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a b s t r a c t 

We introduce an extension to Multiple Classification Ripple Down Rules (MCRDR), called Contextual 

MCRDR (C-MCRDR). We apply C-MCRDR knowledge-base systems (KBS) to the Textual Question Answer- 

ing (TQA) and Natural Language Interface to Databases (NLIDB) paradigms in restricted domains as a type 

of spoken dialog system (SDS) or conversational agent (CA). C-MCRDR implicitly maintains topical conver- 

sational context, and intra-dialog context is retained allowing explicit referencing in KB rule conditions 

and classifications. To facilitate NLIDB, post-inference C-MCRDR classifications can include generic query 

referencing – query specificity is achieved by the binding of pre-identified context. In contrast to other 

scripted, or syntactically complex systems, the KB of the live system can easily be maintained courtesy 

of the RDR knowledge engineering approach. For evaluation, we applied this system to a pedagogical do- 

main that uses a production database for the generation of offline course-related documents. Our system 

complemented the domain by providing a spoken or textual question-answering alternative for under- 

graduates based on the same production database. The developed system incorporates a speech-enabled 

chatbot interface via Automatic Speech Recognition (ASR) and experimental results from a live, integrated 

feedback rating system showed significant user acceptance, indicating the approach is promising, feasible 

and further work is warranted. Evaluation of the prototype’s viability found the system responded ap- 

propriately for 80.3% of participant requests in the tested domain, and it responded inappropriately for 

19.7% of requests due to incorrect dialog classifications (4.4%) or out of scope requests (15.3%). Although 

the semantic range of the evaluated domain was relatively shallow, we conjecture that the developed 

system is readily adoptable as a CA NLIDB tool in other more semantically-rich domains and it shows 

promise in single or multi-domain environments. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Conversational Agents (CA) and Natural Language Interfaces to

Databases (NLIDB) systems typically require the system devel-

oper/author to have high-level skills in constructing either com-

plex semantic or syntactic grammars, or highly technical scripting

languages to parse user utterances, as well as database querying

languages such as SQL. This introduces a clear, unwarranted sep-

aration between the system author and a domain expert – ide-

ally the domain expert should be able to author and maintain the

knowledge required by the system, but it is unreasonable to expect

domain experts to have high-level technical or linguistic analysis
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kills ( Androutsopoulos, Ritchie, & Thanisch, 1995; Smith, Crockett,

atham, & Buckingham, 2014 ). We propose a solution to this that

llows an expert in the field to maintain knowledge that is used to

reate CAs with NLIDB capabilities. Our research uses a derivation

f the knowledge engineering approach, Ripple Down Rules (RDR)

 Compton & Jansen, 1990 ), called Contextual MCRDR (C-MCRDR). 

RDR recognises the problem of eliciting knowledge from the do-

ain expert – they have time constraints and they cannot usually

rovide a wholistic response in attempts to capture their knowl-

dge ( Biermann, 1998; Kang, Compton, & Preston, 1995 ). RDR re-

oves this knowledge acquisition bottleneck by allowing the ex-

ert to build a knowledge-base (KB) incrementally as they only

ave to provide justification of a conclusion in a local context as it

rises. We considered the application of RDR to the CA and NLIDB

aradigms, and defined cases to be examples of user dialog – ques-

ions and statements that are relevant to the domain. The domain

xpert considers what should be appropriate responses – in RDR
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Fig. 1. RDR tree structure a x – antecedent, c x – consequent. 
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erms, they are classifying each input case (which has pattern-

atched components of the user utterance as attributes) by a re-

ponse. 

Standard RDR can only provide a single classification for each

ase, and a natural extension is to allow multiple classifications –

ultiple Classification Ripple Down Rules (MCRDR) ( Kang, 1995 ) is

ne such extension. In this paper we introduce C-MCRDR, which

s a significant extension to MCRDR that facilitates constrained NL

onversation via pattern-matching. 

.1. Contribution summary 

The key features and contributions of C-MCRDR that facilitate

A and NLIDB services discussed in later sections are as follows: 

1. Implicit retention of topical conversational context by adopting

a stack-based modification to MCRDR’s inference mechanism; 

2. Intra-dialog contextual referencing via context-based variable

definition and assignment (via regular expression pattern-

matching) of relevant context that is maintained between di-

alog utterances; 

3. Rule-count reduction and NLIDB via post-inference deferred

classifications with database querying expressions (bound by

relevant context variables); 

4. Brittleness mitigation by: 

(a) Pattern-matching of utterances to key terms using a lexical

or phrasal paraphrasing approach; 

(b) Utterance suggestion (rule lookahead) based on current top-

ical context when an utterance is not recognised; 

5. ASR transcription correction (when speech is used) by pre-

processing terms using a set of corrective rules prior to infer-

ence; 

6. Speech to Text (STT) correction by pre-processing terms using a

set of corrective rules; 

7. Dynamic rule maintenance of the live system courtesy of the

RDR knowledge engineering approach 

e conducted a usability evaluation study of a pilot system appli-

ation of C-MCRDR and the results were very promising and posi-

ive, which is indicative the C-MCRDR approach to CAs and NLIDB

s viable and worth further consideration. We will be further lever-

ging the system as a component in the command and control of

utonomous systems via constrained NL. 

The paper is organised by the following sections: Section 2 re-

iews related work associated around RDR and chat-based query-

ng. We present C-MCRDR’s modifications to standard MCRDR and

he developed conversational system in Section 3 . Sections 4, 5 and

 detail the developed system’s architecture, the methodology

dopted in developing and evaluating the chat system, and the re-

ults of a pilot evaluation in a target domain respectively. We sum-

arise the main results of this work together with proposals of

uture research in Sections 7 and 8 . 

. Related work 

.1. Ripple down rules (RDR) 

Ripple Down Rules ( Compton & Jansen, 1990 ) arose from expe-

iences the researchers had from maintaining a thyroid diagnosis

xpert system, GARVAN-ES1 ( Horn, Compton, Lazarus, & Quinlan,

985 ). During the maintenance of the original system they discov-

red that an approximate doubling of rule count in the KB only

ncreased the accuracy of the system’s diagnosis a couple of per-

entage points. It would typically take half a day for a new rule

o be added due to the constraints of several factors, such as an

xpert endocrinologist’s time, interpretation by the knowledge en-

ineer, and extensive verification and validation to ensure the new
ule did not compromise the existing KB. Instead, with RDR, the

xpert can add rules incrementally: they justify their new classifi-

ation of a case in the context in which it arises. This is in contrast

o other knowledge acquisition methods such as Repertory Grids

 Gaines & Shaw, 1993 ), Formal Concept Analysis ( Wille, 1992 ) and

tandard Case Base Reasoning ( Aamodt & Plaza, 1994 ). 

The original RDR structure is a binary tree, with each node

omprised of a rule that consists of an antecedent and a conse-

uent. During inference, the attributes of the current case to be

lassified are evaluated, starting at the root node ( Fig. 1 ). If the

ntecedent’s conditions are satisfied ( a 0 ), evaluation passes to a

hild node (termed the except edge, here R 2 ). If the parent node’s

ule conditions are not satisfied, evaluation alternatively follows

he other child edge, if-not, R 1 . Either or both of the child nodes

ay not be present. Classification is the result of the last node to

e satisfied. The root node ( R 0 ) usually provides a default classifi-

ation and a superficial antecedent to ensure all cases will be triv-

ally assigned a class if no further rules are satisfied. 

Multiple Classification Ripple Down Rules (MCRDR) 

 Kang, 1995 ) extends RDR’s single classification inference outcome

y allowing a case to have multiple classifications concurrently –

n MCRDR’s n-ary tree, inference considers all child nodes whose

arent rules are satisfied, and evaluation concludes with each

ossible inference path terminated either by a satisfied leaf node

r a satisfied node that has no satisfied children. 

RDR and the MCRDR variants have had excellent research

nd commercial outcomes in the last two or more decades

 Richards, 2009 ). For example, RDR and variants are used across di-

erse research and application areas: telehealth ( Han et al., 2013 );

reast cancer detection ( Miranda-Mena et al., 2006 ), legal text cita-

ion ( Galgani, Compton, & Hoffmann, 2015 ); flight control systems

 Shirazi & Sammut, 2008 ), robot vision systems ( Pham & Sam-

ut, 2005 ); induction ( Gaines & Compton, 1992; 1995 ); clinical

athology reporting ( Compton, 2011 ); and a help desk information

etrieval mechanism ( Ho Kang, Yoshida, Motoda, & Compton, 1997 ).

or rapidity of development and implementation, ( Han, Yoon,

ang, & Park, 2014 ) shows the MCRDR-backed KB methodology is

losely aligned with the Agile software development approach. 

.2. Syntax and semantic parse trees 

Very early systems focused on parsing an NL expression di-

ectly into syntactic parse trees, such as the often cited LISP-based

UNAR system ( Woods, Kaplan, & Nash-Webber, 1972 ) where the

arse tree maps to specific querying language expressions. Later

ard-coded semantic grammars were used by systems such as

ADDER ( Hendrix, Sacerdoti, Sagalowicz, & Slocum, 1978 ), PLANES

 Waltz, 1978 ) and CHAT-80 ( Warren & Pereira, 1982 ) to analyse

he input expressions to produce semantic concepts in the parse

ree. These systems all suffered from poor inter-domain applica-

ility; considerable effort is needed as grammars are complex and
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parse trees need to be redeveloped when a new domain is being

considered. 

2.3. CAs and NLIDB 

When associated with domain-specific databases, question-

answering systems (QAs) are called Natural Language Interfaces

to Data Bases (NLIDB), although such systems are primarily con-

cerned with NL querying interfaces to databases (and not as spo-

ken dialog systems or conversational agents per se ). These sys-

tems parse restricted or constrained NL expressions into specific

structured query languages such as SQL or XML ( Bais, Machkour,

& Koutti, 2016; Li, Yang, & Jagadish, 2005; Nguyen, Nguyen, &

Pham, 2017 ), or domain-neutral ontologies ( Chaw, 2009 ) allowing

non-specialist users to phrase questions against a domain-specific

database in a constrained subset of NL. One such example is NaLIX

( Li et al., 2005 ). NaLIX’s intent is in essence a natural language

querying system, with English grammar terms aligned using a ma-

chine learning approach to classify terms with associated typical

querying constructs such as value joins and nesting. The inter-

mediate representation language approach in ( Bais et al., 2016 )

also adopts machine learning to generate context free grammars

for domain-dependent terminal symbols after the input has been

tokenised and tagged by part-of-speech analysis. Localised dictio-

naries again match schema-specific attributes to NL synonyms, an

approach that is widely used, but requires redevelopment when

porting to other domains. The ASKME system ( Chaw, 2009 ) uses a

specially restricted version of English called Computer Processable

Language (CLP) ( Clark et al., 2005 ) to avoid issues such as ambigu-

ity that arise in NL processing of general English. CLP – which has

restrictions on grammar, style and vocabulary, is interpreted by a

syntactic parser, however it still requires a degree of user training

to teach them how to construct their requests. The SEEKER and

Aneesah systems ( Shabaz, O’Shea, Crockett, & Latham, 2015; Smith

et al., 2014 ) are similar NLIDBs coupled to CAs. SEEKER uses a com-

mercial CA to map appropriate SQL templates to evaluate against

an underlying database and in contrast to other systems, it allows

a targeted followup of refinement of query results via a GUI. CA

scripts are used to pattern-match keywords in utterances, and then

the most appropriate SQL template is chosen via an expert system

based on matched variables in the utterance; the SQL templates

are produced from a pre-establishment phase requiring a lengthy

questionnaire capturing common NL phrases used and their re-

sulting associated queries. In contrast, although somewhat simi-

lar, Aneesah ( Shabaz et al., 2015 ) dynamically builds an SQL query

(although it is not clear how the mapping of utterance to query

is performed) after a CA engine utilises a scripted-capture of user

utterances. In both cases misinterpretations require careful, offline

maintenance of the CA engine scripts and both are evaluated via

satisfaction and task-based questionnaires of very small participant

groups (10 and 20 participants respectively). A key component of

SEEKER is the ability to further refine query results. We would ar-

gue the addition of further child rules associated with querying in

the C-MCRDR decision tree allows for additional context (variables)

where relevant, and thus more specific queries can be evaluated

when and if the user provides more context. 

An alternative approach, instead of pre-defining query tem-

plates to potentially map to user input, is to automatically gen-

erate all search queries based on a corpus of existing questions in

community question answering (cQA) platforms such as Stack Ex-

change ( Figueroa, 2017 ). This means a very large corpus of queries

is generated against the existing knowledge-base that can then be

used to provide related questions (and answers) to a user’s initial

query. The authors extract a number of attributes from a query

based on computed results from various sources including CoreNLP

( Manning et al., 2014 ) and WordNet ( Miller, 1995 ) – such as sen-
ences (using part of speech tagging, named entity recognition and

entiment analysis), semantic connections, and others. 

.4. KBS Brittleness 

These NLIDB and NLIDB with CA approaches are advantageous

o the user as they are not required to learn and adopt technical

atabase query formalisms ( Smith et al., 2014 ), but practicalities of

he system’s linguistic constraints leads to frustration – the user

ust overcome the inherent brittleness of the system and still be

onversant in the linguistic coverage as to what and cannot be un-

erstood ( Androutsopoulos et al., 1995 ), and a mild appreciation

f underlying database schemas is hard to avoid. To try and over-

ome this schema unfamiliarity, NaLIX ( Li et al., 2005 ) employs an

ntological-based term expansion module integrated with WordNet

 Miller, 1995 ). Matched terms however require some final markup

f the actual domain-dependant schemas to be undertaken. An-

ther example of overcoming brittleness is a paraphrase genera-

ion system ( Oh, Choi, Gweon, Heo, & Ryu, 2015 ) which automati-

ally generates paraphrases (for Korean), initially based on Korean

hesauri. We adopt the same approach in our system, although we

o not automatically generate the lexical or phrasal paraphrases

 Madnani & Dorr, 2010 ) – the onus is on the domain expert to

o so manually when they populate the dictionary. However, the

-MCRDR system prompts users with utterance suggestions (see

ection 3.4 ) when their utterance is not recognised. 

.5. RDR-Based CAs and NLIDB 

The KbQAS ( Nguyen et al., 2017 ) and LEXA classification sys-

ems ( Galgani et al., 2015 ) are close to our research due to the

act they apply RDR to generate rules for the semantic analysis of

okenised and tagged input. KbQAS answers Vietnamese questions

hereas LEXA examines legal citations, and both use the GATE NLP

nalysis framework ( Cunningham, Maynard, Bontcheva, & Tablan,

002 ). The rule knowledge acquisition (KA) stages in KbQAS re-

uire the domain expert to have significant knowledge and exper-

ise in the JAPE grammar and its annotations ( Cunningham et al.,

999 ). This is contrary to one of our aims i.e. to develop a sys-

em in arbitrary domains where the domain expert does not re-

uire significant linguistic or programming skills such as JAPE. The

A interface has to be designed carefully to provide a suitable ab-

traction of the syntactic and semantic interpretations of the rule

ttributes added to the KB. 

In contrast to pure NLIDB systems, we do not map input ex-

ressions directly (or indirectly) to database queries; instead, the

xpert can predefine queries without SQL syntactical knowledge

via a simplified GUI interface) that are themselves expressed in

n intermediate XML form for database independence, and refer to

hem as required when determining the appropriate response to

n NL input question. In effect, the expert applying our system to

heir domain incrementally develops rules analogous to authoring

hat scripts for a chatbot (for example, the ALICE chatbot and AIML

 Wallace, 2011 )), but they are not required to know an esoteric au-

horing syntax. 

.6. RDR and context 

The extensions to RDR in a flight simulator system ( Shiraz &

ammut, 1997; Shirazi & Sammut, 2008 ) can be considered a re-

ention of context as rules are being added to the KB, based on their

ntroduction of Learning Dynamic Ripple Down Rules (LDRDR).

ere rules are added to the KB based on sequential data obtained

rom logs of a flight simulator’s instrumentation and sensors. The

ensor data are the results of a pilots’ sub-cognitive reactive eval-

ations of conditions. The context is thus between each sequential
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Table 1 

C-MCRDR Algorithm: Inference function 

I ( case, rule ) returns a set of n satisfied 

rules { r 0 .. r n }. 

Algorithm 

INITIALISE: LET stack S ← ∅ 

FUNCTION C-MCRDR( S , Case c ) 

LET stack S ′ ← S 

LET rule set R ← pop( S ′ ) 
WHILE R � = ∅ DO: 

LET R ′ ← 

n ⋃ 

i =1 

I(c, r i ) ∀ r i εR 

IF R ′ = ∅ THEN 

LET R ← pop( S ′ ) 
ELSE 

push( S, R ′ ) 
RETURN R ′ 

LET R ← I ( c, r default ) 

RETURN R 
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et of attributes that have been logged (e.g. the aileron has adjusted

y 5 degrees from the previous reading ). This is contrast to our sys-

em, as context in LDRDR is during the KA phase, whereas our con-

extual retention is across case-based inference requests (i.e. post

cquisition). 

. Approach 

C-MCRDR can be readily applied to conversation systems by in-

erring appropriate responses from user utterances. We observed

he clear, clean separation of knowledge from the inference en-

ine in a contemporary KBS is analogous to the separation of chat

cripts (such as AIML) from a chatbot program ( Compton, 2011;

allace, 2011 ). Chat scripts embody conversational responses as

 form of knowledge, and it is this knowledge that can be cap-

ured and represented in a KBS approach. Inter-domain applicabil-

ty, commonly criticised for CA and NLIDB systems, can be par-

ially addressed in our system by providing interface support for

B rule, query, dictionary and ASR correction rule reuse for rel-

vant commonality between domains. We detail the modification

nd features of C-MCRDR to support CA services and NLIDB in this

ection. 

.1. Topical conversational context - stacking 

Human chat discourse follows one or more topics during a con-

ersation, the automated detection of which is an ongoing area of

esearch (e.g. TF-IDF approaches, ( Adams & Martell, 2008 )). Hu-

ans naturally maintain an appreciation of what is being dis-

ussed without having to continually re-emphasise it. For example,

he following shows a stilted, unnatural conversational excerpt: 

Speaker 1: ”The weather is going to be bad today. As for the

weather , the prognosis is for rain.”

Speaker 2: ”What will be the weather’s temperature?”

Speaker 1: ”The weather’s temperature will be 10 degrees Cel-

sius.”

A speaker intuitively understands the current topic is weather

all subsequent explicit mentions of weather are redundant. To

chieve this more natural, contextual response, the C-MCRDR in-

erence algorithm is altered by influencing the starting rules where

e begin inference in the decision tree. We achieved this via a

tacking of inference results ( Glina & Kang, 2010; Mak, Kang, Sam-

ut, & Kadous, 2004 ) – each stack frame contains a set of satis-

ed rule(s) from the previous inference request. Frames are popped

rom the stack in LIFO order, and inference simply assumes each

ule in the frame’s ruleset is satisfied as a starting point to evaluate

hild rules. For each dialog session, C-MCRDR implicitly assumes

ach case is part of a temporal sequence (i.e. components of a con-

inuing dialog) and it is not initially independent of other preced-

ng cases. If no child rules are satisfied in the current stack frame,

e temporarily discard the frame and attempt inference again with

he new top of the stack rule set. Eventually, if no further stacked

ule sets are available, the default rule is satisfied. 

The C-MCRDR inference algorithm is summarised in Table 1 . It

hould be noted frames are never deleted from the inference re-

ult stack during a dialog session, and inference result frames only

ontaining R 0 are never pushed to the stack (apart from the first

rame). Future work may relax the former constraint in situations

here a topic may need to be invalidated. 

.2. Context variables 

An additional aspect to maintain conversational (or factual)

ontinuity is the retention of context-specific data found in cases

s they arise on a temporal basis. 
One or more of a rule’s antecedent attributes may be satisfied

y the presence of lexical terms. Generally, the actual synonyms

hat matched may need to be retained for future reference. For ex-

mple, a rule might be satisfied if an utterance contains the term

animal/ . More specifically, we may be more interested in which

nimal matched, such as aardvark . As a dialog progresses, C-

CRDR can retain this matched data via context variables . Con-

ext variables (together with system context variables, or default

alues ) could be considered as a simplified notion of slots in a

rame as first put forward by Minsky ( Minksy, 1975 ), with slots

etained (temporally) across all subsequent frames. Variables are

efined by the domain expert (guided by a GUI) with simple meta-

ules referring to dictionary terms, literal values, or arbitrary regu-

ar expressions. The expert can reference variable values in a rule’s

ntecedent or consequent with an XML-style syntax (not shown),

hich is also guided by a GUI. Variable assignment can also occur

s a side-effect of a consequent (via an action – this feature was

mplemented but not used in the pilot system). 

Implementation practicalities dictate that the developed system

dopts a closed-world approach – this means the domain expert

an pre-define any assumed factual world knowledge that is re-

uired. We take the approach of simply defining meta-rules again

n the form of system context variables with default values that

an be overridden by more specific context. For example, consider

he question, ”What year is it? ”. The expert can define via a GUI,

 default value such as ( @SYSTEMyear = 2018 ). A standard vari-

ble, ( @year ) would override this value if an utterance contained

he appropriate variable-matching criteria (for example, ”The year

s 2021 ”). This default context has extremely useful consequences

hen binding queries as detailed in the next section. 

.3. Post-inference classification binding 

The results of inference in C-MCRDR are classifications of a user

tterance. These classifications can include references to queries or

ariable values (called literals in the implementation) that must be

esolved (bound) before a response is returned to the user. Inclu-

ion of unresolved classifications can significantly reduce the num-

er of rules and rule redundancy in the KB – final classification

pecificity is achieved by binding conversational contextual data to

he inference results in a post-inference phase by the system’s out-

ut parser. This supports NLIDB interaction when the specific post-

ind classifications include the results of database queries. The sys-

em supports the domain expert to create query templates by a

uitable GUI interface, and it guides the expert to chose query-

inding context (usually variable references), and the query tem-

late results are XML-based (for RDBMS independence). The query
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Fig. 2. MCRDR Rules prior to context and queries. 

Table 2 

Pre-existing domain database ”polygon” – tables 

names and colours . 

names colours 

sides name type colour 

3 trigon trigon red 

4 tetragon tetragon orange 

5 pentagon pentagon yellow 

6 hexagon hexagon green 

7 heptagon heptagon blue 

Fig. 3. C-MCRDR Rules after addition of context and queries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Dictionary term definition. 

Term Synonym Input matches 

/sides/ /RE:’’ ( \ d) sides ’’ 7 sides 

99 sides 
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templates abstract the underlying referential table schema (by a

simple mapping), so queries are potentially reusable in other do-

mains that have compatible table schema. Standard queries (such

as a simple primary-key join) can be defined for cross-domain ap-

plicability by the system GUI. 

3.3.1. Rule-count reduction 

Substantial rule-count reduction in the KB is a significant ben-

eficial side-effect to the inclusion of post-inference queries; stan-

dard MCRDR tends to create larger decision trees compared to

other inductive methods (due to over-generalisation and subse-

quent rule refinement by the domain expert for special cases as

they arise ( Kang, 1995 )), and the complexity of the decision tree is

increased as a consequence. In domains where considerable knowl-

edge is already present in the form of in situ databases (as is the

case for our target pedagogical domain), the potential rule-bloat

can be drastically reduced by incorporating querying into the in-

terim inference results. 

The significant reduction in KB rule bloat is best demonstrated

by an example. Fig. 2 gives an example of a question’s classifica-

tion of regular polygons and instances of their colour prior to any

optimisations. Here ten MCRDR rules are required to answer ques-

tions associated with the polygon’s name and colour such as ”what

is the colour of polygon with 5 sides? ”. Assuming the existence of

a domain database ( Table 2 ), the KB can be reduced to two C-

MCRDR rules in addition to the default rule ( Fig. 3 ). Here the literal

C-MCRDR rule conclusions containing query references are shown

– these are parsed by the system’s output parser and the corre-

sponding query XML code (not shown) is executed with the rele-

vant binding context (the @sides variable, which is assigned the

numerical portion of the /sides/ term defined in Table 3 ). 

Query 1 ( < QREF > 1 ) in Fig. 3 is a simple select ( name ) on the

names table with sides as the key, whereas query 2 selects colour
ased on a table join matching name with type . The example KB

hown in Fig. 3 now allows C-MCRDR conversations such as: 

1. ”what is the name of the polygon with 7 sides? ” – heptagon . 

2. ”what is its colour? ” – blue 

his example exhibits an 80% reduction of the rule count (10 rules

o 2) in the KB (excluding the default, R 0 rule) compared to the

on-query example shown in Fig. 2 . 

.4. Brittleness 

To address brittleness, in addition to adopting a paraphrasing

pproach, the system can provide examples of utterances that are

nderstood from the current context – this is triggered if the last

ser utterance only satisfied the default root rule (which is I don’t

nderstand ), although a meta-rule, What can I say? is also a trigger.

uggestions are selected based on attributes that will satisfy a sub-

et of child rules (a lookahead) from the starting ruleset in the top

tack frame and they are varied by randomly selecting instances in

ny lexical terms referred to by the rule attributes. For example,

n our pedagogical domain, a conversational snippet might be (the

nderlined lexical term has been replaced between each sugges-

ion): 

User: I like fish 

System: I don’t understand. You could try asking me ”who is

the lecturer ?” or ”what is the prior learning ”? 

User: huh? 

System: I don’t understand. You could try asking me ”who is

the teacher ?” or ”what is the prerequisite ?”

The developed system as detailed in the next section also in-

ludes a domain-specific feature to help overcome brittleness. If

he system is unable to provide results to the client user’s satis-

action, the client browser interface provides a button to request

nit coordinator assistance if the client enters their personal email

ddress. This triggers an automatic inference request for the lec-

urer details associated with the unit currently being discussed

e.g. what is the lecturer’s email address? ), and the lecturer is then

mailed a transcript of the entire conversation. The lecturer can

hen respond to the client’s unfulfilled queries via email exchange.

. System architecture 

.1. Implementation 

C-MCRDR was incorporated in the development of the Intelli-

ent Conversation System for the target pedagogical domain, how-

ver the implemented application was designed to be non domain-

pecific. The architecture can be seen in Fig. 4 and it consists of the

ollowing: 

1. Java EE application (with a Tomcat Application Server back-

end). GUI interfaces include: 

(a) the provision of knowledge-acquisition from the Domain Ex-

pert (DE); 

(b) dictionary management; 

(c) query construction and preview; 

(d) user and system context variable management; 
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Fig. 4. ICS architecture. 
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Table 4 

Required Number of Standard 

MCRDR rules (N f = number of fields, 

N u = Number of units, Calc = Total 

calculation, Total = Total number of 

equivalent standard MCRDR rules). 

N f N u Calc Total 

Standard items (1 per unit) 

28 34 28 × 34 × 1 952 

Assessment items (4 per unit) 

2 34 2 × 34 × 4 272 

Global queries (independent of N u ) 

1 1 

Total: 1225 
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(e) speech-to-text (STT) and text-to-speech (TTS) pre and post-

processing; 

2. Client web interface (Google Chrome is required for

Google Speech API) written in a combination of JSP and

Javascript/JQuery; 

3. Technology-specific handler applications (Java Servlets, not

shown in Fig. 4 ) for alternate speech-only interfaces via com-

modity voice-enabled Intelligent Personal Assistant (IPA) de-

vices such as GoogleHome and Amazon Echo ; 

4. External RDBMS that contains referential domain knowledge. 

lient (user) input arrives at the top left of Fig. 4 and the final re-

ponse occurs at the bottom left. IPA ASR input (not shown) occurs

t the STT Pre-processing stage (allowing ASR transcription error

orrection), and IPA output occurs at the TTS Pre-processing stage. 

. Evaluation setup 

A pilot C-MCRDR system was implemented, with a KB that

as targeted against a suitable domain. Criteria used to determine

 suitable domain included requiring the existence of an in situ

atabase, a domain expert with suitable knowledge of the exisiting

ystems, suitability of a question and answer paradigm approach,

nd the availability of participants for a feasibility evaluation study.

 web-based documentation generation and retrieval system for

ourse data at the author’s University matched the criteria. As the

rimary author of this manuscript was the original software devel-

per for the existing documentation generation system, the author

ssumed the domain expert role. The documentation system is fre-

uently accessed by undergraduate students (who are recruited as

articipant volunteers) and its database contains details about each

nit taught by the ICT discipline, such as a unit’s title, 6 character

nit code, lecturing staff, teaching pattern, learning outcomes, as-

essment items and due dates etcetera. 
We then evaluated whether this domain can be complemented

y a question and answer paradigm where students can ask com-

on questions such as ”Who is the lecturer for KIT101? ”, and ”How

any assignments are there for KIT102? ”. The KB was constructed by

he primary author with an anticipatory coverage of the key items

hat students refer to in the documentation system, and during

valuation, no rules were added or refined (even though C-MCRDR

A could have easily facilitated misclassification corrections). Par-

icipants were asked to assess both the usability of the system

nd the appropriateness of each of the system’s responses to their

uestions on a 5-point Likert scale via an integrated feedback sys-

em. 

. Results and discussion 

The results in this section detail the effect of applying C-MCRDR

n the domain. We examine the domain’s effective rule-count re-

uction, the rules satisfied, overall system performance (in terms

f appropriate responses) and user acceptance following the eval-

ation trial. 

.1. Rule-count reduction 

One of the key features of C-MCRDR is the reduction in rule

ount due to post-inference querying and implicit reference to top-

cal context. This is demonstrated by the results from the target

omain: here the ICT Discipline delivered 34 distinct units that

equired generation of unit outline documents during the data-

athering phase of this research, Semester 1 2017. Associated with

hese units were 140 individual assessment tasks (giving an aver-

ge of 4 assessment items per unit), 20 coordinating lecturers and

3 distinct teaching teams (consisting of 1 or 2 people). Overall, in

erms of database accesses, each individual unit outline document

efers to 28 specific database fields, and each of the 4 associated

ssessment items refer to two database fields. Table 4 shows the

tandard MCRDR approach’s minimum number of rules needed to

rovide the same classification outcomes as C-MCRDR in this do-

ain. 

The totals shown in Table 4 are the number of MCRDR rules

equired to provide complete coverage of equivalent responses for

ach distinct database data item. Without post-inference query ref-

rencing, the contents of the referential database would in effect

eed to be flattened and then directly encoded by rules in the KB.

or a relatively simple domain, such a high rule count (1225) is

xcessive. 

Overall the C-MCRDR KB defined 36 rules, which is a 97.06%

ule count reduction compared to the equivalent MCRDR KB. For

llustrative purposes, part of the KB from both approaches is par-

ially visualised in Figs. 5 and 6 , with only 4 (of 36) attributes of

he dialog considered. Here we observe a signification rule count

eduction (C-MCRDR – 5 rules, MCRDR – 137 rules). Example con-
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Table 5 

Comparison user dialog (1: C-MCRDR, 2: MCRDR). 

Question R# Response 

1: I’d like to talk about KIT101 { R 1 } 
We’re discussing KIT101 Programming 

2: I’d like to talk about KIT101 { R 1 } 

1: Who is the coordinator? { R 2 } 
The coordinator is Dr Jane Smith 

2: Who is the KIT101 coordinator? { R 1 } 

1: What are their contact details? { R 3 } Jane Smith: extension x9992, 

jsmith@x.y.edu 2: What are the KIT101 coordinator contact details? { R 3 } 

1: What’s the assessment pattern? { R 4 } 
The unit has 7 assignments 

2: What is the KIT101 assessment pattern? { R 4 } 

1: Let’s discuss KIT371 { R 1 } 
We’re discussing KIT371 Algorithms 

2: Let’s discuss KIT371 { R 133 } 

1: Contact details? { R 3 } John Jones: extension x9971, 

jjones@x.y.edu 2: What’s the KIT371 coordinator contact details? { R 135 } 

Fig. 5. Example C-MCRDR KB for conversation system. 

Fig. 6. Example MCRDR KB for conversation system. 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Rule frequency by rule rank. 
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versational samples comparing the two approaches can be seen in

Table 5 . 

6.2. Evaluation trial 

In total, 41 sessions by undergraduate volunteers in the ICT Dis-

cipline were logged. Although this is a relatively small sample size,

it is larger and comparable with other similar satisfaction stud-

ies ( Shabaz et al., 2015; Smith et al., 2014 ). The sessional data

was grouped based on the number of inference requests that were

made, and where relevant, participant response ratings were aver-

aged per group. 

6.2.1. Rules satisfied during evaluation 

It is interesting to note that the frequency distribution, R f , of

rules satisfied during the evaluation, plotted ( Fig. 7 ) against the log

of their rank, R r , (which is ordered by decreasing frequency), yields
 fitted model that is indicative of a power relationship for R f i.e. 

 f = 186 . 26 × 1 

R 

α
r 

with α = 1 . 37 

This relationship is of interest as it is close to Zipf’s law (with

= 1 ) ( Zipf, 1949 ), where it was observed (and subsequently

hown for many other non-linguistic phenomena) that the fre-

uency of words in written texts is inversely proportional to their

anking. This result is perhaps intuitive as the rule’s antecedents

re closely aligned with the pattern matching of words, albeit in a

ighly reduced and constrained domain-specific dictionary subset

f English. 

.2.2. Question and response categorisation 

Once the sessional data was obtained, we then manually ex-

mined the log files to categorise the system’s responses to infer-

nce requests – was the participant’s utterance valid, did the sys-

em capture the correct intent, etcetera. This lead to the definition

f four categories (see Table 6 ), that were applied in the discussion

f results that follow. 

.2.3. System performance 

Inspection of the logged satisfied rule frequency results shows

hat 43% of inference requests (which result in Rule 0 responses,
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Table 6 

Inference Result Categories (C). 

C Inference source and response 

1 Valid question, valid system response 

2 Valid question, misinterpreted system response 

3 Valid question, invalid (default) system response 

4 Invalid question, default system response 

Table 7 

Categorised System Responses; (N i = number of 

inference requests). 

Category N i % Total 

1 252 52.72 

2 21 4.39 

3 73 15.27 

4 132 27.62 

Total 478 100 
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Fig. 8. Number of Category 1 Responses [ NCat1 = 0 . 52 × N i ], R 2 = 0 . 93 , p < 2 . 2 ×
10 −16 . 

Table 8 

Category models. 

Cat Model Statistics 

1 NCat1 = 0 . 52 × N i R 2 = 0 . 93 , p < 2 . 2 × 10 −16 

2 NCat2 = 0 . 042 × N i R 2 = 0 . 19 , p < 2 . 3 × 10 −3 

3 NCat3 = 0 . 15 × N i R 2 = 0 . 54 , p < 1 . 6 × 10 −8 

4 NCat4 = 0 . 29 × N i R 2 = 0 . 71 , p < 1 . 6 × 10 −12 
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ategories C3 and C4) did not produce a useful result for the user,

hile responses that satisfied Rules 1 - 36 (categories C1 and C2)

ad a combined frequency of 57%. However, this does not con-

ider when Rule 0 responses are appropriate, or when Rules 1 -

6 responses are inappropriate, so we instead consider two overall

ategories – appropriate system responses and inappropriate system

esponses . In Table 7 , all inference requests ( N i ) are grouped into

heir C1 - C4 categories and expressed as a percentage of the to-

al of all inference requests. We can then summarise the system’s

erformance in terms of the appropriateness of system response: 

1. The system is responding appropriately (combine categories C1

and C4): 80.3% of all responses 

2. The system has inappropriate responses (combine categories C2

and C3): 19.7% of all responses 

The overall appropriate system response rate of 80.3% is very

romising considering the fact that the developed C-MCRDR KB is

 minimal encoding of the domain knowledge. This result can be

mproved by reducing the category C2 and C3 rates – these types

f responses can be corrected by the addition of new rules which

n C-MCRDR terms is a refinement of the final classifications, how-

ver during evaluation this was not conducted; C2 responses in-

icates key terms in the utterance (the actual intent) have been

gnored or misinterpreted, whereas C3 responses indicates the sys-

em is unable to respond to a valid (but out-of-scope) question.

he category C4 rates, while still appropriate as responses to non-

ensical input, are difficult to reduce without more intensive user

raining, further brittleness mitigation, or constraining input mech-

nisms to text-only (as the largest contributor to this category

ame from ASR errors - see Section 6.2.3 ). Further rule mainte-

ance would improve the overall results and this will be consid-

red in future work. 

Analysing system performance by category C1 responses alone

ields Fig. 8 . The Ideal response rate is shown, [ NCat1 = N i ] as is

he Best fit linear regression model, [ NCat1 = 0 . 52 × N i ]. This model

hows fundamentally, across all participation sessions, 52% of infer-

nce requests are valid and receive a non-default response. There

re two obvious outliers - one at N i = 8 , NCat1 = 1 and another

t N i = 14 , NCat1 = 1 . In both cases their primary input was via

peech (75% and 78% of their requests respectively), and they failed

o articulate a single unit code. 

Table 8 contains a summary of the linear regression model re-

ults for each category against the number of inference requests

scatter plots are not shown), which approximately agree with the

esults in Table 7 . For categories C2, C3 and C4 there is consider-

ble variability as indicated by the low R 2 values; there were sev-

ral outliers in the data, for example, for the session with N = 12,
i 
 out of 12 (42%) of requests were category 2 misinterpretations

the actual intents were out-of-scope). Examples of utterances in

ll categories can be found in Table 9 . 

.2.4. Automatic speech recognition (ASR) errors 

The speech input and output components of the system were

ot fully utilised or embraced in this domain. This is not surprising

s most evaluation was conducted in noisy laboratory-based envi-

onments which made spoken questions and responses harder to

orrectly recognise and hear. There was a scarcity of data logged

ith only 11 sessions using speech; the summary is shown in

able 10 . The ASR Error Rate is the mean percentage of ASR tran-

cription errors that occurred across all session requests that used

peech, and the ASR Duration is the average measure of when

peech was used in a session, how many requests were actually

onducted by speech. 

The high standard deviations in Table 10 are indicative that par-

icular (outlier) users had greater success with speech input. For

xample, a session at N i = 27 used ASR for 90% of their session,

et only suffered 11% ASR errors. In contrast, a session at N i = 14

sed ASR for 79% of their session duration, and suffered 64% ASR

rrors. The majority of participation sessions immediately modified

he input mechanism from speech to text, but for those sessions

hat started with speech, 72.7% persevered with it for an average

f 75.91% of the session requests. We mitigate ASR transcription

rrors for common mistakes (for example, correcting unitcode ut-

erances) via rule-based corrections. During evaluation however, no

dditional corrective rules were added beyond the initial set. 

.2.5. System satisfaction feedback 

Users could optionally rate their satisfaction of the entire sys-

em, and 51.2% of sessions ( | N i | = 21 ) did so. Overall feedback was

ery positive - the highest frequency scores (on a 5-point Likert
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Table 9 

Actual category utterance examples. 

Cat Utterance Response Comment 

1 what is the assessment pattern? R1-36 Valid question and response 

1 what are the prerequisites? R1-36 Valid question and response 

2 what computer labs can I use? R1-36 Misinterpreted, out-of-scope; “labs” is a synonym for “classes ” and the response summarised 

the types of classes in the unit. The actual intent was to determine which computer rooms 

were available (timetabling) 

2 KIT001 tutorial times? R1-36 Misinterpreted, out-of-scope; KIT001 matches a unit code (Rule 3), and tutorial times was 

ignored. Timetable schedules were out-of-scope but were frequently asked for. 

3 who is the tutor? R0 Valid question, but out-of-scope; Tutor allocation requires timetabling data 

3 what work can KIT001 lead to? R0 Valid question – some analysis and inclusion of more synonyms such as lead to for the 

dictionary term learningoutcomes may have facilitated this question 

4 when cold idle R0 Invalid question 

4 what about Co 80205 R0 Invalid question 

Table 10 

ASR data, | N i | = 11 . 

Statistic μ σ

ASR Error Rate 26.14% 23.20% 

ASR Duration 75.91% 35.18% 

Fig. 9. Count of System Feedback Scores ( | N i | = 21 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Count of Combined Category Feedback Scores: Appropriate System Responses 

( | N i | = 94 ); Inappropriate System Responses ( | N i | = 33 ). 
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scale, 1 = I am very dissatisfied , 5 = I am very satisfied ) were ratings

at levels 4 and 5 (28.57% and 33.33% respectively), and there was

a combined (levels 1 and 2) negative rating of 14.28% – see Fig. 9 .

Overall, only 3 users rated the system below 3. 

6.2.6. Rule satisfaction feedback 

Approximately one quarter (26.6%) of individual question re-

sponses received feedback ( | N i | = 127 , out of | N total | = 478 ), and

on average, for sessions where feedback was recorded, 45.3% of

the session’s questions had feedback. This feedback rate may have

been improved if the user interface withheld further inference re-

sponses until the current response has feedback, but this punitive-

style measure could unduly influence the negative feedback re-

sponse rate. Although not shown here, a breakdown of feedback

against individually satisfied rules is very promising as the com-

bined positive feedback (level 4 and 5) is 53.55% and dissatis-

faction (levels 1 and 2) is relatively low – 28.35%. Nearly a fifth
18.1%) of feedback was at the ambivalence level (3). Unsurpris-

ngly the default rule (Rule 0) rates poorly. This is indicative of not

eceiving a useful response, although 3 sessions interestingly rated

his rule as rank 5. Rule 0 achieved the lowest feedback score, but

he highest number of feedback responses (38). 

.2.7. Category satisfaction feedback 

The final figure, Fig. 10 shows the breakdown of feedback scores

hen considering the appropriateness of the system response.

onsidering the overall positive, negative and ambivalent feedback

esults, we have: 

• Appropriate system responses: positive feedback: 70.22%,

| N i | = 66 ; negative feedback: 18.09%, | N i | = 17 ; ambivalent

feedback: 11.70%, | N i | = 11 ; 
• Inappropriate system responses: positive feedback: 6.06%,

| N i | = 2 ; negative feedback: 57.57%, | N i | = 19 ; ambivalent

feedback: 36.36%, | N i | = 12 

A positive feedback acceptance rate for appropriate systems re-

ponses of 70.22% is very encouraging considering the KB size and

inimal rule set. The associated, relatively high negative feedback

ate of 18.09% possibly stems from the fact that users may not re-

lise the system is providing an appropriate response (even if it is I
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Table 11 

Category Rating Total ( N f 
= number of feedback re- 

sponses). 

Category N f % Total 

1 75 59.06 

2 14 11.02 

3 19 14.96 

4 19 14.96 

Total 127 100 
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on’t understand ), which may lead to some frustration. When con-

idering system misbehaviour, unsurprisingly the combined nega-

ive feedback scores are high (57.57%), however it is apparent that

sers are more reticent to leave feedback for system misbehaviour

ompared to appropriate behaviour, as this type of response only

eceived about a third of feedback responses ( | N i | = 33 compared

o | N i | = 94 ). 

Table 11 summarises the overall counts of feedback provided

or each individual category. It is of no surprise that category C1

esponses received the most feedback, and although not shown,

4.0% ( | N i | = 63 ) of those were positive feedback (Rank 4: 12%,

 N i | = 9 , Rank 5: 72%, | N i | = 54 ). 

. Conclusions 

In this work our C-MCRDR KBS modified standard MCRDR to

acilitate the retention of topical and attribute-based context be-

ween inference requests, and to reduce the KB rule-count when

sed in domains with in situ databases by including generic query-

ng bound by the intra-dialog context. This was used to develop a

rototype natural language chat system consisting of dialog rules

hat can be authored by domain experts who possess base-level

CT technical knowhow, and a minimal linguistic analytical skillset.

he system adopts a simple GUI interface that incorporates dialog

attern matching, variable and dictionary definition (lexical and

hrasal paraphrases), technology-agnostic query construction, and

B rule construction based on these components. 

The system was evaluated in a pedagogical question and an-

wer domain by undergraduate students in order to ascertain the

easibility of the approach. In terms of performance, the system

esponded appropriately to requests for 80.3% of the time and in-

ppropriately for 19.7% (due to being presented with valid requests

hat were misinterpreted or valid requests that were actually out of

cope). 61.9% of participants’ satisfaction feedback scores rated the

verall system at levels 4 ( I am satisfied ) and 5 ( I am very satisfied )

n a 5-point Likert scale. When considering individual inference

esponses, 70.22% of participant’s satisfaction feedback scores rated

hem at level 4 ( My answer is correct but some information is miss-

ng ) and 5 ( My answer is exactly what you are seeking ) when the

ystem is responding appropriately. For inappropriate responses,

he satisfaction ratings drop to scores of 1 ( My answer is totally

rong ) and 2 ( My answer is partially wrong ) for 57.57% of partici-

ant’s satisfaction ratings (and an ambivalent rating of 3 for 36.36%

f scores). 

Finally, the C-MCRDR KB in this domain achieved a very signif-

cant 97% reduction in the rule count compared to the equivalent,

tandard MCRDR approach. The satisfaction ratings and the signifi-

ant rule count reduction show the successful feasibility of the ap-

roach and that it shows significant promise for expansion to a

roduction system in the existing and other compatible domains. 

. Future work 

Future work includes the addition of more rules (with addi-

ional database references) by the domain expert for the Unit Out-
ine domain to cover cases not adequately classified (for example,

equests for timetabling data), integration and adoption in other

omains, provision for the analysis of more syntactic and seman-

ic features such as Part-Of-Speech (POS) tagging, Named Entity

ecognition (NER) ( Hirschberg & Manning, 2015; Manning et al.,

014 ), and expanding dictionary terms by enabling references to

ntological databases such as WordNet ( Miller, 1995 ) for synonym

atching. Consideration will also be given to expand the rule-

ased approach in correcting ASR transcription errors, especially

hen IPA devices are used – this includes determining regions

n the decision tree where a more contextual correction mech-

nism can be adopted. Inter-domain applicability will addressed

y providing further support for KB rule, query, dictionary and

SR correction rule reuse through suitable interface options, sav-

ng a domain expert considerable time when considering a new

omain. The developed system will also be integrated as the pri-

ary user interface component in a wider study for the control of

utonomous systems by natural language in order to achieve hier-

rchical task-based goals. 
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