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Abstract 

The environmental effects of climate change are predicted to cause distribution shifts in many 

marine taxa, yet data are often difficult to collect. Quantifying and monitoring species’ 

suitable environmental habitats is a pragmatic approach for assessing changes in species 

distributions but is underdeveloped for quantifying climate change induced range shifts in 

marine systems. Specifically, habitat predictions present opportunities for quantifying 

spatiotemporal distribution changes while accounting for sources of natural climate variation. 

Here we demonstrate the utility of a marine-based habitat model parameterised using citizen 

science data and remotely-sensed environmental covariates for quantifying shifts in 

oceanographic habitat suitability over 22-years for a coastal-pelagic fish species in a climate 

change hotspot. Our analyses account for the effects of natural intra- and inter-annual climate 

variability to reveal rapid poleward shifts in core (94.4 km decade
-1

) and poleward edge 

(108.8 km decade
-1

) oceanographic habitats. Temporal persistence of suitable oceanographic 

habitat at high-latitudes also increased by approximately three months over the study period. 

Our approach demonstrates how marine citizen science data can be used to quantify range 

shifts, but necessitates shifting focus from species distributions directly, to the distribution of 

species’ environmental habitat preferences. 

 

Introduction 

Climate-driven species redistributions are occurring at approximately an order of magnitude 

faster in the marine environment than in terrestrial systems (Chen et al., 2011, Poloczanska et 

al., 2013, Sorte et al., 2010). These range shifts are altering the structure of ecosystems and 

affecting human societies that depend on them (Pecl et al., 2017, Vergés et al., 2014). The 

rapid and pervasive nature of climate-driven ecological change within marine systems 

highlights the need to identify changes to the distributions of key species to enhance our 
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capacity for developing adaptive management strategies (Hobday et al., 2016a, Pecl et al., 

2014b). However, poor spatiotemporal resolution of species occurrence records and a paucity 

of longitudinal surveys of species presence and abundance, which can describe range-shifts 

directly, commonly prevents the identification of a climate change signal from natural 

variability in species distributions (Hobday & Evans, 2013). 

 

Predicting the preferred environmental habitat for species of interest is an alternative, 

pragmatic approach for assessing the ecological effects of climate change across species 

lacking sufficient direct observations (Araújo et al. 2005). Species distribution models 

(SDMs) commonly facilitate this approach by relating available species occurrence records 

(presence-only or presence-absence data) with environmental variables to define habitat 

preferences and estimate species’ distributions (Barbet‐Massin et al., 2012, Elith et al., 

2006). Marine-based applications of SDMs are increasing but remain under-developed 

(Brodie et al., 2018), particularly for understanding and predicting climate-driven species 

redistributions (Elith et al., 2010, Robinson et al., 2011). For example, pelagic fishes are 

predicted to undergo large spatial redistributions under climate change partly due to high 

adult mobility allowing these species to better track their thermal preferences (Sunday et al., 

2015). However, SDMs have identified high seasonal variation in the distribution of 

environmental habitats for pelagic fishes (Brodie et al., 2015), suggesting a need to account 

for sources of natural climate variability when using SDMs to assess the effects of 

anthropogenic climate change on species distributions. 

 

The physiological responses of species are predicted to vary in relation to environmental 

habitat suitability (Del Raye & Weng, 2015). Concurrent reductions in reproduction, growth 

and feeding occur across a declining gradient of habitat suitability (Helaouët & Beaugrand, 
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2009), ultimately affecting species’ survival in areas of low quality habitat (Schmidt-Nielsen, 

1990). Spatial predictions from SDMs provide a useful summary of variation in 

environmental suitability that may be used to identify areas where species’ physiological 

requirements are likely met, and where species’ performance or survival may be 

compromised (Helaouët & Beaugrand, 2009). Subsequently, spatial predictions of habitat 

suitability may be used to identify locations where species are progressing through stages of 

climate-mediated range shifts (Bates et al., 2014). For example, small, non-viable or vagrant 

adult populations of marine fishes representing early stages of the range extension pathway 

are likely to be found in regions predicted to correspond with low environmental habitat 

suitability (Bates et al., 2014, Booth et al., 2011). 

 

Mapped indices of habitat suitability have previously been used to identify species core 

habitats (Hill et al., 2015), but are rarely used to identify shifts in the range boundaries of 

marine species (but see Robinson et al. 2015a). Combining spatial predictions of species’ 

probability of occurrence from SDMs with sampling effort information has recently proved 

useful for identifying range boundaries for terrestrial species based on minimum relative 

abundance values (Ashcroft et al., 2017). When sampling effort is unknown, independent 

species occurrence data may be compared with spatial predictions from SDMs to define 

range boundaries or habitat edges in terms of a threshold probability of occurrence or a 

minimum habitat suitability value (Champion et al., 2018). Approaches that utilise data-

driven criteria for defining range boundaries or edges of species suitable environmental 

habitats are necessary to improve measures of climate-driven range shifts derived from 

SDMs. For example, robust summary statistics derived from SDM spatial predictions can 

form response variables for additional quantitative analyses (Hill et al., 2015, Hobday, 2010), 

such as correlative mixed models, that are well-suited for quantifying rates of climate-driven 
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species redistributions. Analyses that allow for random effects can facilitate the incorporation 

of temporal data dependency structures (Zuur et al., 2013) and subsequently account for the 

often strong influence of natural climate variability (Hobday & Evans, 2013) to reveal an 

underlying climate change signal in spatiotemporal species distribution patterns. Because 

species’ responses to multiple environmental covariates are commonly used to make spatial 

predictions (Brodie et al., 2015), this approach can also incorporate the effects of 

simultaneous climate-driven changes in multiple environmental variables that influence 

species’ distributions. 

 

Strong regional climate velocity, or relatively high rates of shifting isotherms (Burrows et al., 

2011), is an important environmental indicator of locations where species’ distributions are 

rapidly changing (Sunday et al., 2015). The marine environment adjacent to south-eastern 

Australia is a prominent climate change hotspot (Hobday & Pecl, 2014), where climate-

driven oceanographic changes have resulted in a 350 km poleward extension of isotherms 

between 1944 – 2002 (Ridgway, 2007). By acting as natural laboratories and early learning 

locations, ocean warming hotspots such as south-eastern Australia provide opportunities to 

demonstrate approaches for better understanding climate-driven ecological change (Pecl et 

al., 2014b). Given time and resource limitations, it is important for research undertaken in 

climate change hotspots to prioritise species of key ecological and economic importance 

(Booth et al., 2011) in order to maximise our capacity to develop effective adaptation options 

and management strategies (Hobday et al., 2016a, Miller et al., 2017). 

 

The yellowtail kingfish Seriola lalandi (hereafter ‘kingfish’) is a coastal-pelagic species 

extending along the southern coast of mainland Australia (Dempster & Kingsford, 2003, 

Hobday & Campbell, 2009). Kingfish are a high-value target species in eastern Australian 
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fisheries, where the estimated annual recreational catch exceeds the average annual 

commercial catch (Henry & Lyle 2003; Lowry et al., 2016). Recently, observations of 

kingfish by recreational anglers in south-eastern Australia have been made approximately 

200 km poleward of the previous southernmost occurrence record for this species (Stuart-

Smith et al., 2016). These observations provide strong evidence for the detection of kingfish 

outside of its usual range, but low confidence in the historical range boundary for kingfish 

has resulted in overall low confidence of this species undergoing a range extension (Robinson 

et al., 2015a). Nevertheless, observations of fishes outside their usual distributions can be 

early indicators of climate-driven range shifts (Fogarty et al., 2017) and warrant further 

analysis. 

 

The aim of this study was to use citizen science data of kingfish occurrences recorded by 

recreational anglers to create, and demonstrate the utility of, a marine-based SDM for 

quantifying climate-driven species redistributions while accounting for short- and long-term 

natural climate variability. In addition, we also (1) quantify climate-driven shifts in the core 

and poleward edge of suitable kingfish oceanographic habitat from south-eastern Australia 

from January 1996 to July 2017, and (2) quantify trends in the temporal persistence of 

suitable oceanographic habitat for kingfish at the poleward edge of its distribution. 

 

Materials and methods 

Study extent 

The spatial extent of this study encompassed the marine environment adjacent to eastern 

Australia (20-46°S, 144-160°E; Fig. 1), where a single population of kingfish is known to 

occur across coastal and pelagic environments (Miller et al., 2011). The oceanography of this 

region is dominated by the poleward flowing East Australian Current (EAC), which is 
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strengthening due to increased wind stress over a broad region of the South Pacific associated 

with climate change (Cai et al., 2005, Sloyan & O'Kane, 2015). Subsequently, sea surface 

temperatures off south-eastern Australia have increased at a rate approximately four times the 

global average (Ridgway, 2007), leading to the redistribution of diverse marine taxa 

(Malcolm & Scott, 2017, Nimbs et al., 2016, Ramos et al., 2015, Robinson et al., 2015a, 

Sunday et al., 2015) and altered ecosystem structure (Ling, 2008, Vergés et al., 2014) and 

function (Marzloff et al., 2016). 

 

Kingfish occurrence records 

Kingfish location data (GPS coordinates) from eastern Australia were obtained from fish 

tagged by recreational anglers as part of a catch-and-release tagging program administered by 

the New South Wales Department of Primary Industries. Kingfish occurrence records had a 

temporal range from 1974 – present, but were restricted to 1996 – 2015 to match the 

availability of satellite-derived environmental covariates. Spatial and temporal independence 

among kingfish occurrence records was satisfied following the methods of Brodie et al. 

(2015); which involved retaining only occurrences from a unique day and location, and 

retaining only those that were greater than 0.1 degree (~ 20 km) apart. Following these 

procedures, a total of 1,203 kingfish occurrence records were available for model fitting and 

cross-validation. 

 

In order to characterise unsuitable oceanographic habitat for kingfish and provide a binomial 

response variable for statistical modelling, pseudo-absence points were generated inshore of 

the continental shelf break within the study region and randomly matched with a date from 

the set of occurrence records. A large number (i.e. > 10,000) of randomly selected pseudo-

absences is recommended for regression-type analyses for species distributions 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

(Barbet‐Massin et al., 2012). Given the broad spatial scale of this study, a total of 20,000 

randomly generated pseudo-absence points were selected in order to adequately describe the 

spatiotemporal variation in oceanographic covariates throughout the study extent (Brodie et 

al., 2015). We note that although data used to parameterise habitat models fall inshore of the 

continental shelf break, habitat predictions are extended to the entire study area as kingfish 

are also known to occur in offshore pelagic environments (Gillanders et al., 2001). 

 

Oceanographic predictors 

Explanatory oceanographic variables were initially selected based on their likely importance 

to coastal-pelagic fishes (Hobday & Hartog, 2014) and matched to occurrence and pseudo-

absence points using the Spatial Dynamics Ocean Data Explorer (Hartog & Hobday, 2011). 

The oceanographic variables considered for model selection were: (i) sea surface temperature 

(SST), (ii) sea level anomaly (SLA), (iii) dissolved oxygen (DO) and (iv) eddy kinetic energy 

(EKE; Table 1). In this region, satellite-based chlorophyll estimates are significantly 

correlated with SST and have incomplete spatial and temporal coverage so were not included 

in model selection. 

 

Collinearity among predictor variables was assessed using pair plots and Spearman rank 

correlation coefficients. Correlated (> 0.5 and < -0.5) environmental pairs were identified and 

the explanatory variable with the clearest ecological interpretation from covarying pairs was 

retained for model selection (Zuur et al., 2013). A strong correlation between sea surface 

temperature and dissolved oxygen (r = -0.77) resulted in the removal of dissolved oxygen 

from the set of oceanographic predictors prior to model selection. Because correlation 

coefficients only describe pairwise correlations, variance inflation factors (VIFs) were used 

to assess the extent of any collinearity among the remaining explanatory variables. VIFs were 
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low (i.e. < 1.5) for all remaining explanatory variables, indicating that collinearity would not 

affect model performance (Zuur et al., 2007). 

 

Oceanographic habitat modelling 

Oceanographic habitat suitability for kingfish from eastern Australia was described by 

applying a generalised additive mixed model (GAMM). This model used the logistic link 

function to relate the binomially distributed response variable (i.e. occurrence or pseudo-

absence) to oceanographic predictor variables (Zuur et al. 2009). Calendar year was included 

as a proxy for fishing effort because effort information was not available in the catch-and-

release database. To optimise smoothing functions and avoid over-fitting to the data, 

penalized regression spline type smoothers of moderate rank were applied using generalised 

cross validation. However, these were removed from individual predictors if their estimated 

degrees of freedom was approximately equal to 1, which indicates linearity with the log-of-

odds transformed response variable (Zuur et al. 2009). The optimal GAMM has the form (in 

script notation): 

 

Response = s(SST) + SLA + s(EKE) + (1|Year) (1) 

 

where Response is the relative probability of kingfish presence modelled as a function of sea 

surface temperature (SST), sea level anomaly (SLA) and eddy kinetic energy (EKE), with 

Year included as a random factor. Smoothers are denoted by s. Furthermore, the model’s 

Response was converted to an index of kingfish ‘oceanographic habitat suitability’ because: 

1. relative probability of presence values are dependent on the ratio of occurrence to pseudo-

absence data used to fit the model (Pearce & Boyce, 2006), and 2. the Response is a function 

of oceanographic covariates that reflect habitat suitability and not the distribution of kingfish 
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directly. Oceanographic habitat suitability was scaled between 0 (unsuitable) and 1 (highly 

suitable) by dividing all relative probability of occurrence predictions by the maximum 

relative probability predicted throughout the spatial and temporal extent of the study. 

 

Forward model selection was applied using an information theoretic approach to identify 

single term additions from the available environmental predictors that most improved model 

quality (Warren & Seifert, 2011). The resulting set of exploratory models contained nested 

covariate combinations of increasing complexity (Table S1), and the model in this set with 

the lowest Akaike information criterion (AIC) value was considered the most parsimonious 

model. All available occurrence data across the spatial and temporal extent of this study were 

used in modelling fitting. 

 

Spatial and temporal autocorrelation was a concern in the present study because occurrence 

data were recorded by recreational anglers whose fishing effort may be spatiotemporally 

biased (e.g. favour fishing locations or fish more on weekends/holidays etc.). Autocorrelation 

was evaluated using spatial and temporal variograms to relate the semi-variance of points to 

the spatial (degrees) and temporal (days) distance separating them (Zuur et al., 2009, 2013). 

Cut-off distances were chosen to reflect the spatial and temporal limits that autocorrelation is 

likely to arise from angler bias, and these distances defined the limits of our assessment for 

autocorrelation. Dates of fish captures were converted to Julian days in order to create a 

temporal semi-variogram with a cut-off distance of five days. Coordinates of fish captures 

were used to create a spatial semi-variogram with a cut-off distance of one degree (~111 km). 

In exploratory analyses, both spatial and temporal correlation was judged to be consistent 

across distances (Fig. S1), except at fine spatial scales (0.1 – 0.3 degrees) where there was 

lower correlation (higher semi-variance) than at other distances (e.g. as seen in Smith et al. 
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2017). This is likely to reflect the spatial influence of pseudo-absences existing close to 

occurrence observations (i.e. between 0.1 – 0.2 degrees), resulting in increased residual 

variation at fine spatial scales where a binary response characterises relatively similar 

environmental habitats. Regardless, there was no evidence to suggest positive spatial or 

temporal autocorrelation in the present study, indicating that the methods for establishing 

independence among angler-recorded species occurrences from Brodie et al. (2015) were 

also effective in this study. 

 

The accuracy and predictive skill of the optimal model was evaluated using k-fold cross-

validation. This was done by randomly partitioning the full dataset into five subsets (k = 5) 

containing an equal number of occurrence data and a random selection of 10,000 pseudo-

absences (Barbet‐Massin et al., 2012). To compute a set of confusion matrices for calculating 

measures of model accuracy (Swets, 1988), the optimal model was trained on each of the four 

subsets and each model tested against the 5
th

 subset. Five-fold cross-validation was selected 

due to concern that too few occurrence data would be used to create the evaluation models if 

data were partitioned into a greater number of folds (Smith et al., 2017). The area under the 

receiver operating characteristic curve (AUC) and true skill statistic (TSS) are appropriate 

measures of model accuracy for predictions of species presence and absence in geographic 

space (Allouche et al., 2006), and are commonly used in combination when evaluating 

overall model skill (Brodie et al., 2015). Rates of true positive (sensitivity) and false positive 

(1-specificity) predictions were used to calculate the mean AUC value from k-fold cross-

validations. The AUC avoids the need to assume an arbitrary cut-off probability to 

differentiate between predictions of suitable and unsuitable oceanographic habitat, and is thus 

a valuable measure of the accuracy of species distribution models (Elith et al., 2006). AUC 

values range from 0 – 1, where an AUC of 0.5 indicates the prediction is no better than 
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random and an AUC greater than 0.8 indicates good model accuracy (Araújo et al., 2005, 

Swets, 1988). Additionally, the mean TSS was calculated as an alternative, threshold 

dependent, measure of model accuracy obtained from average measures of model sensitivity 

and specificity (i.e. TSS = sensitivity + specificity – 1). TSS values ranges from -1 to 1, 

where 0 or less reflects models with no predictive skill.  

 

The optimal model was used to create monthly spatial predictions of oceanographic habitat 

suitability for kingfish in eastern Australia from January 1996 – July 2017. This temporal 

range (i.e. > 20 years) is sufficient to capture long-term climate change responses (Brown et 

al., 2016) in addition to short-term seasonal and multi-year variation, and is commonly used 

as a minimum temporal criteria for syntheses of climate change impacts (Poloczanska et al., 

2013, Rosenzweig et al., 2008). Spatial surfaces for each environmental predictor in the 

optimal model were interpolated to the largest common resolution (Table 1), and as a result 

all predictions of kingfish oceanographic habitat were resolved to 0.2°. 

 

Range shift models 

Monthly spatial predictions were used to assess evidence for a latitudinal shift in the ‘core’ 

and ‘poleward edge’ of oceanographic habitat for kingfish from eastern Australia. Core 

oceanographic habitat was specified as the location of maximum oceanographic suitability in 

each monthly spatial prediction (Robinson et al., 2015b). The poleward edge of suitable 

oceanographic habitat was determined by comparing the locations of an independent set of 

kingfish occurrence records, not used in model fitting, with spatial predictions of modelled 

habitat. To do so, we compared kingfish occurrences (n = 31) recorded by the Range 

Extension Database and Mapping Project (Redmap; www.redmap.org.au) between March 

2002 and April 2017 with day-specific predictions of oceanographic habitat suitability at 
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corresponding locations (Fig. S2). Redmap data are particularly well-suited for identifying a 

minimum habitat suitability value that is likely to reflect species’ range edge habitats because 

these observations represent species outside their usual distributions and are useful indicators 

of the early stages of climate-driven range shifts (Fogarty et al., 2017). A total of 31 day-

specific predictions of the poleward edge of suitable oceanographic habitat were created with 

0.2° spatial resolution, and oceanographic suitability values for grid cells containing Redmap 

occurrence records were extracted from each of these predictions (Fig. S2). The minimum 

habitat suitability value (min = 0.064) from the resulting dataset was considered to represent 

the edge of suitable oceanographic habitat for kingfish in this study. This is likely to be a 

conservative estimate for the edge of suitable oceanographic habitat for kingfish given the 

minimum value has been determined using only 31 observational data points. Regardless, our 

objective was to quantify relative change in the distribution and temporal persistence of 

kingfish habitat, which is possible if the criteria used to define the core and poleward edge of 

suitable habitats are held constant throughout the study period. 

 

Climate-driven shifts in the core and poleward edge of oceanographic habitat were assessed 

using linear mixed effects models to test for latitudinal trends in suitable oceanographic 

habitat through time, while accounting for natural climate variability. Initially, simple linear 

models testing for latitudinal trends in kingfish habitat through time were applied and 

residuals plotted against sources of natural intra- and inter-annual climate variability to assess 

for dependence between observations from the same month (intra-annual variability) and El 

Niño Southern Oscillation (ENSO; inter-annual variability) state (Southern Oscillation 

Index). There was evidence that the spatial distribution of kingfish oceanographic habitat was 

dependent on ‘month’ and ‘ENSO state’ (Fig. S3). Subsequently, dependency structures 

among spatial predictions of core and poleward edge habitats from the same ‘month’ and 
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‘ENSO state’ were incorporated in linear mixed models (Zuur et al. 2013). This was done so 

that spatiotemporal shifts in oceanographic habitat would be estimated through time while 

accounting for sources of natural climate variability. The resulting linear mixed effects model 

has the form (in script notation): 

 

Response = Year + (1|Month) + (1|ENSO state) (2) 

 

where Response is the latitudinal value corresponding to the location of core and range edge 

oceanographic habitats for kingfish (separate models for core and range edge habitats) 

modelled as a function of time (Year), with Month and ENSO state included as random terms. 

Rates of spatial shifts (km decade
-1

) were derived from models fitted to monthly latitudinal 

predictions of core and poleward range edge habitats from January 1996 to July 2017 because 

continuous time series more accuracy quantify rates of change than infrequent measures 

(Brown et al., 2016).  

 

Finally, the temporal persistence of suitable oceanographic habitat in novel, high-latitude 

areas was calculated as the number of months per year that the poleward edge of suitable 

oceanographic habitat (as defined herein) occurred south of 41°S (i.e. within Tasmanian 

waters; Stuart-Smith et al. 2016). Simple linear models were used to test for trends in 

temporal persistence (months per year) from 1996 – 2016. Residual plots were assessed 

visually to confirm both simple linear and linear mixed effects models satisfied assumptions 

of normality and homogeneity of variance. 
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Statistical analyses were undertaken using the R programming language (R Core Team 

2017): GAMMs were fitted using the ‘gamm4’ package (Wood & Scheipl 2016), spatial and 

temporal semi-variograms were constructed using the ‘gstat’ package (Gräler et al. 2016), k-

fold cross validation was undertaken using the ‘dismo’ package (Hijmans et al. 2013) and 

linear mixed effects models were fitted using the ‘lme4’ package (Bates et al. 2014). 

 

Results 

 

Oceanographic habitat model 

Spatial predictions of oceanographic habitat from January 1996 – July 2017 show seasonal 

variation in the distribution of suitable kingfish habitat in eastern Australia, which undergoes 

an annual poleward extension during the Austral summer and autumn and retreats to lower 

latitudes during winter and spring (Fig. 1). 

 

The optimal model for kingfish oceanographic habitat contained the predictors sea surface 

temperature, sea level anomaly and eddy kinetic energy (Table S1), demonstrating that the 

distribution of kingfish from eastern Australia is driven by simultaneous responses to 

multiple oceanographic factors. SST and EKE were highly significant, nonlinear, predictors 

of kingfish habitat suitability (Table 2; Fig. 2a & 1c). SST had a clear, unimodal influence on 

habitat suitability, with the maximum positive effect on model parameters occurring at 

approximately 22°C (Fig. 2a). The effect of EKE on habitat suitability was more complex, 

but generally had a positive effect on model parameters then declined at values greater than 

approximately 0.11 m
2
 s

-2
 (Fig. 2c). The smoothing function was dropped from SLA in the 

optimal model in favour of a positive linear term (Fig. 2b), which was a marginally 

significant predictor of habitat suitability (Table 2). 
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Five-fold cross validation revealed that the optimal model had good predictive accuracy 

(mean AUC = 0.887 ± 0.002 SD) according to the AUC interpretation criteria of Swets (1988), 

and that predictive skill (mean TSS = 0.645 ± 0.013 SD) exceeded the acceptable standard for 

conservation planning applications (Pearce & Ferrier, 2000). Mean values of the TSS and 

AUC statistics indicate that the optimal model contained an appropriate number and 

combination of environmental predictors to effectively describe suitable oceanographic 

habitat for kingfish from eastern Australia and provided reliable spatial predictions for 

subsequent range shift analyses. 

 

Range shift analyses 

Linear mixed effects models revealed significant poleward shifts in the core and poleward 

edge of oceanographic habitat for kingfish from eastern Australia (Fig. 3). Core 

oceanographic habitat was found to have shifted towards higher latitudes at a rate of 94.4 km 

decade
-1

 from 1996 – 2017 (50.5 - 137.9 km decade
-1

 95 % CI; Fig 3a; parameters for fixed 

component of the model: int = 136.91, slope = -0.09, t = 4.20, P < 0.0001; intra-class 

correlation coefficients for random terms: month = 0.72, ENSO state = 0.02). The random 

‘ENSO state’ term was dropped from the model predicting latitudinal values for core 

oceanographic habitat due to having a negligibly low intra-class correlation coefficient. This 

indicates that the spatial distribution of core oceanographic habitat for kingfish from eastern 

Australia was not dependent on ENSO state over the temporal extent of this study. The 

poleward edge of suitable oceanographic habitat for kingfish was also found to have shifted 

towards higher latitudes from 1996 – 2017 at a rate of 108.8 km decade
-1

 (87.1 – 128.2 km 

decade
-1

 95 % CI; Fig. 3b; parameters for fixed component of the model: int = 153.72, slope 

= -0.09, t = 9.55, P < 0.0001; intra-class correlation coefficients for random terms: month = 

0.86, ENSO state = 0.14). 
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The temporal persistence of the poleward edge of suitable oceanographic habitat for kingfish 

poleward of 41°S was found to have significantly increased from 1996 to 2017 (Fig. 4). 

Specifically, the number of months per year that oceanographic habitat suitable for kingfish 

occurred poleward of 41°S increased from ~ 2 months in 1996 to ~ 5 months in 2016 (Fig 4; 

int = -318.41, slope = 0.19, F1, 19 = 36.92, P < 0.001). 

 

Discussion 

Given that spatial shifts in large numbers of marine species are expected with climate 

warming (Poloczanska et al., 2013, Sunday et al., 2012), pragmatic approaches that utilise 

increasingly available marine-based citizen science data sources (Bonney et al., 2014, 

Dickinson et al., 2012, Pecl et al., 2014a) to quantify species redistributions are required (Hill 

et al., 2015). Here, we demonstrate the utility of a marine habitat suitability model fitted 

using citizen science data for quantifying climate-driven spatiotemporal shifts in 

oceanographic habitat, while accounting for the effects of natural intra- and inter-annual 

climate variability.  

 

Our approach revealed that core oceanographic habitat for kingfish from south-eastern 

Australia has shifted poleward at a rate of 94.4 km decade
-1

 in response to climate-driven 

changes in regional oceanography, while the leading edge of suitable habitat was found to be 

extending poleward at a rate of 108.8 km decade
-1

. The velocity of this poleward distribution 

shift is notably faster than historical rates of range change identified for a suite of nearshore 

fishes using observational data (38 km decade
-1

; Sunday et al., 2015) and for a mobile apex 

predator using habitat suitability predictions (88.2 km decade
-1

; Hill et al., 2015) from eastern 

Australia. Our results also markedly exceed future rates of poleward range shifts predicated 

for 16 commercially important offshore pelagic species from Australia by 2100 (average rate 

of range change = 40 km decade
-1

; Hobday, 2010), suggesting the contemporary effects of 
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climate change may be driving the redistribution of coastal-pelagic marine fishes faster than 

nearshore or truly pelagic species. Importantly, our results are based on predictions of 

oceanographic habitat suitability determined from kingfish occurrences, which are known to 

produced faster range shift estimates than abundance-based measures that better reflect whole 

populations (Brown et al., 2016).  

 

The velocity of spatial shifts in kingfish oceanographic habitat was found to be greater for the 

poleward range edge than for the core habitat. Spatial variation in the velocity of shifts across 

the distribution of suitable environmental habitat for marine species is likely to be closely 

linked with the effects of climate change on regional oceanography. Increased wind stress 

over a broad region of the South Pacific associated with climate change has resulted in a 

poleward advance of the south-flowing east Australian current (Cai et al., 2005, Sloyan & 

O'Kane, 2015). Subsequently, sea surface temperature off Tasmania (i.e. the region 

corresponding to the poleward edge of oceanographic habitat herein) has risen at a rate of 

2.28°C century
-1 

(Ridgway, 2007). Because the effect of temperature on species occurrence is 

commonly non-linear (Elith & Leathwick, 2009), usually displaying a unimodal peak 

representative of species’ thermal optima (Arrizabalaga et al., 2015, Brodie et al., 2017, Lien 

et al., 2014), the effects of ocean warming on species habitat suitability are similarly non-

linear. For this reason, marked increases in habitat suitability for temperate marine 

ectotherms are likely in high-latitude environments due to ocean warming, whereas similar 

levels of warming in environments that already represent species’ thermal preferences, such 

as core habitats, will have a relatively smaller effect on habitat suitably. For example, a 

greater positive effect of SST on kingfish habitat suitability (i.e. increase in y-axis value in 

Fig. 2a) will result from a 1°C increase in cooler environments (e.g. 16°C) as opposed to the 

same level of ocean warming in thermally optimum habitats (e.g. 22°C). These findings, 
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viewed in light of recent increases in sea surface temperature off south-eastern Australia, 

explain the strong velocity of the poleward shift in kingfish range edge habitat from this 

region and also account for variation between rates of range change identified for core and 

range edge oceanographic habitats. 

 

Intra-annual variation in the distribution of suitable environmental habitats for coastal-pelagic 

species (Brodie et al., 2015) is likely to underpin climate-driven range shifts over decadal 

time-scales. Oceanographic habitat for kingfish off eastern Australia was found to extend 

poleward during the Austral summer/autumn and retreat to lower latitudes during 

winter/spring. However, the effects of climate change on intra-annual spatiotemporal trends 

such as these are often overlooked when quantifying species redistributions, particularly for 

marine species that associate with dynamic oceanographic features (Mannocci et al., 2017). 

In coastal and pelagic systems, temporal persistence of suitable environmental habitat is an 

important factor that can both facilitate and restrict species movements (Briscoe et al., 2016). 

Similarly, the duration of suitable habitat within novel environments is a critical factor for 

predicting the ecological effects of range-shifting species (Champion et al., 2018). For 

example, ocean warming has increased the proportion of winter months that exceed the 

thermal threshold for larval development of the poleward extending long-spine urchin 

Centrostephanus rodgersii at their range edge in Tasmania (Ling et al., 2009), contributing to 

increased grazing pressure on macroalgal beds (Ling & Johnson, 2009).  

 

Creating monthly spatial predictions of oceanographic habitat over a 22-year period allowed 

for intra-annual temporal trends in the distribution of suitable habitat to be investigated. It 

was previously believed the southern range boundary for kingfish from Australia was located 

at approximately 41.5°S (Atlas of Living Australia, 2016), but recent photo-verified 
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observations of kingfish from approximately 43.5°S have been reported (Stuart-Smith et al., 

2016). Subsequently, our analysis focused on the number of months per year that the 

poleward edge of suitable oceanographic habitat persisted poleward of 41°S, and revealed 

that a significant increase have occurred from 1996 to 2016. These findings add considerable 

detail to species redistribution analyses that can be used to infer a level of confidence in 

range shifts. Bates et al. (2014) propose that range extensions occur as a sequence of arrival, 

population increase, and persistence, and that confidence in species range changes also 

increases as colonisation progresses across this spectrum. Increased persistence of suitable 

environmental habitat at species range edges, as for kingfish, indicates greater opportunity for 

individuals to progress through critical life history stages, allowing for population increases 

and ultimately persistence in novel environments (Ling et al., 2009).  

 

Intra-annual shifts in the persistence of suitable oceanographic habitat are also relevant to 

range-shifting species targeted in commercial and recreational fisheries. For example, greater 

fishing opportunity for kingfish off Tasmania is likely to result from the increasing number of 

months per year that suitable oceanographic conditions for this species is persisting at higher-

latitudes. Assessing the effects of climate change on the temporal persistence of suitable 

habitat in the spatial domains of different commercial and recreational fisheries is an 

appropriate avenue for the development of spatially explicit adaption strategies (Champion et 

al., 2018, Eveson et al., 2015), and one that requires further work. 

 

Like other studies of distribution shifts in pelagic fishes (Dell et al., 2011, Hill et al., 2015, 

Hobday, 2010, Robinson et al., 2015b), our results are derived from spatial predictions of 

oceanographic suitability and thus do not directly represent spatiotemporal changes in 

kingfish distribution. Instead, our results reflect climate-driven shifts in the combination of 
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environmental variables that define suitable oceanographic habitat for this species. Inferring 

changes in species distributions from spatial shifts in their environmental habitat preferences 

reflects the limitations of marine citizen science data sources for quantifying species 

distributions. For example, the utility of presence-only citizen science data for quantifying 

species distributions is affected by sample size (Stockwell & Peterson, 2002) and 

spatiotemporal sampling biases (Phillips et al., 2009, Stolar & Nielsen, 2015), which are 

particularly relevant to marine applications due to the relative difficulty of accessing and 

observing marine habitats (Dickinson et al., 2010, Hobday & Evans, 2013). While our study 

had the luxury of a large marine citizen science dataset (i.e. > 1000 occurrence records), this 

is unlikely to be the case for all citizen science programs where low sample size combined 

with sampling biases may compromise robust SDM application. Nevertheless, marine citizen 

science programs are becoming increasing valuable for characterising species habitat 

preferences as more data are reported (Pecl et al., 2014a) and biases are addressed by 

recording observational effort (Edgar & Stuart-Smith, 2014) or data removal procedures 

(Brodie et al., 2015). Range shift analyses for marine species based on predictions of 

environmental suitability, like those herein, capitalise on citizen science data for 

understanding species redistributions, but also limit the interpretation of results to species’ 

preferred environmental habitats and not their distributions directly. 

 

Quantifying shifts in species range boundaries is an important priority for species 

redistribution science (Bonebrake et al., 2017), yet difficulty identifying ranges edges from 

observational data make distinguishing shifts problematic (Ashcroft et al., 2017). For 

example, range boundaries determined directly from occurrence data are sensitive to 

sampling intensity (Brown et al., 2016), and variation in sampling effort through time can 

lead to incorrectly inferring range edge shifts (Bates et al., 2015, Hassall & Thompson, 
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2010). Instead, studies have focused on the mean or centroid location of species occurrence 

records (Maclean et al., 2008, Shoo et al., 2006), which allow for changes in species core 

habitat to be assessed, but neglect range edges. Spatial predictions from SDMs with proven 

predictive skill provide an opportunity to define clear criteria for the extended range 

boundary, for example, in terms of a minimum relative abundance threshold derived from 

SDM predictions and sampling effort information (Ashcroft et al., 2017). Methods to select 

habitat edge thresholds will likely vary for species with differing traits. For example, marine 

species with high adult mobility, such as kingfish, generally occupy broad latitudinal ranges 

(Sunday et al., 2015), and periodically encounter areas of low environmental habitat 

suitability at their range edges due to dynamic oceanographic processes (Briscoe et al., 

2016). Therefore, it is pragmatic and conservative to match independent observational data 

from species putative range edges with spatial predictions from SDMs to determine threshold 

values that maximise the agreement between observed and predicted distributions and the 

interpretability of results (Liu et al., 2005). This approach for determining habitat suitability 

thresholds is dependent on the response of single individuals and our ability to detect them 

(Brown et al., 2016), and spatial shifts in threshold habitats are likely to represent a relatively 

small number individuals from a population expanding into new environments (Booth et al., 

2011).  

 

Sources of natural climate variability occurring at intra- and inter-annual time-scales strongly 

influences species distributions and abundance (Lehodey et al., 2006, Polovina, 1996, 

Zanardo et al., 2017), and efforts to account for these are necessary to reveal the effects of 

contemporary climate change. Our results indicate that oceanographic habitat for kingfish 

from eastern Australia is subject to substantial monthly variability (Fig. S3a) in response to 

the intra-annual extension and contraction of the EAC (Young et al., 2011). While seasonal 
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variability in pelagic fish distributions from eastern Australia have been documented (Brodie 

et al., 2015, Brodie et al., 2017), spatial predictions of kingfish habitat at a monthly temporal 

resolution have not previously been made. Doing so improved our ability to account for intra-

annual variation in kingfish oceanographic habitat when assessing spatial shifts over the 22-

year study period. Specifically, this approach allowed for a dependency structure between 

observations from the same ‘month’, rather than ‘season,’ to be incorporated into our range 

shift models, which reduced standard error estimates and improved confidence in the rates of 

change reported for kingfish oceanographic habitat from eastern Australia. 

 

This study also considered the influence of natural climate variability on environmental 

habitat for kingfish at inter-annual time-scales, and is among few examples from the marine 

realm that have attempted to account for these effects in order to delineate a climate change 

signal from natural variation (Hill et al., 2015). The influence of ENSO state on the 

distribution of kingfish habitat in the study region was relatively minor, and only detectable 

at the poleward boundary of suitable oceanographic habitat. La Nina phases were associated 

with a slight poleward advance of range edge habitat, which concurs with effects of ENSO on 

the distribution of black marlin (Istiompax indica) from eastern Australia (Hill et al., 2015). 

Subsequently, only range shift models that assessed for distribution shifts in the poleward 

range boundary included ‘ENSO state’ as a random effect, and doing so led to a minor 

reduction in standard error. Accounting for the short- and long-term influences of natural 

climate variability should be a key consideration when seeking to attribute spatiotemporal 

shifts in species distributions to anthropogenic climate change, and we demonstrate that 

correlative mixed-effects models provide a suitable quantitative framework for doing so. 
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While SDMs are broadly used to infer spatial responses of species to changing environmental 

conditions (Bonebrake et al., 2017), particularly in terrestrial systems (Elith et al., 2010), few 

attempts have been made to utilise their spatial output to quantitatively assess marine range-

shifts while accounting for sources of natural climatic variation (Hill et al., 2015). Given the 

utility of citizen science observations for fitting marine-based SDMs, and trends of increasing 

access to these data sources (Kullenberg & Kasperowski, 2016), we suggest this approach as 

a pragmatic method for assessing the effects of climate change on the distributions of species 

that have been poorly observed. However, we note that this approach necessitate that 

subsequent range shift analyses focus on spatiotemporal shifts in species’ suitable 

environmental habitats and not their distributions directly, limiting the interpretability of 

results. This approach is likely to prove more informative for coastal and pelagic species that 

strongly associate with oceanographic variables (Hobday & Hartog, 2014) and less 

informative for highly reef-associated species where habitat suitability is related to non-

environmental predictors, such as distance to reef structure (Smith et al., 2017). Biotic factors 

(e.g. prey availability) are also likely to have an important effect on the realised distribution 

and temporal persistence of kingfish (Mellin et al., 2016). To extend the interpretation of our 

results from the oceanographic habitat for kingfish to the distribution of kingfish directly 

would also require consideration of climate-driven effects on, for example, the 

spatiotemporal distribution of important prey species (Potts et al., 2016). 

 

Given that poleward shifts in the distributions of marine species are expected to continue in 

response to climate-induced changes in regional oceanography (Poloczanska et al., 2012), 

predictions of suitable environmental habitat for key species under future climate change 

scenarios are now required to underpin adaptation strategies (Hobday et al., 2011, Hobday et 

al., 2016b). It is important that future predictions of dynamic marine habitats are made over 
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time-scales that are relevant to natural resource managers and user groups (e.g. recreational 

and commercial fishers). These time-scales may range from seasonal predications to assist 

quota-limited commercial fisheries (Eveson et al., 2015, Hobday et al., 2016b), to yearly 

predictions (i.e. political time-scales) that aid natural resource managers in the development 

of climate change adaptation strategies. For example, analyses that quantify the temporal 

persistence of suitable habitat for species of interest over yearly periods, like those presented 

herein, may be used to trigger management responses (Champion et al., 2018). 

 

Recent advances in the ability to forecast more oceanographic variables under climate change 

scenarios (Payne et al., 2017) hold great potential to improve future estimates of species 

distributions, which have traditionally been restricted to forecasts of sea surface temperature 

alone (Brodie et al., 2017, Eveson et al., 2015). The inclusion of multiple environmental 

predicators in habitat forecasts will facilitate an improved understanding of the effects of 

climate change on species distributions and increase our capacity to anticipate and respond to 

these changes. 
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Table 1. Descriptions of explanatory covariates and their range of values for kingfish 

presence (P) and pseudo-absence (pA) points. Oceanographic predicators were interpolated to 

the largest common resolution (0.2°) when making spatial predictions. *Explored but not 

included in model fitting. 

Predictor Description Range Units 

SST 
Sea surface temperature from Advanced Very High Resolution 

Radiometer (AVHRR) with 0.04° spatial resolution  

P: 13 - 27 

pA: 9 - 29 
°C 

SLA 
Sea level anomaly from synthetic temperature and salinity (synTS; 

Ridgway & Dunn, 2010) with 0.2° spatial resolution 

P: -0.2 - 0.25 

pA: -0.3 - 0.4 
m 

DO* 
Dissolved oxygen from CSIRO Atlas of Regional Seas (Condie & 

Dunn, 2006) climatology with 0.2° spatial resolution 

P: 4.5 - 6  

pA: 3.8 - 7.5  
ppm 

EKE Eddy kinetic energy derived from altimetry with 0.2° spatial resolution  
P: 0 - 0.4 

pA: 0 – 1.2 
m2 s-2 

Year Calendar year (incorporated as a random term in mixed models) 1996 - 2015 

 

 

 

 

 

 

 

 

Table 2. Summary of results for the optimal kingfish habitat suitability model. Smoothing 

factors are denoted by s. 

Variable Effective degrees of freedom Coefficient estimate P-value 

s(SST) 5.01 - 0.25 < 0.001 

SLA - 1.21 0.04 

s(EKE) 7.78 2.28 < 0.001 

Year(intercept) - - 5.55 < 0.001 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Fig. 1. Spatial predictions of kingfish oceanographic habitat suitability for eastern Australia 

from January 1996 – July 2017. Monthly spatial predictions have been time-binned (5 years) 

and seasonally aggregated (Summer = December-February, Autumn = March-May, Winter = 

June-August, Spring = September-November). Note the most recent period covers 2016 and 

2017 only. 

 

Fig. 2. Partial effects of (a) sea surface temperature (SST), (b) sea level anomaly (SLA) and 

(c) eddy kinetic energy (EKE) on the fitted values of the optimal kingfish habitat model, 

bound by 95 % confidence intervals (dashed lines). Rugs on the x-axes indicate presence and 

pseudo-absence data for each predictor. 

 

Fig. 3. Seasonally explicit latitudinal trends in monthly predictions of the (a) core and (b) 

poleward edge of suitable oceanographic habitat for kingfish. Dashed lines represent monthly 

trends fitted as a random effect within linear mixed effects models. The Australian coastline 

has been underlaid to aid spatial interpretation of the trends presented. 

 

Fig. 4. Temporal persistence of the poleward edge of suitable kingfish oceanographic habitat 

south of 41°S (i.e. the northern edge of the Tasmanian coastline; r
2 
= 0.68). Dashed lines 

denote the 95 % confidence interval.  
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