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Abstract

The performance of a belief propagation decoder for low-density parity-check codes is limited by the presence of
trapping sets in the code’s graph. This leads to an error floor at higher signal-to-noise ratios. We propose the use of an
augmented decoder which operates by iteratively decoding on a set of graphs which have a subset of repeated
check nodes. We compare the augmented decoder to other modified belief propagation decoders that have been
presented in the literature. We show that for all the codes considered, the augmented decoder yields the best frame
error rate in the error floor region.

Keywords: LDPC codes, BP decoding, Trapping sets, Error floor mitigation

1 Introduction
Low-density parity-check (LDPC) codes provide good
error correction performance when a belief propagation
(BP) decoder is used [1]. BP computes the marginal prob-
abilities of the transmitted bits with reasonable accuracy
even though the graph representation of the code con-
tains loops. These loops can lead to trapping sets which
degrade decoder performance, causing an error floor at
high signal-to-noise ratios (SNR) [2].
It is possible to design LDPC codes for good per-

formance with a BP decoder by optimizing the degree
distribution [3]. It is also possible to avoid loops in the
construction of the code’s graph through methods such
as progressive edge-growth (PEG) [4]. The harmfulness of
particular trapping sets to BP performance can be ana-
lyzed, and codes can be designed to avoid them [5]. For a
given code, it is possible to add additional parity checks
at the transmitter [6], but this comes at a potential rate
penalty.
Several different modifications to the BP decoder have

been suggested in the literature. Generalized LDPC (G-
LDPC) decoders are presented in [7], these aim tomitigate
the effect of prominent trapping sets by combining associ-
ated check nodes into “super nodes.” The non-uniqueness
of the code’s parity-check matrix (and hence its graph) is
utilized in [8] where BP is employed in parallel on a set
of equivalent graphs. Backtracking was proposed in [9],
which involves the iterative sign flipping of a BP message
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associated with a non-satisfied check node. Limiting the
magnitudes of messages passed in BP can also successfully
reduce the error floor [10]. If the BP messages are limited
to a small number of bits, thenmodifying the quantization
scheme can improve the performance [11]. The schedul-
ing of message passing in a BP decoder can also be altered,
giving rise to serial decoders [12–14]. It is also possible to
identify particular trapping sets and apply an appropriate
perturbation if a known trapping set is present [15].
In this paper, we describe the augmented decoder in the

context of LDPC codes. The augmented decoder itera-
tively decodes on a set of graphs with a subset of repeated
check nodes; these repetitions serve to alter the dynam-
ics of BP. We apply the augmented decoder to a suite
of regular and irregular LDPC codes, demonstrating that
it is effective at mitigating error floors due to trapping
sets. Furthermore, we show that in terms of error floor
frame error rate (FER), the augmented decoder outper-
forms other methods of trapping set mitigation presented
in the literature.
The paper is organized as follows. Section 2 gives a brief

overview of the LDPC codes. The augmented decoder is
presented in Section 3. Section 4 presents the numeri-
cal results that demonstrate the improved performance
offered by the augmented decoder. The paper is concluded
in Section 5.

2 Brief overview LDPC codes
An LDPC code C ⊂ F

n
2 can be defined as the kernel of an

(n − k) × n parity-check matrix H

C = {
x ∈ F

n
2 : Hx = 0

}
. (1)
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If H is full rank (rank(H) = n − k), then dim(C) = k.
The rate of a code is defined as R = k/n where k is the
number of uncoded bits and n the block length.
The parity-check matrix H can be represented using a

Tanner graph. As an example, consider the parity-check
matrix of the (7,4) Hamming code

H =
⎛

⎝
1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

⎞

⎠ . (2)

The associated graph is shown in Fig. 1. Each of the cir-
cles is a variable node corresponding to a column in H.
Each of the squares is a parity-check node corresponding
to a row in H. There is a connection, edge, between the
variable node i and parity-check node j if Hij = 1.
An LDPC code is said to be regular if the degree of all

parity-check and variable nodes in the graph is the same,
i.e., the degree distribution is uniform; otherwise, the code
is irregular.
Encoding can be performed using the k × n generator

matrix G whose rows form a basis for C. The data word
d ∈ F

k
2 is encoded as:

x = GTd ∈ C. (3)

The Hamming distance, d(x1, x2), between any two
codewords x1 and x2 ∈ C is the number of vector ele-
ments in which they differ. A code’s minimum Hamming
distance is then:

dm(C) = min({d(x1, x2) : x1, x2 ∈ C}). (4)

The weight of a codeword x ∈ C, w(x), is the Ham-
ming distance between it and the all zero codeword 0, i.e.,
w(x) = d(0, x). The minimum weight of a code is then
naturally defined as:

wm(C) = min({d(0, x) : x ∈ C}). (5)

As C is a linear space, it follows that dm(C) = wm(C).
For transmission, codewords are binary phase-shift key-

ing (BPSK)modulated with themapping {0, 1} → {1,− 1}.
Denoting the modulated codeword vector as xm ∈ R

n
2, the

received vector y ∈ R
n
2 is:

Fig. 1 Tanner graph example. Tanner graph for the (7,4) Hamming
code. Circles are variable nodes, and squares are parity-check nodes.
Nodes are connected via edges according to H

y = xm + n, (6)

where n ∈ R
n
2 is the noise vector. For additive white

Gaussian noise (AWGN) ni = N
(
0, σ 2), where σ 2 is the

variance of the noise. The magnitude of which relative to
the transmitted signal is quantified by the signal-to-noise
(SNR) ratio [16]:

Eb/N0 = (x̄m)2i
2Rσ 2 , (7)

where (x̄m)2i is the average power of a transmitted bit.
The decoder will attempt to determine the transmitted

codeword given the received signal. An ideal maximum
a posteriori (MAP) decoder would output the most likely
codeword x̃ given the received signal, i.e.,

x̃ = maxxP(x|y). (8)

However, MAP decoding for LDPC codes is NP hard
[17]. As a result, the approximate method of belief prop-
agation (BP) is employed [18]. BP is an iterative local
neighborhood message-passing algorithm, where in each
iteration, a set of messages are passed between variable
and check nodes. The first step is to calculate the a priori
log-likelihood ratio (LLR) values for each received bit:

�i = ln
(
P(yi|xi = 0)
P(yi|xi = 1)

)
, (9)

for the AWGN channel this reduces to

�i = 2yi
σ 2 . (10)

If ri > 0, then it is more likely that xi = 0; conversely, if
ri < 0, then it is more likely that xi = 1. As such, a first
estimate of the transmitted codeword can be made where

x̃i = 1
2

(
1 − �i

|�i|
)
. (11)

If Hx̃ = 0, then decoding is complete, if not then an
iterative process commences. First, a message is sent from
all variable nodes to their connected check nodes. The
message is sent from variable node vi to check node cj

Qi,j = �i +
∑

ca∈N(vi)\cj
Ra,i, (12)

where N(vi) \ cj is the set of check nodes connected to vi
except for cj itself. Note that in the first iteration, Rj,i =
0 ∀ i, j. Next, amessage is sent from all check nodes to their
connected check nodes. The message sent from check
node cj to variable node vi is:

Rj,i = 2 arctanh

⎛

⎝
∏

vb∈N(cj)\vi
tanh

(Qb,j

2

)⎞

⎠ . (13)

Finally, themarginal LLR values are updated for each bit:

Li = �i +
∑

ca∈N(vi)
Ra,i. (14)
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These values can then be used to make a new estimate
at the transmitted codeword:

x̃i = 1
2

(
1 − Li

|Li|
)
. (15)

If Hx̃ = 0, then decoding is complete, if not then
another iteration commences.
There are three possible decoding outcomes. The first

outcome is a correct decoding where x̃ = x. Second is
a detected error where some maximum number of itera-
tions is reached with x̃ �= x because Hx̃ �= 0. The last
case is an undetected error where the decoder terminates
because Hx̃ = 0, but x̃ �= x.
BP will achieve MAP decoding in the case of the graph

having a tree structure. However, the graphs of LDPC
codes are typically not trees (if a code’s graph is a tree, then
the codemust contain weight two codewords [19]). A loop
is a closed walk with no repeated edges or nodes. The size
of a loop is the number of edges traversed (always even for
a bipartite graph), and the girth of a given code is defined
as the size of the smallest loop in the graph.
The set of variable nodes that do not converge to the

correct value in decoding is denotedT(y) [20]. IfT(y) �= ∅
then let a = |T(y)| and b be the number of odd degree
check nodes in the sub-graph induced by T(y) (the sub-
graph contains T(y) and connected check nodes) then
T(y) is a (a, b) trapping set. An example of a (4,4) trapping
set is shown in Fig. 2.
The frame error rate (FER) performance of a decoder

is divided into three regions, these can be clearly seen

Fig. 2 Trapping set example (4,4) trapping set example. The black
variable nodes have failed to converge, and thus, the black (odd
degree) check nodes are unsatisfied. The white (even degree) nodes
are satisfied

in Fig. 3. The first region is at low SNR where the
decoder fails to decode the majority of the frames. As SNR
increases, there is a rapidly decreasing FER in the water-
fall region. Then at higher SNR, the FER decreases at a
reduced rate; this is the error floor region. This error floor
can either be due to the undetected errors (a result of low-
weight codewords) or detected errors. In the second case,
the error floor can be lowered by mitigating trapping sets;
this is the aim of the augmented decoder.

3 Method
3.1 Parity-check formulation
Graph augmentation aims to mitigate the effect of trap-
ping sets in the graph by iteratively duplicating a subset
of parity checks. An augmented decoder employs a set of
modified or augmented parity-check matrices, called the
candidate set. Each of the candidates in the set has the
form:

HA =
(

H
Hd

)
, (16)

whereH is the original (given) parity-checkmatrix andHd
is a dn × n matrix containing dn rows randomly selected
from H. d is called the augmentation density.
On the graph for HA, the augmentation defined above

corresponds to a duplication of a subset of parity-check
nodes (of the original graph). The candidate set contains
N-augmented matrices denoted by:

� = {
H1
A, H

2
A, . . . , HN

A
}
. (17)

The operation of the augmented decoder is outlined in
Algorithm 1. Decoding is first attempted on the standard
graph (not augmented). If this decoding step is unsuc-
cessful, then decoding is reattempted using an augmented
candidate graph until either decoding is successful or the
candidate set is exhausted.

Algorithm 1Operation of an augmented decoder.
Attempt decoding using H
if x̃H �= 0 then

i = 1
decoded=false
while i < N and !decoded do

Attempt decoding using Hi
A.

if x̃Hi
A = 0 then

decoded=true
Output x̃

i = i + 1
else

Output x̃
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Fig. 3 Quasi-regular FER plot. FER performance of augmented decoders for the n = 4095, R = 0.82 quasi-regular code

As the duplicated rows in each candidate are selected
randomly, it is possible to generate candidates as they are
required. Furthermore, it is possible to vary the augmenta-
tion density depending on SNR. Section 4.1 demonstrates
that this can lead to improved performance.

3.2 BP formulation
The effect of duplicating a subset of parity checks can also
be considered as a modification of BP on the code’s origi-
nal graph (i.e., with no duplicated checks). First, we define
a function that indicates whether a check node has been
duplicated:

r(j) =
{
1 if cj duplicated
0 if cj not duplicated

. (18)

The equivalent variable to check node message on the
original graph is then:

Qi,j = �i +
∑

ca∈N(vi)\cj
Ra,i + 1

2
r(j)Rj,i, (19)

and the check to variable node message is:

Rj,i = 2arctanh

⎛

⎝
∏

vb∈N(cj)\vi
tanh

(Qb,j

2

)⎞

⎠ (
1 + r

(
j
))
.

(20)

It can be seen that the effect of duplicating a check node
is to double the magnitude of the messages it sends in our
modified BP. It can also be seen that themessage sent from
variable node vi to check node cj is no longer independent

of the message sent from cj to vi in the previous iteration,
i.e., feedback has been introduced.
This feedback and message amplification alters the rate

at which the marginal probabilities converge. Reliable
information from the fast converging variable nodes can
then propagate to other variable nodes (via check nodes).
Variable nodes will converge in different orders depending
on which checks have been duplicated, this can potentially
lead to avoiding a trapping set that occurs when using
standard BP.
Implementing augmentation as a modification to BP

means that there is no complexity overhead for each
iteration. However, implementing it based on duplicated
rows in the parity-check matrix allows for an efficient
pre-existing BP decoder to be used.

4 Numerical results
4.1 Quasi-regular Mackay
The first code considered is an n = 4095 and R = 0.82
quasi-regular code [21]. The error floor of this code when
using the standard belief propagation decoder is shown in
Fig. 3.
To find the optimal augmentation density, decoders

with N = 100 candidates of varying d were tested at four
SNR values as shown in Fig. 4. It can be seen that at higher
SNR (in the error floor region), the FER reduction of the
augmented decoder is more pronounced than at lower
SNR (in the waterfall region). Furthermore, it can be seen
that as SNR increases, the optimal augmentation density
also increases.
The performance of augmented decoders with N = 10,

N = 100, and N = 1000 candidates is shown in Fig. 3.
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Fig. 4 Quasi-regular density plot. FER performance of an augmented decoder with N = 100 candidates with varying augmentation density d for the
n = 4095 and R = 0.82 quasi-regular code

The augmentation density of these decoders is selected to
be the optimal values shown in Fig. 4, 4% at 3 dB, 5.7%
at 3.25–3.5 dB, and 23% at 3.75 dB. With 1000 candidates
at 3.75 dB, approximately half the errors are undetected
errors due to weight 10–14 codewords, i.e., this is the start
of a low-weight codeword error floor.
The average number of decoding attempts (including

the initial standard BP attempt) is shown in Fig. 5. It can be

seen that at higher SNR, the increase in the average num-
ber of decoding attempts is negligible, this is due to the
two factors. Firstly, at higher SNR, the standard decoder
is able to decode more frames, as such the likelihood
that any candidates are required is reduced. Secondly, the
average number of candidates required to decode a frame
which cannot be decoded using standard BP reduces as
SNR increases.
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Fig. 5 Quasi-regular decoding attempts plot. Average number of decoding attempts of augmented decoders for the n = 4095 and R = 0.82
quasi-regular codex
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Fig. 6 n = 1056 WiMAX FER plot. FER performance of augmented decoders for the n = 1056 and R = 1/2 WiMAX code. Also shown is the
performance of a backtracking decoder

4.2 WiMAX
4.2.1 n = 1056 and R = 1/2 code
The second code considered is the n = 1056 and R = 1/2
quasi-cyclic LDPC (QC-LDPC) code from the IEEE
802.16e WiMAX standard [22]. Here, augmentation is
compared to the second backtracking method presented
in [9]. As is shown in Fig. 6, the decoder with backtracking
has similar waterfall performance to the standard BP
decoder but a significantly improved error floor.

Augmented decoders with N = 10, N = 100, and
N = 1000 candidates were tested. The augmentation den-
sity used at each SNR was optimized in the same way
as for the quasi-regular code of Section 4.1. These den-
sities are 4% for 1.4–1.8 dB, 5.7% for 2–2.2 dB, 8% for
2.4–3 dB, and 11% for 3.2–3.4 dB. It can be seen that the
augmented decoders provide a significant gain in water-
fall FER. Furthermore, decoding based on augmentation
reaches an error floor due to low-weight (mostly weight
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Fig. 7 n = 576 WiMAX FER plot. FER performance of augmented decoders for the n = 576 and R = 1/2 WiMAX code. Also shown is the
performance of various MBBP decoders
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Fig. 8 802.11n FER plot. FER performance of augmented decoders for the n = 1944 and R = 1/2 802.11n code. Also shown is the performance of a
ANS serial decoder

21) codewords at a significantly lower SNR than the back-
tracking decoder. At 3.4 dB, over 95% of the errors found
using 1000 candidates are undetected, as such the FER
cannot be further reduced.

4.2.2 n = 576 and R = 1/2 code
The third code considered is the n = 576 and R =
1/2 QC-LDPC code from the WiMAX standard. Here,

augmentation is compared to the multiple-bases belief-
propagation (MBBP) and leaking MBBP (L-MBBP) [8].
This comparison is important as both the augmented
decoder and the MBBP decoder make use of a set of
parity-check matrices at the decoder. For this reason, we
selected the size of the candidate set to be identical to
the number of parity-check matrices used by Hehn et al.
in [8]. An augmentation density of 5.7% was used at all
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Fig. 9Margulis FER plot. FER performance of augmented decoders for the n = 2640 and R = 1/2 Margulis code. Also shown are the performances
of ANS, backtracking, G-LDPC, and schedule diversity decoders
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SNR values. The results are shown in Fig. 7, indicating that
graph augmentation yields a lower FER when compared to
the MBBP and L-MBBP methods. Approximately, a third
of the errors found at 2.6 dB using the decoder based
on 30 candidates are undetected; this suggests that there
will be a low-weight (mostly weight 13) error floor at
higher SNR.

4.3 802.11n
The fourth code considered is the n = 1944 and R =
1/2 code from the IEEE 802.11n standard [23]. This
code has similar construction to the WiMAX code. Here,
augmentation is compared to the performance of the
approximate node-wise scheduling (ANS) serial decoder
presented in [12]. It can be seen in Fig. 8 that the serial
decoder performs similarly to the standard flooding-
based decoder in the waterfall region. However, serial
decoding provides an improved FER in the error floor
region.
Augmented decoders with N = 10, N = 100, and

N = 1000 candidates were tested. The augmentation den-
sities used were 2% at 1–1.25 dB, 2.8% at 1.5–1.75 dB,
and 5.7% at 2 dB. It can be seen that the decoder with
ten candidates gives similar performance to the serial
decoder and that the decoders with 100 and 1000 candi-
dates give significantly better performance. At 2 dB, the
augmented decoder based on 1000 candidates produces
more undetected than detected errors; this suggests that it
will present a low-weight (ranging in weight from 27–40)
codeword error floor beyond this point.

4.4 Margulis
The final code considered is the n = 2640 and R = 1/2
Margulis code [24]. This is a protograph-based code, and
here, augmentation is compared to the performance of
a serial decoder employing schedule diversity [14] (note
that this type of decoder only works for protograph-based
codes). This decoder first attempts decoding with an opti-
mized message passing schedule; if decoding fails, then it
iteratively reattempts decoding using a scrambled sched-
ule up to a maximum of T attempts. The performances of
approximate node-wise scheduling (ANS), backtracking,
and G-LDPC decoders are also given for this code (these
are also taken from [24]).
Augmented decoders with N = 10, N = 100, and N =

1000 candidates were tested, and the results are shown in
Fig. 9. An augmentation density of 2% was used at all SNR
values considered. It can be seen that at 2.3 dB, the aug-
mented decoder with ten candidates is able to outperform
the backtracking and G-LDPC decoders and gives similar
performance to the ANS decoder. The schedule diversity
decoder has a performance between that of an augmented
decoder with 10 candidates and one with 100 candidates
(it can be matched by using approximately 35 candidates).

5 Conclusions
We proposed the use of a decoder based on graph aug-
mentation for mitigating trapping sets and thus error
floors in LDPC codes. The performance of the proposed
decoder was tested through computer simulation on a
number of different LDPC codes (both regular and irregu-
lar). In all cases, the augmented decoder provided a lower
error floor frame error rate than other modified belief
propagation decoders presented in the literature.
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