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Seafood from capture fisheries can be assessed in many ways and for different purposes, with sometimes divergent views on what character-
izes “sustainable use”. Here we use two systems analysis tools Ecological Risk Assessment for Effects of Fishing (ERAEF) and Life Cycle
Assessment (LCA) over the historical development of the Australian Patagonian toothfish fishery at Heard and McDonald Islands since the
start in 1997. We find that ecological risks have been systematically identified in the management process using ERAEF, and with time have
been mitigated, resulting in a lower risk fishery from an ecological impact perspective. LCA inventory data from the industry shows that fuel
use per kilo has increased over the history of the fishery. Our results suggest that LCA and ERAEF may provide contrasting and complemen-
tary perspectives on sustainability and reveal trade-offs when used in combination. Incorporation of LCA perspectives in assessing impacts of
fishing may facilitate refinement of ecosystem-based fisheries management, such as improved integration of the different perspectives of sup-
ply chain stakeholders.
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Introduction

In a globalized world with increasing pressures from human ac
tivities (Steffen et al., 2015), it has been argued that there is a
need for improved recognition of off site impacts in ecosystem
assessments through use of systems analysis tools, such as Life
Cycle Assessment (LCA) and Ecological Risk Assessment (ERA)
frameworks (Pascual et al., 2017). For seafood production from
capture fisheries, these tools differ in their scope, focus, and ap
plication. One widely used ERA example is the Ecological Risk
Assessment for the Effects of Fishing (ERAEF), a place based
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management tool to address the ecological risks of fishing
(Hobday et al., 2011). This risk based approach is extensively
used in management of Commonwealth fisheries in Australia and
elsewhere, and has contributed to ecosystem based fisheries man
agement (EBFM; Scandol et al., 2005). The method allows identi
fication of relative risks from a variety of fishing associated
activities across a suite of species, habitats, and ecological com
munities. When linked to management actions, ERAEF outcomes
can affect the operation of the industry and potentially the envi
ronmental profile of the seafood product. LCA picks up where
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ERAEF ends; it is a product oriented approach, quantitatively
assessing broad environmental pressures from products using a
systems perspective (Ness et al, 2007). LCA quantifies the
“footprint” of seafood products (i.e. product performance) along
the supply chain through a set of methods assessing (mainly) re

source use and emission based pressures, including, for example,
global warming potential and energy use. ERA and LCA can thus
be seen as complementary tools.

Although LCA results have repeatedly shown that management
actions in a fishery have a strong influence on the environmental
performance of seafood products (Ziegler et al., 2016), LCA has
to date only been applied in an industry and research context,
without direct uptake in fishery management systems. To some
extent, this may be an effect of a lack of robust methods in LCA
for addressing ecological pressures from fisheries the central
area of responsibility of agencies managing fisheries. With in
creased consumer and supplier interest in sustainability, seen for
example in the rise of seafood certification and the influence of
consumer guides (FAO, 2016; Ziegler et al., 2016b), it is impor
tant to (i) properly address both off site and local effects of global
supply chains and (ii) continue shaping approaches to seafood
product sustainability for future food security. Important seafood
certification schemes, such as the Marine Stewardship Council
(MSC), make direct use of ecological risk assessment methods
based on ERAEF, but MSC does not include fuel use, greenhouse
gas emissions (GHG), or other supply chain indicators, such as
utilization of catch in their certification criteria (Ziegler et al.,
2016a). The objective of this study is to combine results from
ERAEF (on ecological risks) and LCA (on fuel use) for a case
study fishery, to investigate potential uses in a seafood context.

The case study fishery is the Australian fishery for Patagonian
toothfish (Dissostichus eleginoides) at the Heard Island and
McDonald Island (HIMI). This is, to our knowledge, one of the
two fisheries in the world with both ERAEF informing manage
ment and for which initial LCAs have been undertaken by one of
the two operating fishing companies (holding over 70% of the ac
cess rights) as part of a voluntary initiative to offset their GHGs,
and also the first seafood industry initiative in the world in this
sense. The other fishery to have both ERAEF and parts of its indus
try undertake an LCA is the prawn fishery in northern Australia,
where the same fishing company also operates (AFMA, 2018;
Austral Fisheries, 2017). Consequently, the fishery at HIMI has
data available for both ERAEF and LCA, including data over the
entire history of commercial exploitation of the fishery (commer
cial fishing began in 1997). This allows studying the ecological risks
and fuel use during the transition from a new to an established
fishery and may reveal synergies and potential trade offs relevant
to EBFM.

A quantitative and objective environmental assessment of
toothfish as a seafood product, using both LCA and ERAEF, may
also be useful to address key concerns of different stakeholders in
the supply chain, such as various ecological risks or GHG emis
sions. Fisheries for toothfish (comprising two species, Patagonian
and Antarctic toothfish Dissostichus mawsoni, and several stocks)
have received substantial negative attention related to previously
widespread illegal fishing (Osterblom et al., 2015) and general en
vironmental concern about targeting a long lived, deep water fish
in the pristine waters of the Antarctic (e.g. Griffiths, 2010; Croxall
and Nicol, 2004). During the history of exploitation, a range of
management and conservation measures have been enforced and
the global market now comprises products from several sub
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fisheries: over half of the global product volume, including the
HIMI fishery, is certified by the MSC (MSC, 2017) and is today
thus marketed to consumers as “sustainable seafood” and recom
mended by seafood consumer guides, while the remaining vol
ume is not certified and is often categorized by consumer guides
as “avoid”. Eco labels and consumer guides have also been sub
ject to criticism regarding their toothfish certification (e.g. Ward,
2008; Jacquet et al, 2010; Christian et al., 2013; or just Google
toothfish + “Marine Stewardship Council”), resulting in contra
dictory market signals (“Is toothfish a good choice of fish or
not?”). The specific aim of this study is thus to examine the influ
ence of management measures and industry initiatives on seafood
sustainability indicators based on both ERAEF and LCA over
time. Based on these results, we then discuss opportunities and
caveats for future assessment, reporting and improvement to
manage both local and global pressures of fisheries.

Material and methods

The case study fishery

The fishery takes place in an area managed with an ecosystem
based approach under the Commission for the Conservation of
Antarctic Marine Living Resources (CCAMLR), division 58.5.2.
This has resulted in a need to meet a range of conservation objec
tives, beyond those to manage the target stock. For example, to
reduce the risk of seabird bycatch (e.g. albatrosses), the
Australian fishing industry was initially required to use demersal
trawls instead of longlines until mitigation measures were identi
fied. There is also a general 50 tonnes bycatch limit (total) for any
species in CCAMLR areas where there is no assessment. In addi
tion, there was a “move on” rule applied in the HIMI fishery if
the bycatch of any single species exceeded 5% of target species in
any single shot (CCAMLR, 2004).

When Australia commenced the fishery in the 1996 1997 sea
son, official landings were only 21% of total landings (1927
tonnes, IUU landings were estimated to be 7117 tonnes,
respectively); i.e. in total exceeding the catch limit by 238%
(CCAMLR, 2016). Only demersal trawling was allowed, and the
fishing ground had no specific protected areas. Early in the HIMI
fishery, a typical fishing trip might be spent in different ocean
regions (such as Macquarie Island or the Indian Ocean high seas)
and also targeting mackerel icefish (Champsocephalus gunnari) at
HIMI. In recent years, the HIMI vessels predominantly catch
toothfish in the HIMI region (over 90% of annual gross value
over the past decade; Patterson et al., 2017). Bycatch ranges be
tween 6 and 13% of the total catch (or up to 26% if elasmo
branchs cut off longlines before landing are included), primarily
comprising rattails Macrourus sp., skates Rajidae, unicorn icefish
Channichthys rhinoceratus, and grey rockcod Lepidonotothen
squamifrons, all of which have bycatch limits that have never been
exceeded (CCAMLR, 2016).

Today, the HIMI fishery is undertaken by four entitled vessels,
licensed to fish using three different gear types, with 100% ob
server coverage of every fishing trip (Table 1). A considerable part
of the fishing ground is protected from fishing in the form of an
IUCN Category 1a marine reserve declared in 2002, and extended
in 2014, covering over 71 200 km? of the area (over 39% of waters
shallower than 1000 m; Figure 1). The quota for the 2015 2016
fishing season was 3405 tonnes, representing over 14% of global
landings of Patagonian toothfish and 12% of the global toothfish
volume (including Antarctic toothfish).
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Figure 1. Map of HIMI fishing grounds and marine reserve (Source: Patterson et al. 2017).

Table 1. Gear characteristics of the Australian fishery for Patagonian toothfish at HIMI during the fishing season 2012 2013 (latest year when

all three gears were used).

Gear Longline Trawl Pot

Depth range (m) 500 2370 262 886 500 1500

Effort (fishing days)® 263 106 8

Patagonian toothfish landings (t)* 1356 1360 8

Mean size of target (kg)® 7 4 15

Fishing season 1 May 14 Sep© 1 Dec 30 Nov

Vessels Antarctic Chieftain, Austral Leader 2, Isla Eden Southern Champion Austral Leader 2
*CCAMLR 2017.

PAustral 2017c.

“Possible extension from 15 to 30 April and 15 September to 31 October each season for any vessel that has demonstrated full compliance with CM 25-02 in

the previous season” (CCAMLR 2016).
9Not operated by Austral Fisheries.

The focal fishing company in the case study, Austral Fisheries
Pty Ltd (hereafter referred to as Austral), has conducted all trawl
and pot fishing since the start of the fishery, and commenced long
lining in 2008 (another company has operated longlines since
2003). Based on the importance of both stock status and gear for
catch efficiency (measured as catch per unit effort, CPUE), and as
sociated fuel use and GHG emissions of seafood products (Ziegler
et al., 2016a), the fuel efficiency for each fishing method, and over
time, are highly relevant from a GHG emission perspective.

Ecological risk assessment

The ERAEF method used for assessing ecological risk in this
fishery is a hierarchical framework, with qualitative,
semi quantitative, and fully quantitative tools. A full description
of the ERAEF method is provided in Hobday et al. (2007). In
short, the method systematically identifies ecological risks from
fishing in order to inform management actions. Risks are esti
mated in five ecological components representing the ecosystem:
key/secondary commercial species (hereafter referred to as
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target), byproduct (non target species which may be retained for
sale), bycatch (non target species usually discarded) species, pro

tected species, habitats, and ecological communities. The assess

ment procedure has four stages, providing cost effective
screening of risks and prioritization of management actions:

1. Scoping Description of fishery, units to be assessed, risks
from the fishery, and management objectives
2. Level 1: Scale Expert judgement to screen out low risk activities

intensity and possibly entire ecosystem components
consequence
analysis (SICA)

3. Level 2: Empirically based, semi quantitative, and precau
Productivity tionary approach to uncertainty (more false
susceptibility positives than false negatives) to screen out
analysis (PSA) low risk species, habitats, or communities

4. Level 3 Model based, quantitative, e.g. regular stock

assessment, ecosystem modelling for species,
habitats, or communities

In this study, results [i.e. level 1 scale intensity consequence
analysis (SICA) and level 2 productivity susceptibility analysis
(PSA) since no level 3 assessment was performed] were extracted
from existing ERAEF reports (the fishery has been assessed twice,
in 2006 and 2016, with reports dated 2007 and 2018; reports used
are listed in Supplementary Data S2). Furthermore, general
descriptions of the fishery and potential risks based on the scoping
phase were used to describe the development of the fishery. ERAEF
assessment of ecological communities has only been completed at
level 1. Benthic habitat risks were not assessed, but pelagic habitats
are included in the 2018 report; other reports, such as Welsford
et al. (2014), are used here to assess seafloor pressures. ERAEF risk
to bait species used in longlining and traps was not conducted.

Life Cycle Assessment

The overall goal of LCAs depends on the intended application but
is often intended to identify improvement potentials (or “hot
spots”) of a production system and avoid problem shifting (be

tween different types of pressures or production phases) from a po

tential change in production. The environmental pressures from
each production phase, such as fishing or transportation, are quan

tified for a range of environmental concerns, such as global warm

ing potential and eutrophication potential (Finnveden et al., 2009).
The approach of LCA consists of four stages, although most often it
is iterative due to, for example, data deficiency:

1. Goal and scope  Methodological decisions such as object of study
called functional unit (FU), system boundaries,
allocation of environmental burdens between
products and co products, which environmental

impacts to include, etc.

2. Inventory Collection of data on inputs and outputs in each
step of the life cycle and attributing these to
the FU

3. Impact Based on scientifically established relationships, it

assessment transforms separate emissions into equivalents

and sort them into impact categories, e.g.
Global Warming Potential (where all GHGs are
summed into CO, equivalents based on the
radiative force of each GHG relative to CO,)

Analysis of data in terms of, e.g, data robustness,
contribution to results, etc.

4. Interpretation
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As the post landing contributions to GHG emissions of seafood
products are in general marginal compared to those of the fishing
phase (Ziegler et al., 2016a), focusing on the fishing phase is justi
fied in assessing the pressure on climate caused by seafood produc
tion. Furthermore, fuel use and catch rates most often drive the
fishing performance. Here, the goal was to compare the energy
requirements to catch toothfish with trawl and longline (pot is
only experimental and midwater trawling is limited) at the start of
the fishery and in the most recent years. Detailed data on fuel use
was collected from company records, with estimates for longlines
primarily based on monthly fuel use accounts per fishing vessel
(these vessels predominantly target toothfish at HIMI with long
line), whereas primarily fuel budget figures were used for trawl
records (these vessels were also active in other fisheries within the
same trip which complicates use of fuel accounts); for further
details, see Supplementary Data S1. We also included fuel from the
catching of bait used in longlining (squid). The functional unit
(FU), for which fuel use was estimated, was 1kg of toothfish prod
uct (frozen trunk, i.e. headed gutted tailed) in port. As the reason
for fishing and the management focus is to catch toothfish, all fuel
use was allocated to the toothfish part of the landing (landed by
catch volume has been very low or absent). Using landing volume
as FU implies different yields of different gears from different size
composition of catches, and different utilization of byproducts
(such as heads, cheeks and collars). All catch is today processed on
board. By products from processing (mostly guts and off cuts) and
non targeted catch (except sharks and rays, which are released if in
good condition) are minced on board and discarded at sea outside
of the HIMI Exclusive Economic Zone (EEZ), either by steaming
outside of the EEZ during a fishing trip, or on return to port.

Other ecologically relevant inventory results used in seafood
LCA as proxies for fisheries specific impacts were also quantified
per FU, such as bycatch quantity and seafloor pressure. To esti
mate seafloor area (SA) pressure of the different gears, we used
the areal estimates for the 2014 2015 season as reported for the
whole fishery in the most recent ERAEF reports: in total 21.5 km®
for demersal trawling, and for longline estimated from the total:

SA=(WxLxH)

where H is the number of hooks used (16 million), L is the length
between hooks (1.4 m), and W is the width of gear (0.4 m). We
note that the demersal longline estimate may be conservative,
since considerable movement of the gear on the seafloor has been
observed in the fishery (W = 10 m; Welsford et al, 2014). There
are many factors affecting the actual seafloor pressure of the two
gears (e.g. extent of removal of fauna, vulnerability of different
species, aggregation of effort), and W varies also for trawling in
the fishery depending on boat and gear configuration (W = 100

160 m for demersal trawling; Welsford et al., 2014). The SA esti

mates provided here are thus indicative of differences between
the gears, rather than robust absolute figures, since the latter
requires further investigation, which is not within the scope of
this paper. Total SA per gear type was divided by landings from
the same fishing season for m*/FU. Estimating discard ratios in
kg per FU from bycatch amount is not straightforward in the
HIMI fishery, since some bycatch are released (skates and rays in
good condition); bycatch amount reported in the latest ERAEF
reports were used. CCAMLR (2017) data were used for total ef
fort and landings per gear at HIMI, Australian Antarctic Division
(AAD) data were used for commercial catch and effort of the
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Austral fleet, and Austral provided LCA inventory data such as
fuel use (Supplementary Data S1).

Finally, GHG emission reduction opportunities were estimated
through theoretical change in parameters affecting fuel use per
landing: CPUE, technology, skipper, yield, and bait source.

Results

ERAEF results

The first ERAEF (2007) reported very low interactions with birds
and mammals for the legal HIMI fishery, and a low SICA risk
score for protected species (Supplementary Data S2); a total of
three birds had been killed since the start of the longline fishery,
and a total of ten birds were observed as killed in the demersal
trawl fishery from 1997 to 2005. However, IUU catches were
noted as a hazard. The level 1 SICA analysis covered all ecosystem
components except for habitats due to data limitations
(Figure 2), and the need for risk assessment of habitats in the
trawl fishery was noted (20 t of benthic invertebrates and 75 t of
rocks had been entangled in the gear during a 5 year period).
For both fisheries, level 1 SICA screened out one ecological
component (protected species) based on effective management
arrangements in place and thus low risk of being caught, even
for the most vulnerable species, black browed albatross
(Thalassarche melanophrys). The level 2 PSA assessed risks to
target and bycatch species, but not for communities due to lack
of an underpinning trophic model. The analysis indicated high
risk for toothfish (target component) in both trawl and longline
fisheries, as well as for several species in the byproduct/bycatch
component, in particular skates, due to their inherent vulnera

bility to fishing and catch rate in longline fisheries (Figure 3).
For the trawl fishery, 52 out of the 87 species assessed at level 2
were found to be at potentially high risk, and 13 out of 19 spe

cies for longline, respectively (Supplementary Data S2). For
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both fishing methods, most species classified at high risk were
due to data deficiency (missing biological information or lack of
spatial distribution information).

In the recent ERAEFs, the number of activities causing hazards
was lower than in 2007 (Supplementary Data S2). Toothfish is
now under a biennial stock assessment (equivalent to ERAEF level
3, thus not included in the latest ERAEF) and stock status has
been assessed as not overfished (i.e. the biomass above limit refer
ence points) nor subject to overfishing (i.e. the fishing mortality
lower than limit reference points) since 2006 (Patterson et al.,
2017). While trawl effort has decreased and quotas have in
creased, longlining effort increased in both number of days (from
roughly 50 in 2003 to a record of 718 in 2015) and number of
hooks per fishing day (from roughly 13 000 in 2003 to 22 000 in
2015) (CCAMLR, 2017). Despite this, risk to birds did not in
crease in the ERAEF (Supplementary Data S2). The increased
longline effort has, however, contributed to higher mortalities of
elephant seals Mirounga leonina (8 mortalities in 2016; Patterson
et al., 2017), but according to ERAEF most likely not at a rate
that puts the population at risk. Furthermore, longlining has a
lower selectivity for skates and rays compared to demersal trawl
ing. For risks to benthic habitats, the ERAEF refers to findings in
Welsford et al. (2014): Based on where vulnerable organisms oc
cur in relation to fishing effort concentration, and the fact that
the marine reserve protects more than half of structure forming
biota, risks to benthic habitats were assessed to be low. One eco
system component, ecological communities, is still considered to
be at higher risk due to lack of knowledge about broader ecosys
tem effects from removal of different sizes of toothfish (Table 1;
Supplementary Data S2), but the report notes that the precau
tionary management approach takes into account predator prey
relationships, and monitoring of top predators (diet, reproduc
tive rates, and abundance) is done.
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LCA inventory results

Fuel use from fishing was confirmed as the dominant contributor
to GHG for the toothfish fishery Austral’s organisational LCA
found that nearly 90% of the GHG emissions of the product
(from fishing to retail) were attributable to fishing at sea for the
years 2014 and 2016 (Supplementary Data S1).

Landings by different gears have changed considerably over
time (Figure 4). Catch rates were initially, in general, higher but
more variable, and have stabilized at a lower level in the last de
cade compared to early fishing (Figure 5). Trawling during 1998
2000 had, on a trip basis, average catch rates of 17 28 tonnes/day,
whereas during 2014 2016, the equivalent was between 8 and 17
tonnes/day (Supplementary Data S1). This is expected during the
fishing down phase of a developing fishery. With the catch effi
ciency, gear use and targeting pattern at the start of the
Australian fishery, fuel consumption for the Patagonian toothfish
fishery at HIMI was 0.7 L/FU in 1998.

In 2016, fuel consumption per FU had increased considerably.
The annual average fuel consumption was 4.0 L/FU when trawling
and 2.4+ 1.7L/FU for longline. The difference is smaller if the
comparison is based on live weight: 2.6 L/kg for trawling and
1.7 £ 1.2L/kg for longlining, respectively (Figure 5). This is due
to higher product yield in longlining from use of byproducts. The
variability in fuel use for longlining is derived from different fuel
efficiencies of the three different boats operating, as opposed to
trawling, which is only done by one vessel. The inherent fuel con
sumption per fishing day is lower for longlining than trawling,
but the fuel efficiency per kg is to some extent counteracted by
lower catch rates for longlining compared to trawling.
Furthermore, adding fuel required from bait fishing makes long
line fishing less efficient. During 2014 2016, bait use (squid) in
creased from approximately 0.14 to 0.23kg/kg live weight
toothfish at catch (due to more hooks per volume of landing).
Austral estimated fuel use requirements from bait use to be mar
ginal compared to fuel use in fishing, 0.08 L/kg live weight in
2016. This estimate was likely based on fuel consumption of a
certain vessel size, catch rate, and fishing pattern of an industrial
fleet targeting squid (resulting in 0.36 L/kg bait) due to lack of
LCA data. However, there are large additional energy require
ments using lights when catching squid (Matsushita et al, 2012)
that were not considered, and fuel efficiency to catch squid may
vary vastly depending on gear type 0.27 1.88 L/kg (Park et al,
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Figure 4. Historical development of landings per gear (OTM =
midwater trawl; OTB = demersal trawl; LLS =longlining;
FPO = pots) based on CCAMLR (2017).

2015). Assuming the worst case scenario (1.88L/kg), the contri
bution to fuel use from bait collection could therefore be up to
0.42 L/kg live weight toothfish.

The areal seafloor pressure for longline caught toothfish was 3
and 159 m*/FU for demersal trawling in the 2014 2015 season.
Bycatch ratios in the same season were 0.12kg/FU for trawling
and 0.14 kg/FU for longlining.

Scenarios for GHG emission reduction showed that an increase
in CPUE would have the largest improvement potential, whereas
industry measures, such as technological investment, had lower
emission reduction potential (Table 2).

Discussion

Different aspects to seafood sustainability

From an ERA perspective, management has been effective in re
ducing local ecological risks from the Patagonian toothfish fishery
at HIMI over time. Present fishing mortality and stock biomass
are assessed as ecologically sustainable, and no IUU vessels have
been detected inside the HIMI EEZ since 2005 (CCAMLR, 2016).
Management actions have included broad data collection and sci
entific analysis in combination with a set of management and
conservation tools including (amongst others): quotas, technical
measures to reduce bycatch, fishing gear restrictions, protected
areas, and seasonal restrictions. In imposing these management
arrangements, some may be seen in retrospect as maladaptive,
such as only allowing demersal trawling, which was associated
with larger seafloor disturbance. Other measures result in trade
offs that may be required to fulfil conservation objectives, such as
extra fuel needed for steaming to dump offal outside the EEZ to
avoid attracting birds. To this end, the ecological risks were ini
tially higher (mainly based on substantial data deficiency, which,
by default, equals to a precautionary high risk in the ERAEF ap
proach, Hobday et al., 2011), but the fuel consumption per fish
caught was lower on an annual basis. While ecological risks have
decreased over time, fuel use per landing has instead increased.
However, the fuel efficiency in the early stages of a new fishery is
not a realistic target, since some of the early catches come from
reduction in biomass until equilibrium is reached.
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Figure 5. Annual average commercial CPUE (line, shaded area represents standard deviation) for (a) demersal trawling and (b) longlining
with annual fuel use (points) by Austral for Patagonian toothfish at HIMI based on AAD data.

Table 2. Opportunities for emissions reduction (only combustion) of longlining for Patagonian toothfish at HIMI (Supplementary Data S2).

Fueluse  GHG
Change variable Description (L/FU) (CO,e kg/FU)* % reduction
Present situation (year 2016) CPUE 0.19 tonne GWT/1000 hooks set, 26 70
bait use 0.22 kg/kg
Management Achieve higher CPUE CPUE 0.29 tonne GWT/1000 hooks set 13 3.58 49
(2014 level)
Industry New generator® Fuel use 20% for the Atlas Cove 25 638 3
Skipper effect The most catch efficient vessel (in L/kg) 1.9 52 25
Improve utilization Improve yield by 10% 23 64 9
Use most fuel efficient  0.27 L/kg bait (Park et al, 2015) 25 69 2
squid bait
*Using 1L fuel ~ 2.72 kg CO,e (Supplementary Data S2).

®Planned in 2018 by Austral Fisheries Pty Ltd.

The general view is that the management of fisheries sets the
limits for improvement potential for seafood products (by decid
ing on quota, effort, or gear type), and individual fisher decisions
are in general less effective than management to reduce fuel use
(Parker et al., 2015; Parker et al., 2017, but see also Ruttan and
Tyedmers, 2007 and Ziegler et al, 2018). The improvement po
tential not only depends on management objectives (Farmery

et al., 2014; Svedang and Hornborg, 2015) but also on inherent
differences in targeting schooling vs. non schooling species
(Farmery et al., 2015). The lower LCA pressures from higher
catch efficiency have to be balanced by management with the po
tential risk of stock collapse if sustainable fishing mortality cannot
be safeguarded, in particular for slow growing schooling fish
(Norse et al, 2012). CCAMLR has a more conservative target
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Figure 6. LCA and ERAEF in an EBFM context with emphasis on different stakeholder perspectives and how they are related. Abbreviations:

CPUE = Catch-per-unit effort; MPA = Marine-protected areas.

stock management, compared to most other managing organ

izations, and applied an ecosystem approach early in fishing his

tory (Constable, 2011). The spawning biomass of toothfish fished
at HIMI is estimated to be 60 70% of unfished levels (Patterson
et al., 2017), i.e. above the biomass level generating maximum
sustainable yield. While recognizing that CPUE is not fully indic

ative of stock status (Maunder and Punt, 2004), fuel use per unit
of seafood product would see the largest reductions if CPUE
could be further increased in the HIMI fishery through adaptive
management.

For fishing companies to reduce their carbon footprint in gen
eral, the largest reductions can arguably be made at a fishery man
agement level. For Austral toothfish fishery, changes in CPUE
were also found to have the largest influence on GHG emissions.
However, in efforts to apply an LCA, there are many data gaps
and methodological uncertainties. This affects absolute results of
the assessment (amount of GHG emissions), and when following
a carbon offsetting scheme (where worst case scenarios should be
used), also affects costs for the industry. In global supply chains,
lack of LCA data from different suppliers arguably also impedes
providing economic incentives from the buyer for low emission
practises (e.g. the costly process of switching to more energy
efficient LED lamps in squid fishing; Matsushita ef al, 2012); reg
ular collection of this type of data into global databases could fa
cilitate LCA based improvement efforts in general, but also
carbon accounting initiatives. An example of differences in LCA
calculations can be shown from the industrial refrigeration units
on Austral’s fishing vessels, which currently run on the refrigerant
R 22. Here, the effect from fugitive emissions is set to zero when
following the Australian National Greenhouse Accounting meth
odology NGER/NGA 2016 2017, while the Intergovernmental
Panel on Climate Change (IPCC) sets the climate pressure of
these emissions at 1810 kg CO,e/kg (Supplementary Data S1).
Following the NGER/NGA 2016 2017 guidelines for estimating
general leakage rates for industrial refrigeration, a toothfish
targeting vessel would leak between 352 and 640 kg/year but that

would not contribute to the calculated GHG emissions. If instead
IPCC (2014) calculation methodology was followed, this equates
to 640 1200 tonnes CO,e/year per fishing vessel (or an additional
1.35 2.79 kg CO,e/FU). The use of R 22 is being phased out in
Australia, in line with the Montreal Protocol, and this process is
costly to industry and will unfortunately not be accounted for as
a reduction of GHG emissions from fishing companies.

Lastly, consumer and market demand is an important driver for
establishing new fisheries, such as toothfish around the Antarctic,
since it contributes to the important whitefish market that has
arisen as a result of continued high demand for traditional stocks
that have reached the limit of production capacity or been de
pleted. “Perceptions” on what is sustainable may vary for different
food commodities, and for seafood, one may ask if eating fish from
a more pristine and distant environment is more of a conflict than
eating more heavily exploited species caught locally. Furthermore,
selection of trawl fishing grounds at HIMI is currently based on
optimizing the size composition of landings for market preferences
(i.e. market demand for larger sizes), rather than maximizing vol
ume (Rhys Arangio, Austral, Pers. Comm.). This affects trends in
fuel efficiency per landing over time and may be seen as a sustain
ability trade off induced by consumers.

To this end, is Patagonian toothfish production at HIMI sus
tainable? Ecological risks are being addressed and mitigated to an
arguably larger extent than in many other fisheries. Fuel use per
landing has gone from average to the highest amount of fuel use
per kg for bottom trawled finfish globally (Parker and Tyedmers,
2015), affected by both biomass and targeting pattern (the selec
tive targeting of larger fish). For longlining, fuel use in the HIMI
fishery is at the higher end of hook and line caught finfish globally
(Parker and Tyedmers, 2015). Austral addresses this issue
through off setting their GHG emissions, which is a further step
towards meeting the progressive series of sustainability challenges
faced by responsible actors (the moving target of sustainability is
discussed in Tlusty et al., 2012). Still, since biomass is inevitably
reduced in an exploited stock which strongly affects emission
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levels, the questions for the future are rather: What is an appro
priate biomass in an ecosystem based fisheries management
(EBFM) context that allows for high CPUE and low ecological
risks? Should energy use and GHG emissions be treated separately
through offsetting by industry or included in certification of fish
eries? Currently, the most energy intensive food production sys
tem in the world, demersal trawling for Norway lobster Nephrops
norvegicus (Pelletier et al., 2011), is certified as sustainable by
MSC (MSC, 2018). FAO (2016) consider inclusion of GHG and
energy use into ecolabels as a progress towards addressing the
three pillars of sustainability. However, to be included in certifi
cation criteria, decisions would be required to determine cut off
levels to be categorized as environmentally sustainable, for each
aspect separately but also in relation to each other. This raises
questions on priorities (e.g. low bycatch rates over high fuel con
sumption?) and relevant comparisons (e.g. should cut off criteria
for emission levels be compared to other seafood products or all
food commodities?). For offsetting to become an industry norm,
improved market responsiveness is also needed, such as a price
premium (Martin Exel, Austral, Pers. Comm.).

Dual methods to assess sustainability

The HIMI fishery has state of the art data collection and assess
ments. The ERAEF updates are jointly funded by industry and
management, and informed decisions on fishing opportunities
and broader management actions to conserve the ecosystem.
Accounting for, and offsetting, GHG emissions is a costly indus
try initiative, both in terms of time to perform the assessments
and in paying for offsetting and reduction strategies. With global
concerns rising over the need to implement immediate actions at
every level of decision making to reach set targets (Figueres et al,
2017), and LCA methods being used to inform decision making
in other areas such as the European Union directive on biofuels
(EC, 2017), the question is if and how GHG assessments should
be included in fisheries management in the future?

Given the strong influence of management on GHG emissions
in fisheries, a first step could be to monitor fuel use as a perfor
mance indicator. This would facilitate delivering LCA perspec
tives, which are currently time consuming. As a next step, it is
important to find common ground on what characterizes sustain
able use based on EBEM objectives (Pikitch et al., 2004). While
ERAEF provides important decision support for place based
EBEM, identifying when a management system is maladapted in
terms of fishing economy (fuel use) and off site impacts (GHG)
through low CPUE is a starting point to discuss improvement
potentials (Figure 6). Furthermore, as LCA has a strong connec
tion to supply chain stakeholders (based on industry and societal
interest in results), routine LCA inclusion in assessing sustainabil
ity of seafood may provide further progress towards including the
human dimension of EBFM. By studying the performance of a
fisheries production system (i.e. “pressures per quantity of
product”), insights may be provided on how a stock is best uti
lized from a societal perspective (e.g. Driscoll and Tyedmers,
2010; Farmery et al., 2014; Ziegler et al., 2016b) and illustrate
quantified trade offs of management actions (either based on val
ues, such as protecting sensitive species, or unintentionally;
Hornborg et al., 2012, Hornborg et al., 2017) forming the basis
for discussions with stakeholders on what are acceptable pressures
and trade offs.
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Supplementary data
Supplementary material is available at the ICESJMS online ver
sion of the manuscript.
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