xylem that was less vulnerable to cavitation, and leaves 

less vulnerable to photosynthetic damage. We further hypothesised that a coordinated shift of 

osmotic potential and xylem vulnerability in water-limited plants would play a critical role in 

prolonging leaf gas exchange while preventing extensive leaf xylem cavitation and declines 

in whole plant hydraulic conductance (Kplant) under high VPD. 
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MATERIALS AND METHODS 

Plant material and growth conditions 

Seeds of an individual H. annuus cv. Yellow Empress (Asteraceae) were germinated 

in c. 3 L plastic pots containing potting mix, and watered daily to full capacity until seedlings 

were c. three weeks old. Six of the healthiest plants were divided into two random groups of 

three plants each, which were next grown under either well-watered or water-limited 

conditions for another five weeks. Well-watered plants were watered daily in the morning to 

full capacity [predawn leaf water potential (Ψpredawn) > –0.20 MPa] (Fig. 1), and kept in 

glasshouse regulated at 16-h day at 25°C/15°C day/night temperatures, VPD at c. 1.0 kPa 

during the day, and natural light [maximum photosynthetic photon flux density (PPFD) of 

approximately 1500 µmol m
-2

 s
-1

]. Water-limited plants were watered three times per week in 

the morning to full capacity (–0.50 MPa > Ψpredawn > –1.36 MPa), resulting in a clear wilting-

recovery cycle (Fig. 1). They were kept outside the glasshouse during summer (from 

December 2016 to January 2017) under a natural c. 16-h day at c. 23°C/13°C day/night 

temperatures, VPD at 1.45 ± 0.7 kPa during the day, and natural light (maximum PPFD of 

approximately 1800 µmol m
-2

 s
-1

). At the end of the total eight weeks, both well-watered and 

watered-limited plants were c. 100–120 cm tall, and each plant had c. 20 leaves. 

Physiological and anatomical traits 

All measurements were carried out using fully expanded leaves developed entirely 

during the watering treatment period. Leaves from three individuals per treatment were 

sampled for each measurement. 

The Ψpredawn and midday leaf water potential (Ψmidday) were determined for well-

watered and water-limited plants over the course of the week during the watering treatment 

period. Leaves were sampled before sunrise (0600 h) and at c. 1200 h., wrapped in damp 
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paper towel, bagged, and immediately measured using a Scholander pressure chamber (615D, 

PMS Instrument Company, Albany, USA). 

Leaf turgor loss point (Ψtlp), leaf osmotic potential at full turgor (Ψs) and leaf 

capacitance (Cleaf) were determined on each of the three well-watered and water-limited 

plants using pressure-volume analysis (Tyree  Hammel 1972). Fully expanded leaves for 

each growth condition were cut under water and rehydrated overnight until Ψleaf was > –0.1 

MPa.  Leaf mass and Ψleaf were measured over time during slow desiccation on the bench 

until Ψleaf stopped falling. Relative water content was plotted against Ψleaf
-1

 as per Tyree  

Hammel (1972). The Ψtlp was determined by the inflection point between the pre-turgor loss 

and post-turgor loss portions of the curve. The Ψs was obtained by extrapolating the linear 

relationship of the post-turgor loss portion of the curve to 100% relative water content. 

Finally, the Cleaf was calculated in terms of relative water content from the linear slope of the 

plot, and normalized by leaf area. 

Anatomical traits were measured from two leaves of each replicate plant using visibly 

undamaged leaves were collected from the third to fifth node from the distal end of the stem. 

For paradermal analysis, fresh leaves were divided vertically into two equal parts, and three 

sections of c. 100 mm
2
 (i.e. near the leaf base, in the central region and near the tip) were 

taken along one of the sides. The sections were cleared using commercial bleach, rinsed, 

stained with 1% toluidine blue and mounted on microscope slides in phenol glycerine jelly. 

Three field of view (FOV) per section were photographed using a camera (Digital Sight DS-

L1, Nikon, Melville, USA) mounted on a microscope (DM 1000, Leica, Nussloch, Germany), 

and the images were used to quantify vein density (Dv) and stomatal density (Ds) using the 

ImageJ software (National Institute of Health, New York, USA). The Dv was measured in 

one FOV per section at ×4 magnification (FOV area 3.47 mm
2
), and Ds was measured in one 

FOV per section at ×20 magnification (FOV area 0.14 mm
2
) on both sides of the leaves. For 
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cross sections, fresh leaves were cut at approximately one-third position from the top to the 

bottom using a freeze-microtome (BFS-3MP, Physitemp Instruments, Clifton, USA). The 

sections were stained with 1% toluidine blue, and mounted in phenol glycerine jelly. Three 

FOVs per section were photographed, and the images were used to quantify leaf thickness 

(Tleaf), hydraulically weighted vessel diameter (Dh) and the xylem cell wall thickness (t) and 

lumen breadth (b) ratio [(t/b)
3
; a theoretical predictor of vulnerability to cell collapse; 

Brodribb  Holbrook 2005]. The Tleaf was measured in two FOVs per section at ×10 

magnification, and Dh, t and b were measured in one FOV per section at ×40 magnification. 

Both t and b were measured for all xylem conduits in the midrib; for each conduit b was 

calculated as the average of the maximum and minimum diameters of each lumen and t was 

calculated as the average of three random measurements of cell wall thickness. The Dh was 

calculated for each leaf using the equation:  

Dh = ∑b
5
/∑b

4 
(Kolb  Sperry 1999) (1) 

The cell wall thickness values used for (t/b)
3 

calculation was obtained as the value consistent 

with the Dh using the linear relationship between t and b for each leaf (Blackman et al. 2010). 

Maximum leaf hydraulic conductance 

Kleaf was determined in plants grown under both well-watered and water-limited 

conditions. All individual were watered and bagged overnight, and Kleaf was assessed from 

800 h to 1000 h by the evaporative flux method (Sack et al. 2002; Brodribb  Holbrook 

2006) using a flowmeter. During the morning, the leaves were acclimated to high humidity 

(bagged with wet paper) for approximately 30 min to ensure high gs. Leaves were then cut 

under water and immediately connected to the flowmeter. PPFD of c. 600 μmol m
-2

 s
-1

 and a 

constant stream of warm air were applied to the leaves (leaf temperature ranged from 27 to 

32°C) allowing high rates of transpiration, and consequent high rates of flow. After flow 
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reached a maximum steady-state for c. 5 min, Ψleaf was immediately measured using a 

Scholander pressure chamber. Calculation of Kleaf was made using the equation:  

Kleaf = F / Ψleaf (2) 

where F is the water flow into the leaf at steady-state condition. Values were normalized to 

leaf area and the viscosity of water at 20°C (Korson et al. 1969).  

Vapor pressure deficit transitions 

The three individual well-watered and water-limited plants were measured in a 

custom built growth chamber designed to allow very rapid transitions between low and high 

VPD. Prior to measuring, each individual plant was watered and acclimated overnight in the 

chamber under dark and low VPD conditions [0.75 ± 0.2 kPa (30 ± 0.1°C and 82 ± 6% 

relative humidity)]. The following day, lights were turned on (300 µmol m
-2

 s
-1

 at the leaf 

surface) and, after stable, leaf gas exchange and Ψleaf were measured under this low VPD 

condition. Each plant was then transferred to an adjacent chamber under a high VPD 

condition [3.25 ± 0.3 kPa (30 ± 0.1°C and 23 ± 7% relative humidity)] for 60 min. Relative 

humidity was controlled by a condensing dehumidifier (SeccoUltra 00563, Olimpia-Splendid, 

Gualtieri, Italy). Temperature and relative humidity were monitored every 30 s during the 

entire experimental period using a humidity probe (HMP45AC, Vaisala, Helsinki, Finland) 

and a temperature thermocouple; both connected to a data logger (CR800, Campbell 

Scientific, Logan, USA). 

One leaf per plant was selected for instantaneous gs measurements throughout the 

VPD experiment, which were performed using a portable photosynthesis system (GFS-3000, 

Heinz Walz, Effeltrich, Germany). Gas exchange measurements were performed under 

steady-state low VPD, then at 10, 20, 40 and 60 min after the step increase in VPD. 

Conditions in the cuvette were controlled at temperature of 30°C, 390 μmol CO2 mol
-1

 air, 
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PPFD of 1000 μmol m
-2

 s
-1

 at the leaf surface and the VPD was maintained as close as 

possible to the ambient chamber VPD. Maximum transient transpiration rate (E) was 

calculated using gs (obtained from the gas exchange measurements) and VPD (obtained from 

the relative humidity of the chamber and leaf temperature measured with a thermocouple). 

One leaf per plant was sampled for Ψleaf at steady-state initial low VPD, at 05 and 60 min 

after the step increase in VPD. Leaves were collected, wrapped in wet paper towel, bagged 

and placed in a humid box for Ψleaf assessment using a Scholander pressure chamber. Steady-

state Kplant was further calculated under steady-state initial low VPD and high VPD (60 min 

after the VPD transition). Calculation of Kplant to the target leaf was made using the equation: 

Kplant = E / Ψleaf (3) 

where E (calculated from gs and VPD) and Ψleaf under steady-state low and high VPD were 

used. Soil water potential in watered pots was assumed close to zero, as all plants, including 

the water-limited ones, were watered in the night before and acclimated overnight under dark 

and low VPD conditions until the beginning of the experiment. 

To understand the hydraulic dynamics during a rapid VPD transition, E, gs, and Ψleaf 

were modelled during VPD transitions under the theoretical condition of no stomatal closure 

and constant gs. Maximum E (Emax) was calculated using the maximum gs (i.e. obtained under 

steady-state initial low VPD) and values of VPD. The dynamic drop in Ψleaf was modeled 

assuming leaf dehydration equivalent to the discharging of a capacitor through a resistor 

(Brodribb  Holbrook 2003):  

Ψleaf, i+1 = Ψleaf,i – [Ψmin – (Ψmin  

           

      )] (4) 

 where Ψleaf,i (MPa) is the steady-state Ψleaf under low VPD; Ψmin (MPa) is the minimum Ψleaf 

that would be reached at steady-state conditions under high VPD, considering Emax (mmol m
-

2
 s

-1
) and Kplant (mmol m

-2
 s

-1
 MPa

-1
); t is the time interval (s); and Cleaf unit was mmol m

-2
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MPa
-1

. The Ψleaf,i was measured under low VPD during the VPD transitions using a 

Scholander pressure chamber; Kplant value obtained under high VPD during the VPD 

transitions; Cleaf was obtained using PV curve; Emax was calculated as Emax = maximum gs   

high VPD; and finally, Ψmin calculated as Ψmin = Emax / Kplant. 

Optical vulnerability (OV) technique and leaf injury monitoring 

 Finally each of the three replicate plants in well-watered and water-limited treatments 

were subjected to a lethal drying experiment to determine the vulnerability of xylem and the 

photosynthetic systems to damage. Prior to measurements, all plants were watered and 

bagged overnight. In the next morning, plants were carefully removed from pots to enhance 

the rate of soil drying. One leaf was placed under a stereomicroscope (M205A, Leica 

Microsystems, Heerbrugg, Switzerland) to record the development of cavitation in the leaf 

midrib, while the plant was fully covered using a thick black fabric to allow whole plant 

equilibration. The water potential was continuously measured at 20 min intervals using a 

psychrometer attached to the stem. The water potential was also confirmed with twice-daily 

measurements obtained by using a Scholander pressure chamber. Images of the midrib were 

taken every 3 min using a camera mounted on the microscope. Images were analysed by 

quantifying differences in light transmission through the midrib between captured images 

using an image subtraction method in ImageJ [for details see Brodribb et al. (2016) and 

www.opensourceov.org]. To analyse the relationship between plant water status and 

cavitation-induced air embolism formation, a linear regression was fitted between the drying 

time and water potential measurements, and used to determine the water potential at the time 

of each image capture. These values were then plotted against total embolism area for each 

image to produce an OV curve. The water potentials at 12%, 50% and 88% of maximum 

cavitation in the leaf midrib (P12, P50 and P88) were calculated based on this vulnerability 

curve. Each vulnerability curve was measured during c. 72 h, and for all individuals the last 
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midrib cavitation occurred at c. 48 h maximum. The final 24 h were used to ensure no more 

cavitation events, and to finish collecting fluorescence data. A previous experiment was 

performed measuring Kleaf from well-watered and water-limited plants to confirm that water-

limited plants were capable of refilling during the night, confirming that there was minimal 

embolism present in water-limited leaves prior to the beginning of OV measurements (for 

further details see the “maximum leaf hydraulic conductance” section). 

 The maximum quantum efficiency of photosystem II (Fv/Fm) is a well-known 

parameter typically used as an index of photosynthetic potential and injury in leaves 

(Guadagno et al. 2017). Here, we assessed Fv/Fm in the same plants used for the OV method 

over the desiccation course as a proxy for leaf damage. Leaf samples were taken randomly c. 

four times per day, dark-adapted for 30 min, and Fv/Fm was assessed using a portable 

chlorophyll fluorometer (PAM-2000, Heinz Walz, Effeltrich, Germany). Leaf tissues were 

illuminated with a weak modulated laser measuring beam to obtain the initial fluorescence 

(F0) and then a saturating white light pulse was applied to ensure maximum fluorescence 

emissions (Fm), from which Fv/Fm was calculated: 

Fv/Fm  = [(Fm − F0)/Fm)] (5) 

 The dynamic changes in Fv/Fm were then presented in response to Ψleaf. 

Statistical Analysis 

Student’s t tests (n = 3) were performed to test differences between well-watered and 

water-limited plants regarding the parameters Ψtlp, Ψs, P50, Kleaf, Cleaf, Dv, Ds, Tleaf, Dh, and 

(t/b)
3
.  

RESULTS 

Comparative Physiology and Anatomy of Well-Watered and Water-limited plants 
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The Ψpredwan of well-watered plants was higher than c. –0.20 MPa during the entire 

experimental period, while Ψpredwan of water-limited plants ranged from –0.50 to –1.36 MPa 

between watering events resulting in a clear wilting-recovery cycle (Fig. 1). Such water 

shortage during growth induced osmotic adjustments, as evidenced by significant changes in 

Ψs and Ψtlp in water-limited plants to a lower Ψleaf compared with well-watered plants (Table 

1).  

When plants were exposed to acute soil drying, cavitation was clearly visualized in 

the sunflower midrib (Fig. 2) with large numbers of events accumulating in a sigmoidal 

fashion as plants dried. The resultant midrib vulnerability curves were very different for 

plants grown under the two watering treatments (Fig. 3). Plants grown under water-limited 

conditions displayed a significantly higher resistance to cavitation (P50 = –1.74 ± 0.04 MPa) 

than their well-watered counterparts (P50 = –1.15 ± 0.07 MPa; Table 1; Fig. 3a). A similar 

pattern was observed regarding P12 and P88, i.e. –1.42 and –2.05 MPa for water-limited 

plants, respectively; and –1.06 and –1.24 MPa for well-watered plants, respectively. The 

steep slope of the vulnerability curves meant that there was no overlap in the vulnerability 

curves produced by leaves from the different treatments. 

Strong coordination between the shift in osmotic potential and xylem vulnerability 

was evident in terms of a significant correlation between P50 and Ψs (r = 0.96; P < 0.05; Fig. 

4). In association with changes in P50 and Ψs in water limited plants, the water potential 

threshold triggering a decline in maximum quantum yield of photosystem II (Fv/Fm) also 

shifted to a more negative water potential in water-limited plants (Fv/Fm < 0.75 at –2.23 ± 

0.06 MPa) than well-watered plants (Fv/Fm < 0.75 at –1.63 ± 0.17 MPa; Fig. 3b).  

 Increases in resistance to cavitation in plants grown under water-limited conditions 

were accompanied by a higher (t/b)
3
 ratio, driven by significantly differences in the cell wall 
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thickness rather than decreases in Dh (Table 1). Other morpho-physiological traits related to 

hydraulic efficiency [e.g. maximum Kleaf, Dv, Ds, Tleaf and Dh] were not significantly different 

in plants grown under both conditions (Table 1). 

VPD Responses of Stomata 

When sunflower plants grown under well-watered conditions were transferred from 

low to high VPD conditions, within the first 5 min Ψleaf fell close to the Ψtlp, from –0.30 ± 

0.02 to –0.64 ± 0.05 MPa (Fig. 5b). This decline was driven by a dramatic initial increase in 

the transpiration rate from 3.8 ± 0.2 to 17.3 ± 0.8 mmol m
-2

 s
-1

 (and even higher considering 

no stomatal closure immediately after the VPD transition; Fig. 5a). Afterwards, gs was shown 

to gradually decrease from 0.74 ± 0.1 to 0.14 ± 0.1 mol m
-2

 s
-1

 (Fig. 5c), resulting in a final 

diminished E (Fig. 5a) and increased Ψleaf (Fig. 5b). Modeled data indicated that without 

stomatal closure under high VPD, pronounced declines in Ψleaf driven by exceedingly high 

rates of E would lead cavitation in the leaf midrib over a very short timeframe (Fig. 5b). 

However, no consistent dynamic was observed for Kplant during the VPD transitions. While 

one single individual showed a decline in Kplant when transferred to the high VPD condition, 

the other two maintained similar or even higher Kplant under high VPD (Fig. 5d). 

Additionally, Ψleaf was not observed to fall below the threshold water potentials to cause 

cavitation for any of the three individuals (Fig. 5b). 

 When sunflower plants grown under water-limited conditions were exposed to high 

VPD, a faster stomatal closure took place than in plants grown under well-watered conditions 

(compare gs 10 min after the VPD transitions in Figures 5c and 6c), possibly due to a 

narrower difference between initial Ψleaf and Ψtlp (0.41 ± 0.01 MPa in well-watered plants 

against 0.34 ± 0.04 MPa in water-limited plants). This resulted in a considerably lower peak 

of E than in plants grown under water-limited conditions (compare Figures 5 and 6). A 
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consistent c. 40% loss of apparent Kplant was observed under high VPD compared with low 

VPD within all three individuals (Fig. 6d), yet Ψleaf was not observed to fall below the 

threshold causing incipient cavitation (Fig. 6b).  

DISCUSSION 

Coupling physiological and anatomical data with results from the recently developed 

OV method (Brodribb et al. 2016), we demonstrate tight coordination between osmotic 

adjustment in sunflower plants, induced by soil water-stress, and changes in xylem 

vulnerability to cavitation. The result of parallel adjustment in these key physiological traits 

is that water-limited sunflowers are able to extract more water from soils without risking 

xylem cavitation or leaf damage. Additionally, rapid stomatal responsiveness in sunflower 

leaves appears to prevent major damage to xylem tissue even when whole plants were 

subjected to very rapid transitions to very high VPD. Adjustments in xylem vulnerability in 

response to dry soils, stomatal closure in response to dry atmospheres, and osmotic 

adjustment to protect photosynthetic systems are proposed as crucial mechanisms allowing 

survival of sunflower plants under water-limited conditions. 

Coordinated plasticity in hydraulic and stomatal dynamics enables safer water 

extraction from drier soils 

Sunflower leaves are known to substantially adjust osmotic potential (Ψs) when 

exposed to dry soil (Turner et al. 1978). This was clearly confirmed here. Adjustment of 

cellular solute potential in water-limited plants provided leaves with the advantage of 

sustaining gas exchange and photosynthesis as Ψpredawn dropped. Our principle question was 

to determine how a species that was vulnerable to xylem cavitation could freely adjust Ψs, 

reducing stomatal and photosynthetic sensitivity to water potential, without incurring costs in 

terms of xylem dysfunction caused by cavitation as Ψleaf dropped during the day. The answer 
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to this question was revealed in terms of a remarkable degree of plasticity in xylem 

vulnerability of sunflower leaves. As a result, we found coordinated changes in solute 

potential, stomatal and photosystem sensitivity to water potential, and xylem vulnerability. 

This coordinated response enabled sunflower to respond to drier soil by enhancing water 

extraction capacity while preventing extensive cavitation by stomatal closure. 

Vulnerability of plant species to xylem cavitation is recognized as a key trait limiting 

species ability to survive during soil drought (Choat et al. 2012; Skelton et al. 2017), as well 

as determining species distribution (Blackman et al. 2012; Larter et al. 2017). Furthermore, as 

the threshold water potential for air-seeding is thought to exhibit low plasticity in plant 

species (Choat et al. 2012; Lamy et al. 2014), it is tempting to expect that highly vulnerable 

species, such as sunflower, would be restricted to wet environments. Contrary to this 

hypothesis, sunflower plants are commonly found to survive under relatively dry conditions 

(e.g. Tardieu et al. 1996). Our results provide an explanation for these observations, by 

demonstrating high plasticity in xylem vulnerability in sunflower that enables plants grown 

under water-limited conditions to maintain the integrity of their water transport system under 

conditions that would be lethally damaging in unadjusted plants. For instance, the Ψpredawn of 

the water-limited treatment 36 h after watering (i.e. –1.84 MPa; Fig. 1) would very quickly 

exceed the P88 (i.e. –1.24 MPa) and even the water potential threshold triggering a decline in 

Fv/Fm (i.e. –1.63 MPa) if the plants maintained the same xylem vulnerability as plants from 

the well-watered treatment (Fig. 1). However, this Ψpredawn was instead maintained within the 

P50-P88 range of the hydraulically adjusted plants, allowing their survival. Similarly, the water 

potential 5 min after the VPD transition of the water-limited treatment (i.e. –1.02 MPa) 

would be very close to the P12 (i.e. –1.06 MPa) if plants did not show any hydraulic 

adjustment (Fig. 6). 
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Our results contrast with previous studies reporting very low levels of within-species 

variation in P50 of stems (Corcuera et al. 2011; Plavcová et al. 2011) and leaves (Nolf et al. 

2016; Blackman et al. 2017). Given that leaves have a shorter lifespan and are usually 

exposed to greater variations in water potential, it seems likely that leaves may exhibit a 

higher degree of plasticity in vulnerability when compared to stems. When considered in the 

context of relatively low plasticity of stem vulnerability in sunflower (Stiller & Sperry 2002; 

Delzon in press), this seems to be the case for this species. Additionally, it is notable that 

sunflower appears to exhibit a higher degree of vulnerability segmentation than other herbs 

such as tomato (Skelton et al. 2017). The ecology of segmentation among herbs and woody 

plants seems to be quite diverse, and will be a rich field for future research. 

More cavitation-resistant xylem is expected to incur costs in terms of xylem 

construction, as the development of more negative pressures within the conduits could result 

in cell collapse if leaf xylem were not sufficiently reinforced to withstand mechanical 

collapse (Hacke et al. 2001; Blackman et al. 2010). In this regard, our results demonstrate 

that reductions in xylem vulnerability in osmotically adjusted plants were also accompanied 

by thicker cell walls in the xylem conduits of the midrib, and hence higher (t/b)
3
 (Table 1). 

This more mechanically reinforced xylem could resist more negative xylem pressures before 

buckling and becoming non-conductive during water stress (Zhang et al. 2016). 

As well as producing more robust xylem, we found that the photosynthetic apparatus 

was more robust to dehydration in plants grown under water-limited conditions. Based upon 

declines in Fv/Fm, during acute dehydration we provide compelling evidence that complete 

hydraulic failure in the midrib precedes drought damage in terms of photosynthetic damage 

in sunflower (Fig. 3), much like previous studies that associate leaf damage with extensive 

cavitation, i.e. starting from P88 to P95 (Brodribb  Cochard 2009; Skelton et al. 2017).  
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As sunflower leaves dehydrate, a conservative sequence of physiological events 

occurs: loss of bulk leaf turgor, xylem cavitation and ultimately tissue injury (Fig. 3). Similar 

patterns have been previously discussed (Brodribb et al. 2003; Nolf et al. 2016; Maréchaux et 

al. 2017) and here we provide further insights on (i) how this sequence is functionally 

important to prevent drought-induced xylem cavitation and consequent major losses of 

hydraulic conductance, and on (ii) physiological mechanisms in angiosperms that enable 

plasticity in stomatal closure to avoid drought-induced damage, (iii) and most importantly, 

how changing the threshold for one of these physiological mechanisms in sunflower results in 

a parallel shift in all mechanisms. 

Stomatal closure is usually associated with increases in VPD in angiosperm species. 

In this regard, our VPD data (Figs. 5 and 6) demonstrate that as soon as VPD increases, Ψleaf 

transiently decreases, falling close or below Ψtlp within minutes, and consequently inducing 

stomatal closure. Such fast and efficient stomatal closure prevents further decreases in Ψleaf, 

which could otherwise result in extensive xylem cavitation. However, declines in apparent 

Kplant were observed in one well-watered individual and in the three water-limited individuals. 

A possible explanation is that such declines resulted from modifications in the outside-xylem 

pathway (Cuneo et al. 2016; Scoffoni et al. 2017), since Ψleaf was not observed to fall any 

close the threshold causing incipient cavitation under high VPD (Fig. 5b and 6b). Without 

stomatal closure under high VPD (dotted lines in Figures 5b and 6b), 88% of xylem conduits 

in the leaf midrib would be cavitated in less than 10 min after a switch from low to high VPD 

in sunflower plants (Fig. 5 and 6). This result per se strongly pinpoints stomatal closure as an 

exceedingly important mechanism by which herbs prevent hydraulic failure under high VPD, 

adding to the well-known importance of stomatal closure to prevent cavitation during soil 

water stress in woody plants (Brodribb et al. 2017; Martin-StPaul et al. 2017). 
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CONCLUSION 

A coordinated plasticity in xylem and stomatal sensitivity to water deficit enables 

water-limited sunflowers to safely extract water from the soil, while protecting leaf xylem 

against embolism. This high plasticity in sunflower xylem contrasts with data from woody 

plants, and may suggest an alternative strategy in herbaceous species.   
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Table 1. Mean values (n = 3, ± SE) for leaf water potential at turgor loss point (Ψtlp; -MPa), 

leaf osmotic potential at full turgor (Ψs; -MPa), water potential at 50% cumulative embolism 

(P50; -MPa), maximum leaf hydraulic conductance (Kleaf; mmol m
-2

 s
-1

 MPa
-1

), leaf 

capacitance (Cleaf; mmol m
-2

 MPa
-1

), vein density (Dv; mm mm
–2

), stomatal density (Ds; mm
-

2
) on the lower epidermis, leaf thickness (Tleaf; mm), hydraulically weighted vessel diameter 

(Dh; x 10
2
), and xylem cell wall thickness (t; mm) and lumen breadth (b; mm) ratio (t/b)

3   

10
3
] in Helianthus annuus plants grown under either well-watered or water-limited 

conditions. 

Traits Well-watered  Water-limited 

Ψtlp 0.71 ± 0.03 1.04 ± 0.02
**

 

Ψs 0.60 ± 0.04 0.79 ± 0.04
*
 

P50 1.15 ± 0.07 1.74 ± 0.04
**

 

Kleaf 11.88 ± 1.14 11.05 ± 0.16
ns

 

Cleaf, 3064 ± 102 3417 ± 211
ns

 

Dv 11.31 ± 0.54 11.58 ± 0.17
ns

 

Ds 286 ± 15 320 ± 30
ns

 

Tleaf 0.233 ± 0.01 0.254 ± 0.01
ns

 

Dh 2.32 ± 0.17 2.18 ± 0.08
ns

 

(t/b)
3
 1.10 ± 0.29 4.03 ± 0.33

**
 

Asterisks indicate significant changes in each trait (Student’s t test; *, P < 0.05; **,
 
P < 0.01; 

ns not significant) between growth conditions.  
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Figure 1. Mean predawn (black circles) and midday (white circles) leaf water potentials over 

the course of the week observed in Helianthus annuus plants (n = 3, ± SD) grown under well-

watered and water-limited conditions. Dashed vertical lines indicate when plants were 

watered. Solid horizontal line indicates the mean leaf turgor loss point. 
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Figure 2. A spatio-temporal map showing the progression of embolisms events in the leaf 

midrib recorded in Helianthus annuus plants grown under well-watered conditions during the 

desiccation. The colour scale shows the leaf water potential (Ψleaf; MPa) at which different 

embolism events occurred. Time ranges after excision are shown in each panel.  
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Figure 3. (a) Comparison of the percentage cumulative total embolism in the leaf midrib 

recorded during drying between Helianthus annuus plants grown under both well-watered 

(grey symbols) and water-limited (black symbols) conditions. The different symbols indicate 

individual leaves. The dashed vertical lines indicate the mean leaf turgor loss points for plants 

grown under either well-watered (grey lines) or water-limited (black lines) conditions. (b) 

Comparison of maximum quantum yield (Fv/Fm) recorded during drying between H. annuus 

plants grown under both well-watered (grey symbols) and water-limited (black symbols) 

conditions. The different symbols indicate individual leaves. The dashed vertical lines show 

leaf water potentials at 100% loss of xylem function in the leaf midrib for plants grown under 

either well-watered (grey lines) or water-limited (black lines) conditions. 
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Figure 4. Correlation between water potential at 50% cumulative embolism in the leaf midrib 

(P50) and leaf osmotic potential at full turgor in Helianthus annuus plants grown under well-

watered (grey circles; n = 3) and water-limited condition (black circles; n = 3). Dashed lines 

indicate the mean leaf turgor loss points of plants grown under well-watered (grey line) and 

water-limited condition (black line). 
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Figure 5. (a-c) Dynamic response of transpiration rate (E), leaf water potential (Ψleaf), 

stomatal conductance (gs) and apparent plant hydraulic conductance (Kplant) in Helianthus 

annuus plants grown under well-watered conditions exposed to a step change in vapor 

pressure deficit (VPD) from c. 0.75 kPa (white region) to c. 3.25 kPa (grey region). The 

different colours indicate individual plants. Dotted lines indicate how these parameters would 

behave considering no stomatal closure during the VPD transition. Water potentials at turgor 

loss point (Ψtlp) and 12%, 50% and 88% cumulative embolism in the leaf midrib (P12, P50 and 

P88) are depicted in (c).  
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Figure 6. (a-d) Dynamic response of transpiration rate (E), leaf water potential (Ψleaf), 

stomatal conductance (gs) and apparent plant hydraulic conductance (Kplant) in Helianthus 

annuus plants grown under water-limited conditions exposed to a step change in vapor 

pressure deficit (VPD) from c. 0.75 kPa (white region) to c. 3.25 kPa (grey region). The 

different colours indicate individual plants. Dotted lines indicate how these parameters would 

behave considering no stomatal closure during the VPD transition. Water potentials at turgor 

loss point (Ψtlp) and 12%, 50% and 88% cumulative embolism in the leaf midrib (P12, P50 and 

P88) are depicted in (c).  
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Summary 

 

Plasticity in leaf osmotic potential is well known in plants, but little is known about the 

plasticity in the xylem sensitivity to cavitation-induced damage. Using sunflowers grown 

under high and low water availability we find a close coupling between osmotic adjustment 

and a shift in the xylem cavitation sensitivity. Leaves in water-limited plants could extract 

more water from the soil by shifting both the osmotic potential and xylem cavitation 

threshold in a coordinated fashion. 

 


