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Key points 

 Animal models have shown that beta2-adrenoceptor stimulation increases protein 

synthesis and attenuates breakdown processes in skeletal muscle. Thus, the beta2-

adrenoceptor is a potential target in treatment of disuse-, disease- and age-related 

muscle atrophy.  

 Herein we show that a few days of oral treatment with the commonly prescribed 

beta2-adrenoceptor agonist, salbutamol, increases skeletal muscle protein synthesis 

and breakdown the first 5 h after resistance exercise in young men. 

 Salbutamol also counteracted a negative net protein balance in skeletal muscle after 

resistance exercise. 
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 Changes in protein turnover rates induced by salbutamol was associated with PKA-

signalling, activation of Akt2 and modulation of mRNA levels of growth-regulating 

proteins in skeletal muscle. 

 These findings indicate that protein turnover rates can be augmented by beta2-

adrenoceptor agonist treatment in recovery from resistance exercise in humans.   

 

Abstract (250/250 words) 

The effect of beta2-adrenoceptor stimulation on skeletal muscle protein turnover and 

intracellular signalling is insufficiently explored in humans, particularly in association with 

exercise. In a randomized placebo-controlled crossover study with 12 trained men, the effect 

of beta2-agonist (6×4 mg oral salbutamol) on protein turnover rates, intracellular signalling, 

and mRNA response in skeletal muscle was investigated 0.5-5 h after quadriceps resistance 

exercise. Each trial was preceded by a four-day lead-in treatment period. Leg protein turnover 

rates were assessed by infusion of [
13

C6]-phenylalanine and sampling of arterial and venous 

blood as well as vastus lateralis muscle biopsies 0.5 and 5 h after exercise. Furthermore, 

myofibrillar fractional synthesis rate (FSR), intracellular signalling and mRNA response were 

measured in muscle biopsies. Mean (±95%CI) myofibrillar FSR was higher for salbutamol 

than placebo [0.079(±0.007) vs. 0.066(±0.004)%×h
-1

](p<0.05). Mean net leg phenylalanine 

balance 0.5-5 h after exercise was 3.6(±2.6) nmol×min
-1

×100 gLeg Lean Mass
-1

 higher for 

salbutamol than placebo (p<0.01). Phosphorylation of Akt2, CREB and PKA-substrate 0.5 

and 5 h after exercise as well as phosphorylation of eEF2 5 h after exercise was higher 

(p<0.05) for salbutamol than placebo. Calpain-1, FoxO1, myostatin and Smad3 mRNA 

content was higher (p<0.01) for salbutamol than placebo 0.5 h after exercise, and FoxO1 and 

myostatin mRNA content 5 h after, whereas ActivinRIIB mRNA content was lower (p<0.01) 

for salbutamol 5 h after. These observations suggest that beta2-agonist increases protein 

turnover rates in skeletal muscle after resistance exercise in humans, with concomitant 

cAMP/PKA and Akt2 signalling, and modulation of mRNA response of growth-regulating 

proteins.  
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Introduction 

Skeletal muscle encompasses ≈40% of body mass in lean individuals, making it the largest 

organ of the human body (Zurlo et al., 1990). Loss of muscle mass (muscle atrophy) can have 

critical consequences for contractile function and exercise capacity (Ryall et al., 2007), and 

may reduce quality of life and life expectancy (McLeod et al., 2016). During muscle atrophic 

conditions, muscle protein breakdown exceeds synthesis, resulting in a negative protein 

balance (Goldspink & Goldspink, 1977). Strategies that reduce muscle protein breakdown 

and/or increase synthesis are therefore an important area of research. Although resistance 

exercise training effectively promotes muscle hypertrophy and decelerates disuse- and age-

related muscle atrophy and weakness (Macaluso & De Vito, 2004), pharmacological 

compounds may be used to augment the response to exercise (Kumar et al., 2009; Egan & 

Zierath, 2013).  

 

Skeletal muscle beta2-adrenoceptors are among potential therapeutic targets that have 

attracted interest in treatment of muscle atrophy and weakness (Lynch & Ryall, 2008; 

Joassard et al., 2013). Beta2-adrenoceptors are the most predominant subtype of 

adrenoceptors in skeletal muscle (Williams et al., 1984; Jensen et al., 2002), where they serve 

a crucial role in the adrenergic fight-or-flight response (Emrick et al., 2010; Andersson et al., 

2012; Hostrup et al., 2014b). Furthermore, beta2-adrenoceptors play a role in regulation of 

muscle protein turnover. Beta2-adrenoceptor knockout mice display lower muscle mass than 

their wild-type peers (Hinkle et al., 2002) and beta2-adrenoceptor stimulation with selective 

agonists (beta2-agonists) increases muscle mass in mammals (Lynch & Ryall, 2008), 

including humans (Hostrup et al., 2015; Jessen et al., 2018). In rodents, beta2-agonists have 

also been shown to accelerate muscle recovery from injury (Beitzel et al., 2004; Church et 
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al., 2014) and to reverse muscle atrophy associated with aging (Ryall et al., 2007), cancer 

cachexia (Busquets et al., 2004) and muscular dystrophies (Harcourt et al., 2007; Gehrig et 

al., 2010). Moreover, studies in humans have shown that a few weeks of beta2-agonist 

treatment enhances muscle strength (Martineau et al., 1992; Hostrup et al., 2015, 2016) and 

preserves muscle function during disuse conditions when combined with resistance exercise 

(Caruso et al., 2004, 2005). Accordingly, beta2-agonists have been proposed as 

pharmacotherapy to prevent muscle atrophy and loss of muscle function in muscle wasting 

conditions (Signorile et al., 1995; Lynch & Ryall, 2008; Atherton & Szewczyk, 2011; 

Joassard et al., 2013) and to augment muscle adaptations to exercise training (Caruso et al., 

2004, 2005; Hostrup et al., 2018; Jessen et al., 2018). 

 

Beta2-agonists are widely used because of their application as first line treatment of the 

bronchoconstriction associated with asthma, exercise-induced bronchoconstriction (Price et 

al., 2014) and chronic obstructive pulmonary disease (COPD) (Barnes, 2005). Although 

beta2-agonists have been marketed for decades, information on the effect of these substances 

on skeletal muscle protein turnover in humans is lacking. Contradictory findings exist in that 

Robinson et al. (2010) found no effect of the non-selective beta-agonist isoproterenol on 

whole-body and muscle protein synthesis, whereas a recent study showed that 7 days of 

treatment with selective beta2-agonist formoterol increased whole-body protein synthesis 

(Lee et al., 2015). In mice, however, Koopman et al. (2010) observed that beta2-agonist only 

increased muscle protein synthesis after consecutive days of treatment and not after the first 

day. Thus, the therapeutic application of beta2-agonists in humans may involve several days 

of treatment before a net positive protein balance incurs (Koopman et al., 2010; Atherton & 

Szewczyk, 2011). Nevertheless, despite the advances made, no studies have investigated the 

potential of consecutive days of beta2-agonist treatment to improve muscle protein balance 

after exercise in humans.  

 

In rodents, the muscle hypertrophic effect of beta2-agonist is mediated by increased protein 

synthesis (Maltin et al., 1989; Hesketh et al., 1992) and/or reduced breakdown (Busquets et 

al., 2004; Yimlamai et al., 2005), resulting in an overall net positive protein balance. The 

mechanisms underlying the growth-promoting actions of beta2-agonists, however, are not 
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entirely clear, but has been shown to involve modulation of various signalling pathways and 

gene programs that regulate muscle protein synthesis and proteolysis in rodents (Spurlock et 

al., 2006; Pearen et al., 2009; Koopman et al., 2010). Beta2-adrenergic signalling induces 

cAMP-dependent activation of protein kinase A (PKA), Epac and ERK1/2 (Shi et al., 2007; 

Ohnuki et al., 2014), which have a wide range of downstream targets that regulate ribosomal 

translation processes and transcription of growth-modulating genes (Spurlock et al., 2006; 

Pearen et al., 2009), including cAMP response element binding protein (CREB)(Hinkle et al., 

2002), Akt, mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase 

(MAPK) (Kline et al., 2007; Koopman et al., 2010). In addition, several regulators of protein 

synthesis may be modulated by beta2-adrenergic signalling, including Akt-effector Forkhead 

box protein O1 (FoxO1), a regulator of the atrophy-related genes Atrogin and MurF (Bodine 

& Baehr, 2014), and eEF2, a regulator of translational elongation. However, the myocellular 

signalling and mRNA response to beta2-agonists in relation to muscle protein synthesis and 

breakdown after exercise are unexplored in humans. 

 

Thus, the main purpose of the present study was to investigate the effect of five days of beta2-

adrenoceptor stimulation with the selective beta2-agonist salbutamol on protein turnover of 

skeletal muscle following resistance exercise in young men. Secondary purposes were to 

elucidate associated changes in intracellular signalling and mRNA content of selected 

canonical beta2-adrenergic targets in skeletal muscle. We hypothesized that beta2-agonist 

treatment would increase protein synthesis and reduce breakdown, resulting in an overall net 

positive protein balance compared to placebo in recovery from resistance exercise. 

 

Methods 

Human subjects and ethics 

Thirteen healthy trained young men volunteered to participate in the study. Before inclusion 

in the study, subjects underwent a medical examination where resting blood pressure, heart 

rate and electrocardiography (ECG) of the subjects were measured. Furthermore, subjects’ 

body composition was measured by dual-energy X-ray absorptiometry (DXA; Lunar DPX-

IQ, GE Healthcare, Chalfont St. Giles, UK). Inclusion criteria were 18 to 40 years of age and 
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an active life-style defined as more than 3 h of physical activity per week. Exclusion criteria 

were smoking, chronic disease, allergy towards medication and use of beta2-agonist or other 

prescription medication. Subjects were informed about risks and discomforts related to the 

different tests and procedures of the study. Each subject gave written and oral informed 

consent prior to inclusion in the study. The study was approved by the Committee on Health 

Research Ethics of the Capital Region of Denmark (H-1-2012-119) and performed in 

accordance with the standards set by the Declaration of Helsinki. The study was registered in 

ClinicalTrials.gov (NCT02551276).  

 

Of the 13 subjects that were screened, 12 were included in the study of which all completed 

(Fig. 1). Characteristics of the 12 subjects who completed the study are presented in Table 1. 

 

Study design 

The study was designed as a randomized double-blinded placebo-controlled crossover study. 

During two identical trials, subjects received either oral salbutamol or placebo. Each trial was 

preceded by a four-day lead-in period with oral salbutamol (4×4 mg×day
-1

) or placebo 

treatment, as animal studies have shown that the effect of beta2-agonist on protein synthesis is 

evident after a few days of treatment (Koopman et al., 2010). The two trials were separated 

by 3-6 weeks to minimize potential confounding carry-over effects of salbutamol (Le Panse 

et al., 2005). Prior to the first experimental trial, subjects met at the laboratory for two 

familiarizations to the resistance exercise protocol of the experimental trials.  

 

Experimental protocol 

An overview of the experimental protocol is illustrated in figure 2. After the four days of 

lead-in treatment, subjects met in the morning after an overnight fast, and received either oral 

salbutamol (6×4 mg) or placebo (same treatment as during lead-in) with a standardized light 

meal low on protein and fat consisting of white bread with jam (energy: 369 kcal; protein: 12 

g; carbohydrate: 67 g; fat: 3 g) and 400 mL of water. Subjects then rested in a bed in the 

supine position and catheters were inserted: one in the dorsal hand vein for tracer infusion, 

one in the brachial artery and one in the femoral vein during local anaesthesia (lidocaine 
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without epinephrine, Xylocaine®, AstraZeneca, Cambridge, UK) for arterial and venous 

blood sampling. A primed, continuous infusion of stable amino acid isotope [
13

C6]-

phenylalanine (L-phenylalanine, ring-13C6, 99%, CLM-1055-MPT, Cambridge Isotope 

Laboratories, Inc., MA, US) was used for measurement of amino acid kinetics across the limb 

and incorporation of labelled phenylalanine into muscle. [
13

C6]-phenylalanine was dissolved 

in isotonic saline (0.9%) using a sterile procedure, filtered through disposable, sterile, non-

pyrogenic filters with 0.2 µm pore size (Minisart, Sartorius Stedim Biotech, Aubagne Cedex, 

France) and kept at 5 °C until infusion. The priming dose of 8 µmol×kg
-1

 lean body mass 

(LBM) labelled phenylalanine was dissolved in 20 mL saline and infused at once (1 min). 

The continuous infusion rate of labelled phenylalanine was 7 µmol×kgLBM
-1

×h
-1

 dissolved in 

saline and infused with a constant rate throughout the trial.  

After 90 min of [
13

C6]-phenylalanine infusion (in order to reach tracer steady state), subjects 

moved to a knee extensor resistance exercise model. Subjects then performed two sets of 10 

repetition knee extensor exercise at an intensity corresponding to 50% of 3 repetition 

maximum (RM), followed by eight sets of 12 repetitions of knee-extensor exercise at an 

intensity corresponding to 12 RM [(75 (± 6) kg] with 2 min of recovery between each set. If 

subjects failed to perform 12 repetitions in a given set, load was decreased for the following 

set. The mean load performed during the final set was 69 (± 7) kg. Intensity and recovery 

time were duplicated for each subject during the two trials. After exercise, subjects remained 

inactive in a supine position for 5 h. Biopsies were obtained from the vastus lateralis muscle 

0.5 and 5 h after resistance exercise. Brachial arterial and femoral venous blood samples were 

drawn in EDTA tubes (9 mL) prior to exercise as well as 0.5, 1, 2, 3, 4 and 5 h following 

exercise. Blood samples were kept at 5 °C for 30 min before centrifugation at 5 °C and 3,200 

g for 10 min, after which plasma was collected and stored at –80 °C until analyses. Prior to 

exercise as well as 0.5, 1, 2, 3, 4 and 5 h following exercise, femoral arterial blood flow was 

measured with ultrasound Doppler (Vivid E9, GE Healthcare, Denmark) equipped with a 

linear probe operating at an imaging frequency of 8 MHz and Doppler frequency of 3.1 MHz 

as previously described (Nyberg et al., 2014). 

Subjects were asked to refrain from caffeine, nicotine and alcohol 24 h before each trial, as 

well as from exercise 48 h before.  
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Study drugs 

Salbutamol (Ventolin®, 4 mg tablets, GlaxoSmithKline, London, UK) and identically 

looking placebo (lactose monohydrate/starch) were delivered by the hospital pharmacy of 

Copenhagen. Beta2-adrenoceptors were stimulated with the highly selective beta2-agonist 

salbutamol (Baker, 2010), which has a duration of action of 6-8 h and a plasma elimination 

half-life of 3-4 h (Rosen et al., 1986; Jacobson et al., 2015). Salbutamol concentrations peak 

systemically 1½-3 h after oral administration (Hostrup et al., 2014a). The dose administered 

during the lead-in period (16 mg×day
-1

) was based on studies showing significant effect of 

daily treatment with oral salbutamol (16 mg×day
-1

) on muscle strength (Martineau et al., 

1992; Caruso et al., 2004). The increase in dose to 24 mg oral salbutamol during the 

experimental day was because of potential desensitization of the beta2-adrenoceptors during 

the lead-in treatment period. Drugs were administered in a double-blinded manner. 

Randomization was conducted in SPSS by personnel that did not take part in any of the 

experimental procedures or data analyses. To ensure a drug compliance of 100% during the 

four-day lead-in period, subjects met at the laboratory in the morning or noon and ingested 

the study drugs during supervision. Eight of the 12 subjects experienced common side effects 

of salbutamol during the first two days of treatment, including tremors (n=7) and palpitations 

(n=6). 

 

Dual-energy X-ray absorptiometry 

Subjects laid in the scanner in supine position undressed for 20 min before the scan. To 

reduce variation, two scans at medium speed were performed according to the manufacturer’s 

guidelines. The scanner was calibrated before scan, using daily calibration procedures (Lunar 

“System Quality Assurance”). All scans were conducted by the same hospital technician. 

 

Muscle biopsies 

Muscle biopsies were obtained from the vastus lateralis using a 4-mm Bergström biopsy 

needle (Stille, Stockholm, Sweden) with suction (Bergström, 1975). Before biopsies were 

sampled, two incisions were made in the skin at the belly of the vastus lateralis muscle 

during local anaesthesia (2 mL lidocaine without epinephrine, Xylocaine® 20 mg×mL
-1

, 
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Astra Zeneca, Cambridge, UK). After sampling, the muscle biopsy was cleaned from visible 

blood, connective tissue and fat and immediately frozen in liquid nitrogen. Biopsies were 

stored in cryo tubes at –80 °C until analyses. 

 

Leg and muscle protein turnover rates 

The influence of beta2-agonist on muscle protein turnover and myofibrillar protein fractional 

synthesis rates (FSR) were measured 0.5 to 5 h in recovery from exercise by infusion of 

stable isotope-labelled phenylalanine, collection of arteriovenous blood samples and muscle 

biopsies from the vastus lateralis muscle, and measurement of femoral blood flow (details in 

Fig. 2).  

 

Femoral arteriovenous plasma phenylalanine enrichment and concentration were measured 

by use of 400 µL plasma with a known amount of [U-
13

C9]-phenylalanine added as internal 

standard. Samples were derivatized using N-methyl-N-(tert-butyldimethylsilyl) 

trifluoroacetamide + 1% tert-butyl-dimethylchlorosilane (MTBSTFA; Regis Technologies, 

Morton Grove, IL) and analysed on a triple-stage quadrupole-mass spectrometer (GC-

MS/MS; TSQ Quantum; Thermo Scientific, San Jose, CA) as previously described (Holm et 

al., 2014). 

 

Muscle specimens of approximately 20 mg wet wt were homogenized using a FastPrep 

120A-230 homogenizer (Thermo Savant, Holbrook, USA) in 1.5 mL ice-cold Milli-Q saline 

water, and after a spin (5500g, 10 min, 5 °C), the supernatant containing the muscle free 

amino acids was transferred to a new vial. Muscle free phenylalanine enrichment was then 

measured by GC-MS/MS in the same way as described for the plasma phenylalanine 

enrichment. The pellet from the spin was added a Tris-buffer (pH 7.4, containing 2 mM 

EGTA chelating agent, 0.5% Triton-X100 and 0.25 M sucrose), homogenized once again, left 

3 h at 5 °C and spun (800g, 20 min, 5 °C) to pellet all structural proteins. Hereafter, 

myofibrillar proteins were dissolved in a 0.7 M KCl and 0.1 M Na4P2O7-buffer, and after 

overnight incubation at 5 °C and a subsequent spin (1600g, 20 min, 5 °C), the supernatant 



 

 

 
This article is protected by copyright. All rights reserved. 

 
 

containing the myofibrillar proteins were transferred to other vials. The myofibrillar proteins 

were denatured by adding 2.3 vol ethanol. After 2 h of incubation at 5 °C, vials were spun 

(1600g, 20 min, 5 °C) to pellet the myofibrillar proteins. After a wash with 70% ethanol, 

proteins were hydrolysed in 6 M HCl at 110 °C overnight, and the ratio of 
13

CO2 and 
12

CO2 

from N-acetyl n-propyl (NAP)-derivatized phenylalanine was analysed by gas 

chromatography-combustion-isotope ratio mass spectrometer (GC-C-IRMS) equipment 

(Finnigan Delta Plus, Bremen, Germany; as previously described in detail (Holm et al., 

2014).   

  

Calculations of phenylalanine kinetics across the leg and muscle, as well as muscle protein 

turnover parameters were based on 2- and 3-pool modelling and myofibrillar FSR on direct 

incorporation model (Wolfe & Chinkes, 2005; Smith et al., 2015). All calculations are based 

on phenylalanine enrichment as mole percentage excess (MPE) or atomic percent excess 

(APE), and phenylalanine concentration is the total concentration (i.e. unlabelled and labelled 

phenylalanine). Plasma flow, derived from blood flow and haematocrit, were used in the 

calculations. All phenylalanine kinetic values are expressed as nmol×min
-1

×100 g leg lean 

mass (LLM)
-1

. LLM was derived from the DXA scan. Models and calculations applied in this 

study are in accordance with those previously described (Biolo et al. 1995; Wolfe & Chinkes, 

2005; Smith et al. 2015):    

 

2- and 3-pool models shared calculations: 

Leg plasma flow (LPF) = leg blood flow × (1 – haematocrit) 

Delivery to the leg (Fin) = CA × LPF 

Output from the leg (Fout) = CV × LPF 

Leg net balance (leg NB) = (CA – CV) × LPF 

where CA and CV are arterial and venous phenylalanine concentration, respectively. 
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2-pool model calculations: 

Rate of disappearance in the leg (leg Rd) = (CA × EA - CV × EV) × LPF / EA  

Rate of appearance in the leg (leg Ra) = leg Rd - leg NB 

where EA and EV are arterial and venous phenylalanine enrichment, respectively. 

 

3-pool model calculations: 

Muscle inward transport (FM,A) = ((CV × ((EM - EV) / (EA - EM))) + CA) × LPF 

Muscle outward transport (FV,M) = ((CV × ((EM - EV) / (EA - EM))) + CV) × LPF 

Arteriovenous shunting (FV,A) = Fin - FM,A 

Muscle protein breakdown estimate (FM,O) = FM,A × (EA / EM - 1) 

Muscle protein synthesis estimate (FO,M) = FM,O + leg NB 

where EM is muscle intracellular phenylalanine enrichment. 

 

The direct incorporation model calculations for myofibrillar protein synthesis: 

Fractional synthesis rate (FSR) = ((EP2 - EP1) / (Eprecursor × (T2 - T1))) × 100 

where EP1 and EP2 are the myofibrillar product enrichment at time point 0.5 and 5 h, 

respectively, Eprecursor is the muscle free phenylalanine enrichment (or venous or arterial 

plasma phenylalanine enrichment), and T1 and T2 are the specific time points at 0.5 and 5 h, 

respectively. Myofibrillar FSR is expressed as %×h
-1

. 

 

Protein phosphorylation in muscle homogenate lysates 

Protein phosphorylation was determined by Western blotting as previously described 

(Thomassen et al. 2016). In short, ≈1.5 mg freeze dried muscle tissue was homogenised 

(Qiagen Tissuelyser II, Retsch GmbH, Haan, Germany) in a fresh batch of buffer containing 
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(in mM): 10% glycerol, 20 Na-pyrophosphate, 150 NaCl, 50 HEPES (pH 7.5), 1% NP-40, 20 

β-glycerophosphate, 2 Na3VO4, 10 NaF, 2 PMSF, 1 EDTA (pH 8), 1 EGTA (pH 8), 10 

µg×mL
-1

 Aprotinin, 10 µg×mL
-1

 Leupeptin and 3 Benzamidine. Samples were rotated end 

over end for 1 h at 4 °C and centrifuged at 13,000 rpm for 20 min at 4 °C to exclude non-

dissolved structures and the supernatant (lysate) was used for further analyses. Total protein 

concentration in each sample was determined by a BSA standard kit (Thermo Fisher 

Scientific, Hvidovre, Denmark) and samples were mixed with 6×Laemmli buffer (7 mL 0.5 

M Tris-base, 3 mL glycerol, 0.93 g DTT, 1 g SDS and 1.2 mg bromophenol blue) and ddH20 

to reach equal protein concentration before protein content was determined by Western 

blotting. 

 

Equal amount of total protein was loaded in each well of pre-casted gels (Bio-Rad 

Laboratories, USA). All samples from each subject were loaded on the same gel with a mixed 

human muscle standard lysate loaded in two different wells used for normalization. Analysis 

of phosphorylated proteins and corresponding total protein were performed on separate gels. 

Proteins were separated according to their molecular weight by SDS page gel electrophoresis 

and semi-dry transferred to a PVDF membrane (BioRad, Denmark). The membranes were 

blocked in either 2% skimmed milk or 3% BSA in Tris-buffered Saline including 0.1% 

Tween-20 (TBST) before an overnight incubation in primary antibody at 4 °C and a 

subsequent 1 h incubation in horseradish-peroxidase (HRP) conjugated secondary antibody at 

room temperature. The bands were visualised with ECL (Millipore) and recorded with a 

digital camera (ChemiDoc MP Imaging System, Bio-Rad Laboratories, USA). Densitometry 

quantification of the western blot band intensity was performed using Image Lab version 4.0 

(Bio-Rad Laboratories, USA) and determined as the total band intensity adjusted for 

background intensity. Primary antibodies used are presented in Table 2. Primary antibodies 

were optimised by use of mixed human muscle standard lysates. Two mixed study samples 

containing tissue from biopsies were used to ensure that the protein amount loaded would 

result in band signal intensities localised on the steep and linear part of a standard curve. 

Secondary antibodies used were HRP conjugated rabbit anti-sheep (P-0163), goat anti-mouse 

(P-0447, DAKO, Denmark) and goat anti-rabbit IgM/IgG (4010-05 Southern Biotech).  
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RNA isolation, reverse transcription, and real-time PCR 

The method for RNA isolation, reverse transcription and real-time PCR has been described 

previously (Pilegaard et al., 2000; Brandt et al., 2016). Total RNA was isolated from ≈5 mg 

wet wt muscle tissue using a modified guanidinium thiocyanate–phenol–chloroform 

extraction method from Chomczynski and Sacchi (1987) as described by Pilegaard et al. 

(2000) except for the use of a TissueLyser (TissueLyser II, Qiagen, Valencia, CA, USA) for 

homogenization. Superscript II RNase H- and Oligo dT (Invitrogen, Carlsbad, CA, USA) 

were used to reverse transcribe mRNA to cDNA (Pilegaard et al., 2000). Quantification of 

cDNA as a measure of mRNA content of a given gene was performed by real-time PCR 

using an ABI 7900 sequence-detection system (Applied Biosystems, Foster City, CA, USA). 

Probes and primers were either self-designed (Table 3) or pre-developed gene expression 

assays (ActivinRIIB Hs00609603_m1, calpain-1 Hs00559804_m1, Smad3 Hs00969210_m1) 

(Applied Biosystems). Self-designed probes and 5’-6-carboxyfluorescein (FAM)/3’-6-

carboxy-N,N,N’,N’-tetramethylrhodamine (TAMRA) labeled TaqMan probes were designed 

from human specific databases from ensemble (www.ensembl.org/homo_sapiens/info/index) 

using Primer Express 3.0 software (Applied Biosystems) and were obtained from TAG 

Copenhagen (Copenhagen, Denmark). 

 

Real-time PCR was performed in triplicates in a total reaction volume of 10 μL using 

Universal Mastermix with UNG (Applied Biosystems). The obtained cycle threshold values 

reflecting the initial content of the specific transcript in the samples were converted to a 

relative amount by using standard curves constructed from serial dilution of a pooled sample 

made from all samples. Target mRNA content was normalized to single-stranded (ss) DNA 

content in each sample determined by using OliGreen reagent (Molecular Probes, Leiden, 

The Netherlands) as previously described (Lundby et al., 2005). 

Plasma concentrations of salbutamol 

Plasma concentrations of salbutamol were measured by UPLC-MS/MS using deuterated 

internal standard based on methods previously described (Jacobson et al., 2015). In brief, 

calibration samples were prepared using unlabelled salbutamol in drug free plasma over a 

concentration range of 2-200 ng×mL
-1

 and internal standard salbutamol-D3 (3-

hydroxymethyl-D2, α-D1; Medical Isotopes, Inc., Pelham, NH, USA) was added to each 

http://www.ensembl.org/homo_sapiens/info/index
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plasma sample (200 μL) or calibration sample equivalent to 20 ng×mL
-1

. Ammonia solution 

(200 μL, pH 9) was then added to each sample and vortex mixed, before the addition of 1000 

μL of HPLC grade ethyl acetate. This was vortex mixed for one minute and then centrifuged 

at 15,000 g for five minutes.  The organic supernatant was then transferred to a glass 

autosampler vial, from which the solvent was evaporated under nitrogen at 40 °C. The 

residue was reconstituted using 100 μL of methanol and vortex mixed prior to analysis via 

UPLC-MS/MS consisting of a Waters Acquity® H-class UPLC system (Waters Corporation, 

Milford, MA) with chromatography performed using an Astec® CHIROBIOTIC™ T2 chiral 

column (4.6×250 mm × 5 μm particles) (Sigma-Aldrich) coupled to a Waters Xevo® triple 

quadrupole mass spectrometer (Waters Corporation) with analyses undertaken using multiple 

reaction monitoring with conditions as previously described (Jacobson et al., 2015). Assay 

performance data were within acceptance criteria; accuracy and precision (%RSD; n=5 at 5 

ng×mL
-1

) both less than 5% and calibration r
2
>0.9998. Total salbutamol levels were 

calculated from the sum of individual enantiomers. 

 

Statistics 

Statistical analyses were performed in SPSS version 24 (IBM, Armonk, US). Sample size 

was determined for the primary outcome measure (myofibrillar FSR) and was estimated from 

the effect of beta2-agonist treatment on protein synthesis in animals (Koopman et al., 2010) 

and between-subject standard deviation from resistance exercise studies in humans (Kumar et 

al., 2009). Data were tested for normality using the Shapiro-Wilks test and Q-Q plots. 

Variables that violated normality were log-transformed (i.e. phosphorylation-ratio and 

mRNA level data). To estimate differences between treatments, two-tailed linear mixed 

modelling was used with treatment as a fixed effect and a random effect for subjects. In 

addition, age and lean body mass were included in the model as time invariant covariates 

because they may confound the effect of beta2-agonist (White & Leenen, 1994; Cheymol, 

2000). Area under the phenylalanine leg net balance-time curve (AUC) was analysed using 

the trapezoidal rule with inclusion of baseline net balance as a covariate in the mixed model. 

For mRNA content, technical replicates were nested within the fixed effects (Acharya & Zhu, 

2011). In case of repeated measures, sampling point was included in the model as a fixed 

effect for a full factorial design. Within-sampling point p-values were adjusted using the 
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Bonferroni method. Data are presented as mean with the 95% confidence interval (CI) and 

exact p-values (unless lower than 0.01 or higher than 0.50) to represent probability for 

treatment fixed effects.  

 

Results 

Plasma concentrations of salbutamol 

Arterial plasma concentrations of salbutamol were 46.5 (± 7.3) and 52.0 (± 9.3) ng×mL
-1

 0.5 

and 5 h after exercise (2½ and 7 h after drug administration, respectively). No salbutamol was 

detected in the blood during the placebo trial. 

 

Circulating phenylalanine availability 

Average arterial plasma [
13

C6]-phenylalanine enrichment was lower (p < 0.01) for salbutamol 

than placebo, whereas femoral venous enrichment was higher (p < 0.01) for salbutamol than 

placebo (Fig. 3A-B). Average arterial and femoral venous plasma concentrations of 

phenylalanine were lower (p < 0.01) for salbutamol than placebo (Fig. 3C-D). 

 

Leg phenylalanine kinetics based on 2-pool model 

Average femoral arterial plasma flow was more than two-fold higher (p < 0.01) for 

salbutamol than placebo (Fig. 4A). No differences were observed in [
13

C6]-phenylalanine leg 

net balance between salbutamol and placebo before exercise (Fig. 4B). In the 0.5-5 h period 

after exercise, mean phenylalanine leg net balance was 0.6 (± 3.0) and –3.0 (± 2.2) 

nmol×min
-1

×100 g LLM
-1

 for salbutamol and placebo, respectively (p < 0.01)(Fig. 4B). 

Phenylalanine leg net balance AUC was higher (p = 0.05) for salbutamol than placebo (Fig. 

4C). Average rate of disappearance and appearance of [
13

C6]-phenylalanine was higher (p < 

0.01) for salbutamol than placebo (Fig. 4D-E).  
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Muscle protein synthesis rate and leg phenylalanine kinetics based on 3-pool model 

Myofibrillar FSR was determined as the incorporation of tracer into myofibrillar proteins 

using the intramuscular tracer enrichment (MPE) as precursor (salbutamol 0.5 h: 7.0 (± 0.6)% 

and 5 h: 7.6 (± 0.6)% and placebo 0.5 h: 7.6 (± 0.7)% and 5 h: 7.5 (± 0.7)%). Myofibrillar 

FSR was 0.013%×h
-1

 (± 0.005) higher (p = 0.03) for salbutamol than placebo (Fig. 5A). 

Subjects’ lean body mass was a significant negative confounder (p = 0.03) of the salbutamol 

induced change in myofibrillar FSR, whereas age did not confound the response (p > 0.50). 

The effect of salbutamol on myofibrillar FSR was moderate (Cohen’s d: 0.78). 

Based on the 3-pool model, salbutamol had higher estimates of protein synthesis (FO,M) (p < 

0.01) and breakdown (FM,O) (p < 0.01) than placebo (Fig. 5B and C). 

Inward and outward muscle transmembrane transport of phenylalanine was not significantly 

different between treatments 0.5 h after exercise, but was higher (p < 0.01) for salbutamol 

than placebo 5 h after exercise (Table 4). Arteriovenous shunting was more than two-fold 

higher (p < 0.01) for salbutamol than placebo 0.5 and 5 h after exercise (Table 4).  

 

Muscle signaling 

PKA substrate intensity (p = 0.01) and phosphorylation of Akt2 (p = 0.02) and CREB (p < 

0.01) were higher for salbutamol than placebo 0.5 h after exercise, whereas no relevant 

differences were observed between the treatments in phosphorylation of 4E-BP1 (p = 0.23), 

eEF2 (p = 0.17), MAPK (p > 0.50), mTOR (p = 0.17) and p70S6K (p = 0.39)(Fig. 6A). PKA 

substrate intensity (p < 0.01) and phosphorylation of Akt2 (p < 0.01), CREB (p < 0.01) and 

eEF2 (p = 0.01) were higher for salbutamol than placebo 5 h following exercise, while 

phosphorylation of 4E-BP1 (p = 0.38), MAPK (p > 0.50), mTOR (p > 0.50) and p70S6K (p = 

0.13) was not different between treatments (Fig. 6B). 
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mRNA content 

The mRNA content of calpain-1 (p < 0.01), FoxO1 (p < 0.01), myostatin (p < 0.01) and 

Smad3 (p < 0.01) was higher for salbutamol than placebo 0.5 h after exercise, whereas no 

significant changes were induced by salbutamol in content of ActivinRIIB (p = 0.25), atrogin 

(p > 0.50), MuRF (p > 0.50) and PGC-1α (p = 0.33) compared to placebo (Fig. 7A). The 

mRNA content of ActivinRIIB was lower (p < 0.01) for salbutamol than placebo 5 h after 

exercise, while FoxO1 (p < 0.01) and myostatin (p < 0.01) mRNA content was higher for 

salbutamol than placebo (Fig. 7B). No treatment differences were observed in the mRNA 

content of atrogin (p = 0.48), calpain-1 (p > 0.50), PGC-1α (p = 0.09), MuRF (p = 0.24) and 

Smad3 (p > 0.50) 5 h after exercise (Fig. 7B). 

 

Discussion 

Herein we have described the beta2-adrenergically-induced changes in protein turnover rates 

and associated changes in intracellular signalling and mRNA content in skeletal muscle after 

resistance exercise in trained young men. The most important findings were that beta2-

adrenergic stimulation with the commonly prescribed selective beta2-agonist, salbutamol, 

increased myofibrillar FSR and protein turnover rates, thus favouring an improved net protein 

balance in skeletal muscle following resistance exercise. Changes in protein turnover induced 

by salbutamol were associated with PKA-signalling, activation of Akt2 and modulation of 

mRNA response of growth-regulating proteins in skeletal muscle. 

 

Although beta2-agonists have been marketed for more than 50 years, the present study is first 

to show that few days of beta2-agonist treatment increases myofibrillar FSR and leg protein 

turnover rates, resulting in an improved leg net protein balance after resistance exercise in 

humans. The higher myofibrillar FSR induced by salbutamol was in agreement with our 

working hypothesis and consistent with observations in rodents (Maltin et al., 1989; Hesketh 

et al., 1992; Koopman et al., 2010). In contrast to our observations, isoproterenol was shown 

to have no effect on whole-body and muscle protein synthesis in young men (Robinson et al., 

2010). The type of beta2-agonist and dosing regimen applied may explain this discrepancy. In 

the present study, we administered salbutamol, which has superior selectivity for the beta2-
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adrenoceptor than isoproterenol (Baker, 2010). Furthermore, we chose to administer 

salbutamol in supratherapeutic doses and daily for four days prior to the experiments, as 

studies in rodents have shown that the stimulatory effect of beta2-agonist on anabolism is 

dose-dependent and that beta2-agonist-induced increase in protein synthesis requires 

consecutive days of treatment (Koopman et al., 2010). Consistent with this, Lee et al. (2015) 

observed that 7 days of oral treatment with formoterol increased whole-body protein 

synthesis. In addition, we investigated the effect of beta2-agonist on 5-h protein turnover 

following resistance exercise and not during resting conditions as in the previous human 

studies (Robinson et al., 2010; Lee et al., 2015). Accordingly, the present study indicates that 

a few days of beta2-agonist treatment increase protein turnover rates in the first 5-h period 

following resistance exercise, which is in agreement with the augmenting effect of daily 

salbutamol treatment on muscle adaptations to resistance training observed in previous 

studies (Caruso et al., 2004, 2005). 

We observed that subjects’ lean body mass confounded the effect of salbutamol on 

myofibrillar FSR, whereas no relevant confounding effect was observed for body mass 

(Pearson’s r = –0.096, p = 0.32; data not shown). Distribution of drugs, including beta2-

agonists, is influenced by body composition (Cheymol, 2000), and lean body mass has been 

shown to be a superior predictor of the response to drugs than body mass (Morgan & Bray, 

1994; Han et al., 2007). The influence of lean body mass on the response to salbutamol is 

likely related to salbutamol’s distribution kinetics, exhibiting extensive disposition in skeletal 

muscle (Jacobson et al., 2014). The beta-adrenoceptor cardiac response has also been shown 

to decline with age (White & Leenen, 1994), but we observed no relevant impact of subjects’ 

age on salbutamol-induced change in myofibrillar FSR. This may be explained by the 

relatively low heterogeneity in the present study population (ranging from 19 to 32 years) and 

the different target tissue (cardiac versus skeletal muscle). Nevertheless, the present 

observations suggest that lean body mass may be taken into consideration when investigating 

effects of beta2-agonists. In this context, it has been speculated that the effect of beta2-agonist 

on exercise performance and muscle excitation-contraction coupling depends on the training 

level of the subject (van Baak et al. 2004; Decorte et al. 2013).  
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While studies in rodents have indicated that the hypertrophic effect of beta2-agonist may 

involve both attenuation of muscle proteolytic processes (Busquets et al., 2004; Yimlamai et 

al., 2005) and an increase in protein synthesis (Maltin et al., 1989; Hesketh et al., 1992), we 

observed that salbutamol markedly increased leg protein turnover rates by nearly doubling 

the rate of protein breakdown and synthesis during the 5-h period following exercise. Given 

that the resistance exercise undertaken was matched between the salbutamol and placebo 

trial, the higher rate of protein breakdown induced by salbutamol is related to other factors 

than total work performed. Although a putative mechanism could be the pronounced increase 

in arterial femoral plasma flow (Biolo et al., 1997) induced by salbutamol, we observed no 

apparent association between femoral plasma flow and myofibrillar FSR (r = 0.11, p = 0.60) 

or leg net balance AUC (r = 0.05, p = 0.80). Furthermore, in spite of higher femoral plasma 

flow and lower arterial plasma concentration of phenylalanine, the arteriovenous 

phenylalanine difference was more positive for salbutamol than placebo, in which there was a 

net release of phenylalanine in the 0.5-5 h following exercise. As such, our observations 

suggest that the greater protein turnover rates for salbutamol is related to myocellular 

mechanisms.   

Despite the increase in rate of protein breakdown, salbutamol counteracted a net negative 

protein balance following resistance exercise, which was evident in the placebo condition. 

The negative protein balance observed for placebo is consistent with previous studies, where 

the balance is negative in the post-absorptive state following resistance exercise (Biolo et al., 

1995; Phillips et al., 1997). In this context, it is important to emphasize that subjects, in the 

present study, consumed a standardized low-protein meal 2 h prior to the resistance exercise 

to provide some energy to be available for the exercise session, while being sufficiently low 

in protein to affect metabolism at the post-exercise measurements. Studies have shown that 

there is a graded response of muscle FSR to dietary protein or amino acid infusion (Bohé et 

al., 2003; Moore et al., 2008), and whether the effect of beta2-agonist on protein turnover 

rates would have been different in completely fasting conditions or in conditions where 

subjects had consumed higher amounts of essential amino acids remain to be elucidated. 

Nonetheless, the beneficial effect of salbutamol in enhancing net balance to more positive 

levels than with placebo underpins the efficacy of beta2-agonist in stimulating muscle 

anabolism. 
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We observed that salbutamol induced significant beta2-adrenergic signalling in skeletal 

muscle 0.5 and 5 h following resistance exercise, as indicated by a higher phosphorylation of 

PKA-substrates and downstream activation of cAMP/PKA-dependent target CREB. In 

rodents, the growth-promoting mechanisms of beta2-adrenergic signalling involves Akt, 

mTOR and MAPK pathways (Kline et al., 2007; Sato et al., 2013), which are predominant in 

the regulation of translation initiation (Goodman, 2014) and cell proliferation and 

differentiation (Pearson et al., 2001). Despite the induced PKA-signalling and higher 

phosphorylation of Akt2 with salbutamol 0.5 and 5 h following exercise, we observed no 

changes in phosphorylation of mTOR
Ser2448

 and downstream effectors of translation initiation, 

p70S6K and 4E-BP1, or in phosphorylation of p38-MAPK. While the latter observations may 

seem inconsistent with reports in rodents (Sato et al., 2013), beta2-adrenergic signalling may 

be muscle fibre-type specific (Gonçalves et al., 2012), and some studies found no effect of 

beta2-adrenergic stimulation on p38-MAPK phosphorylation (Kim et al., 2013). Reports in 

mice also indicate that beta2-adrenergic stimulation does not phosphorylate mTOR
Ser2448

, but 

may phosphorylate mTOR
Ser2481

 (Sato et al., 2014), which could be a possible explanation of 

the observed increase in phosphorylation of Akt
Ser473

 (Copp et al., 2010). Indeed, mTOR
Ser2448

 

may not be a target of Akt (Figueiredo et al., 2017). We also observed that salbutamol 

increased phosphorylation of eEF2, which acts to reduce ribosomal elongation activity 

(Ryazanov et al., 1988). Although this may seem unexpected considering the higher protein 

synthesis rate and phosphorylation of Akt2 with salbutamol, studies have shown that cAMP-

PKA dependent signalling induces phosphorylation of eEF2 and inhibition of peptide 

elongation in vitro (Redpath & Proud, 1993). 

 

Aside from the induced changes in signaling, we observed that salbutamol modulated mRNA 

levels of ActivinRIIB, calpain-1, FoxO1, myostatin and Smad3 following exercise. Most 

noteworthy was the upregulation of mRNA levels of the negative regulator of growth, 

myostatin. Although increased mRNA levels of myostatin may appear counterintuitive given 

the anabolic properties of beta2-agonists, Abo et al. (2012) observed that hypertrophy induced 

by beta2-agonist was associated with increased protein levels of myostatin in rats. 

Importantly, we also observed that salbutamol induced a downregulation of the mRNA level 

of the receptor target of myostatin, ActivinRIIB, 5 h after exercise. Thus, a potential 

upregulation of myostatin induced by beta2-agonist may be counteracted by a concurrent 
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downregulation of ActivinRIIB, which is consistent with that observed in rat tibialis anterior 

muscle following beta2-agonist treatment (Pearen et al., 2009). In addition, we observed that 

salbutamol upregulated mRNA levels of Smad3 and FoxO1. Given Smad3-null mice display 

loss of satellite cells and muscle atrophy (Ge et al., 2011), it may be speculated that a beta2-

agonist-induced upregulation of Smad3 plays a role in growth-promotion. FoxO1, a regulator 

of the atrophy-related genes Atrogin and MuRF (Bodine & Baehr, 2014), is among the targets 

that are regulated by the ActivinRIIB-myostatin system and Akt signalling. However, despite 

significant Akt activation and upregulation of FoxO1 mRNA levels with salbutamol, we 

observed no changes in the mRNA level of Atrogin and MuRF with salbutamol compared to 

placebo. Furthermore, although a potential effect of CREB activation is increased 

transcription of PGC-1α, we observed no effect of salbutamol on mRNA levels of PGC-1α 

compared to placebo. The latter observation is consistent with observations in rats, where 

beta2-agonist treatment with clenbuterol did not necessarily affect PGC-1α mRNA levels 

(Kim et al., 2013; Shimamoto et al., 2017). We also observed that the calpain1 mRNA 

content was increased by salbutamol 0.5 h following exercise, which potentially may have 

contributed to Ca
2+

-dependent proteolysis and thus the higher protein breakdown for 

salbutamol than placebo. The observation that salbutamol increased calpain mRNA levels is 

consistent with rodent studies, where beta2-agonist treatment with formoterol increased 

calpain mRNA levels (Koopman et al., 2010).  

 

The effect of beta2-agonist on gene transcription and signalling possibly depends on timing of 

sampling and the biological samples (e.g. cells versus tissue) as well as on type and dose of 

beta2-agonist used (Baker, 2010; Wannenes et al., 2012). For instance, while clenbuterol 

repressed mRNA levels of Atrogin and MuRF in C2C12 muscle cell lines (Wannenes et al., 

2012), no effect was found in rat soleus muscle after three days of treatment with clenbuterol 

(Gonçalves et al., 2012). Furthermore, unlike clenbuterol, salbutamol was shown to have no 

apparent effect on mRNA levels of Atrogin and MuRF in C2C12 muscle cell lines 

(Wannenes et al., 2012). Based on the present study, along with studies in rodents, changes in 

muscle protein turnover induced by beta2-agonists are possibly multifactorial, involving 

complex regulation of gene transcription and ribosomal translation (Pearen et al., 2009; 

Koopman et al., 2010).  
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In summary, the present observations show that selective activation of beta2-adrenoceptors 

with salbutamol increases myofibrillar FSR and protein turnover rates in skeletal muscle 

following resistance exercise in trained young men. Furthermore, our observations indicate 

that lean body mass confounds the salbutamol-induced change in myofibrillar FSR. The 

effect of salbutamol in protein turnover rates was associated with pronounced PKA-signalling 

and phosphorylation of CREB and Akt2, as well as a concurrent mRNA response for growth-

regulating genes, including ActivinRII, FoxO1, and myostatin.   

 

Methodological considerations 

We observed that the arterial phenylalanine enrichment rose from ~12 to ~13.5% MPE 

during the period of which the tracer measures were performed and therefore it could be 

discussed whether isotopic steady state was achieved in the present study. Nonetheless, we 

observed a constant venous enrichment of ~11.5% MPE and no difference in the 

intramuscular enrichment at 0.5 and 5 hours in recovery from exercise (0.079±0.003 and 

0.082±0.003, respectively, p=0.32), demonstrating that close to the actual site of protein 

turnover, tracer enrichments were not changing significantly. In clinical trials where 

homeostasis may be affected by drugs, exercise or other factors, minor fluctuations in 

circulating tracer enrichments may also be expected. In the present study, as well as in some 

other protocols (Rahbek et al., 2014; Mikkelsen et al., 2015), we applied a rather high tracer 

infusion rate (7 µmol×kg LBM
-1

×h
-1

) compared to 3.6 µmol×kg Whole BW
-1

×h
-1

 used by 

others (Wilkinson et al. 2015; Wall et al. 2016). Our rationale for this infusion rate was to 

improve analytical sensitivity to allow detection of expectedly small intervention differences. 

However, with the precision of modern mass spectrometers, the relative high tracer infusion 

rate was most likely not necessary and it is recommended to use a lower infusion rate to limit 

costs and reduce potential impact of the tracer on metabolism. It was shown though, that the 

myofibrillar FSR was unaffected by flooding with 1,665 mg phenylalanine (>10,000 µmol), 

increasing the blood (and most likely also intracellular) concentrations several-fold (Holm et 

al. 2014). For comparison, the infusion in the present study equalled to a total amount of 

≈500-600 mg phenylalanine over a 7-h time period, which we therefore find unlikely to have 

affected phenylalanine metabolism and muscle protein synthesis rate. In addition, in the 
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present study we used different tracer principles to investigate the effect of salbutamol versus 

placebo on protein turnover rates. While some variability was observed within the different 

estimates, consistency appeared across the findings when evaluated over the entire post-

exercise period, and for the primary outcome measure (myofibrillar FSR determined by the 

direct incorporation method) we observed consistent findings with the 3-pool tracer dilution 

estimate of protein synthesis rate (FO,M) (pearson’s r = 0.52, p = 0.009). It should also be 

highlighted that the effect of beta2-agonist versus placebo on protein turnover rates observed 

in the present study was in a postprandial setting where the subjects also performed exercise. 

Therefore, interpretation of the sole beta2-adrenergic effect based on this study should be 

done with caution, as nutritional intake and exercise may confound the effect of beta2-

agonist.  

 

Translational perspectives 

The present study adds to animal studies and show that beta2-agonist can alter protein 

turnover in skeletal muscle following resistance exercise in humans. The practical 

implications of beta2-agonist-induced changes in protein turnover rates remain to be 

elucidated. Although studies in rodents have provided support of beta2-agonists as treatment 

of muscle atrophy, concerns were raised because of concurrent adverse ventricular 

remodelling and collagen filtration (Gregorevic et al., 2005; Burniston et al., 2007). 

However, given the markedly lower relative doses prescribed to humans, such effects are 

possibly not a major concern. Furthermore, the most commonly used beta2-agonists in 

humans, such as salbutamol and formoterol, have superior selectivity for the beta2-

adrenoceptor than clenbuterol and fenoterol (Baker, 2010), thus reducing or avoiding 

potential adverse activation of cardiac beta1-adrenoceptors. Recent human studies also show 

that beta2-agonists may hold some promise as anabolic agents with few minor side effects 

(Hostrup et al., 2015; Lee et al., 2015; Jessen et al., 2018). The beta2-agonist induced 

increase in protein turnover may also have implications for proteome signature remodelling 

of various components in skeletal muscle. Indeed, beta2-agonist treatment has been shown to 

modulate proteome signature adaptations to endurance training in humans (Hostrup et al., 

2018). Furthermore, given remodelling and re-cycling of myocellular proteins are important 

adaptive processes to stress and exercise (Camera et al., 2017), it may be that beta2-agonists 



 

 

 
This article is protected by copyright. All rights reserved. 

 
 

augment post-exercise recovery processes after resistance exercise. The observation that 

supratherapeutic oral doses of salbutamol increase protein turnover rates in association with 

resistance exercise provides support of the anti-doping regulatory restrictions toward 

supratherapeutic use of beta2-agonists in competitive sport.  
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Tables 

Table 1. Subject characteristics (n=12) 

Age (years) 23.4 (± 3.8) 

Height (cm) 181.3 (± 5.6) 

Body mass (kg) 74.4 (± 9.2) 

Lean body mass (kg) 61.0 (± 5.4) 

Leg lean mass (kg) 17.8 (± 1.8) 

Values are mean (± SD). 

 

 

Table 2. Primary antibodies used for Western blotting 

Target protein Manufacturer Number Molecular weight (kDa) 

4E-BP1 Cell Signaling 9452 15-20 

p-4E-BP1Thr37/46 Cell Signaling 2855 15-20 

Akt2 Cell Signaling 3063 60 

p-Akt2Ser473 Cell Signaling 9271 60 

CREB Cell Signaling 9197 43 

p-CREBSer129/Ser133 Abcam ab10564 37-43 

eEF2 Abcam ab130187 95 

p-eEF2Thr56 Cell Signaling 2331 95 

mTOR Cell Signaling 2972 289 

p-mTORSer2448 Cell Signaling 2971 289 

p38MAPK Cell Signaling 9212 37-43 

p-p38MAPKThr180/Tyr182 Cell Signaling 9211 37-43 

p70S6K Cell Signaling 2708 70 

p-p70S6KThr389 Cell Signaling 9234 70 
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Table 3. Primers used for real-time  PCR 

Target 

gene 

Sense primer Antisense primer TaqMan probe 

Atrogin 5' 

GATGTTACCCAAGG

AAAGAGCAGTAT 3' 

 

5' 

ACGGATGGTCAGTGCCC

TT 3' 

 

 

5' 

CCCTTCAGCTCTGCAAACACTGT

CACAT 3' 

 

FoxO1 5' 

ACCGAACAGGATGA

TCTTGGA 3' 

 

5' 

CCATCTGCCGCAAAGAT

GGCCTCTA 3' 

5' 

CCATCTGCCGCAAAGATGGCCTC

TA 3' 

 

 

MurF 5' 

GGAGCCACCTTCCTC

TTGACT 3' 

 

5' 

CTCAAAGCCCTGCTCTG

TCTTC 3' 

 

5' 

AACTCATCAAAAGCATTGTGGA

AGCTTCCAA 3' 

 

Myostatin 5' 

ACCAGGAGAAGATG

GGCTGAA 3' 

5' 

GTCAAGACCAAAATCCC

TTCTGGA 3' 

 

5' 

CCGTTTTTAGAGGTCAAGGTAAC

AGACACACCA 3' 

 

 

PGC-1α 5’ 

CAAGCCAAACCAAC

AACTTTATCTCT 3’ 

5’ 

CACACTTAAGGTGCGTT

CAATAGTC 3’ 

5’ 

AGTCACCAAATGACCCCAAGGG

TTCC 3’ 
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Table 4. Selected phenylalanine kinetics parameters based on 3-pool model    

 Placebo Salbutamol Tests of fixed effects 

 0.5 h 5 h 0.5 h 5 h Treatment Time Treatment 

by time 

Inward muscle transmembrane 

transport 

(PHE nmol×min
-1

×100 g LLM
-1

) 

57  (± 17) 41  (± 9) 72  (± 33) 78  (± 16)** <0.01 0.58 0.43 

Outward muscle transmembrane 

transport 

(PHE nmol×min
-1

×100 g LLM
-1

) 

59  (± 13) 45  (± 9) 69  (± 32) 79  (± 21)** 0.03 0.79 0.21 

Arteriovenous shunting 

(PHE nmol×min
-1

×100 g LLM
-1

) 

166  (± 58) 83  (± 29) 324  (± 75)** 209  (± 78)** <0.01 <0.01 0.87 

LLM: leg lean mass. Values are mean (± 95%CI)(n=12). **Different (p ≤ 0.01) from placebo at same time 

point. 

Figure legends 

Fig. 1. Flow diagram.  

 



 

 

 
This article is protected by copyright. All rights reserved. 

 
 

 

Fig. 2. Overview of the experimental protocol. In a randomized placebo-controlled double-

blinded crossover design, the study participants conducted two experimental trials 

(salbutamol vs. placebo) that were separated by 3-6 weeks. Filled circles indicate when 

arterial and venous blood samples were drawn. Filled triangles indicate when muscle biopsies 

of the vastus lateralis were collected. EX: Resistance exercise. 

 

 

 

 

 

Fig. 3. Circulating phenylalanine availability for salbutamol (blue) and placebo (white) 

before (–0.5 h) and 0.5-5 h following resistance exercise. A: Arterial and venous [
13

C6]-

phenylalanine enrichment. B: Arteriovenous difference in [
13

C6]-phenylalanine enrichment. 

C: Femoral arterial and venous phenylalanine concentration.  D: Arteriovenous difference in 
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phenylalanine concentration. Values are mean (± 95%CI)(n = 12). **Treatment difference (p 

< 0.01) at same point. 
$$

Overall treatment main effect (p < 0.01).  

 

 

 

Fig. 4. Leg phenylalanine kinetics based on 2-pool model for salbutamol (blue) and placebo 

(white) before (–0.5 h) and 0.5-5 h following resistance exercise. A: Femoral arterial plasma 

flow. B: Leg net phenylalanine balance curve. C: Area under the leg net phenylalanine 

balance-time curve. C:  D: Rate of disappearance. E: Rate of appearance. LLM: leg lean 
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mass. Values are mean (± 95%CI)(n = 12). **Treatment difference (p < 0.01) at same point. 

$$
Overall treatment main effect (p < 0.01).  

 

 

 

 

 

Fig. 5. Muscle protein synthesis rate and leg phenylalanine kinetics based on 3-pool model 

for salbutamol (blue) and placebo (white) 0.5-5 h following resistance exercise. A: 
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Myofibrillar fractional synthesis rate (FSR). B: Average protein synthesis (FO,M)(3-pool 

model). C: Average protein breakdown (FM,O)(3-pool model). LLM: leg lean mass. Values 

are mean (± 95%CI)(n = 12). **Treatment difference (p < 0.01).  

 

 

 

 

 

Fig. 6. Phosphorylation-ratio induced by salbutamol (SAL) compared to placebo (PLA) in 

biopsies sampled from the vastus lateralis muscle 0.5 (A) and 5 h (B) after resistance 

exercise. Values are mean log-change (± 95%CI)(n = 12). *Treatment difference (p < 0.05). 
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**Treatment difference (p < 0.01). C: Representative blots for salbutamol (S) and placebo 

(P). 
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Fig. 7. mRNA response induced by salbutamol (SAL) compared to placebo (PLA) in biopsies 

sampled from the vastus lateralis muscle 0.5 (A) and 5 h (B) after resistance exercise. Values 

are mean log-change (± 95%CI)(n = 12). **Treatment difference (p < 0.01).  

 

 


