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In this paper Lattice Boltzmann simulation of turbulent natural convection with 
large eddy simulations in tall enclosures which is filled by air with Pr = 0.71  
has been studied. Calculations were performed for high Rayleigh numbers  
(Ra = 107-109) and aspect ratios change between 0.5 and 2 (0.5 < AR < 2). The 
present results are validated by finds of an experimental research at Ra = 1.58·109. 
Effects of the aspect ratios in different Rayleigh numbers are displayed on stream-
lines, isotherm counters, vertical velocity and temperature at the middle of the cav-
ity, local Nusselt number and average Nusselt number. The average Nusselt num-
ber increases with the augmentation of Rayleigh numbers. The increment of the as-
pect ratio causes heat transfer to decline in different Rayleigh numbers. 
Key words: lattice Boltzmann method, large eddy simulation, aspect ratio, 

natural convection 

Introduction 

Turbulence in fluids is ubiquitous in nature and technological systems and repre-
sents one of the most challenging aspects in fluid mechanics. The difficulty stems from the 
inherent presence of many scales that are generally inseparable among many other factors. 
Nevertheless, considerable progress has been made over the years towards more fundamental 
physical understanding of turbulence phenomena through measurements, statistical phenome-
nological theories, modeling and computation [1, 2]. Also some experimental investigations 
have been done for instance Ampofo and Karayiannis [3] studied low-level turbulence natural 
convection in an air filled vertical square cavity while the hot and cold walls of the cavity 
were isothermal at 50 and 10 °C, respectively, giving a Rayleigh number of Ra = 1.58·109. 

Large eddy simulations (LES) provide a very promising approach for the simulation 
of turbulent flows because computation times are significantly lower than those of direct nu-
merical simulations (DNS). Further, their resolution of turbulent structures is more accurate in 
comparison to Reynolds averaged Navier_Stokes (RANS) simulations [4-8].  

The lattice Boltzmann method (LBM) is a computational alternative for simulat-
ing fluid flows and is rapidly gaining attention. It is an attractive method since it is based 
on a simple core algorithm which in turn makes it easy to adapt to complex application 
scenarios. Moreover, the base algorithm of the LBM can easily be extended to capture ad-
ditional physical effects. Consequently, this method is being used as a universal tool in a 
rapidly increasing number of research projects. However, the flexibility of the LBM comes 
–––––––––––––– 
* Corresponding author; e-mail: hasansajadi@gmail.com 



Sajjadi, H., et al.: Lattice Boltzmann Simulation of Turbulent Natural … 
156 THERMAL SCIENCE, Year 2015, Vol. 19, No. 1, pp. 155-166 

at a high price in terms of computational cost which routinely requires the use of parallel 
supercomputers [9-15]. 

To model the flow LES in a lattice Boltzmann scheme for discretizing the Navier-Sto-
kes equations was used in previous works. LBM demonstrates that it can be a powerful meth-
od for simulating of turbulence flows [16-20]. The implementation of a LBM procedure is 
much easier for turbulence flows than that of traditional CFD methods. Meanwhile, it is more 
popular due to the balance between accuracy and efficiency. Because of these advantages, it 
was applied at past works regularly. Yu et al. [21] considered the application of multiple-
relaxation-time (MRT) LBE for LES of turbulent flows. They demonstrated that MRT-LBE is 
a potentially viable tool for LES of turbulence. Fernandino et al. [22] investigated LES of tur-
bulent open duct flow are performed using the LBM in conjunction with the Smagorinsky 
sub-grid scale (SGS) model. Whereas they found that the LBM simulation results are in good 
qualitative agreement with the experiments. Chen [23] proposed a novel and simple large-ed-
dy-based LBM to simulate 2-D turbulence. He showed that the model is efficient, stable, and 
simple for 2-D turbulence simulation. The LBM with a forcing scheme is used to simulate 
homogeneous isotropic turbulence by Kareem et al. [24]. They received that the turbulence 
characteristics of the flow are similar to those obtained in studies by the spectral method re-
gardless of which model is used. Recently Sajjadi et al. [25] studied numerical analysis of 
turbulent natural convection in square cavity using LES in LBM. They exhibited this method 
is in acceptable agreement with other verifications of such a flow. 

The main aim of this investigation is to present large eddy turbulence model by 
LBM with a clear and simple statement. Thus natural convection turbulence flow in tall en-
closures is investigated in a wide range of Rayleigh numbers. Although natural convection 
turbulence flow in confined convection is not only a topic for analysis but is comparable for 
numerical and experimental investigations. The first LBM is considered briefly and then large 
eddy was applied in LBM whereas theirs equations is expressed completely. Finally results of 
this study are compared with an experimental research.  

Numerical method 

Problem statement 

The geometry of the present problem is shown in 
fig.1. It displays a 2-D enclosure with height of H and 
width of W. The temperatures of the two sidewalls of 
the cavity are maintained at TH and TC, where TC has 
been considered as the reference condition. The top 
and the bottom horizontal walls have been considered 
to be adiabatic i. e., non-conducting and impermeable 
to mass transfer. The density variation in the fluid is 
approximated by the standard Boussinesq model. The 

fluid is assumed to be Newtonian, incompressible and the laminar whereas Prandtl number 
equals to Pr = 0.71. Also it is assumed that Mach number is fixed at Ma = 0.1. 

Lattice Boltzmann method 

In this paper a square grid and D2Q9 model is used for both flow and temperature 
functions. By detachment of Navier-Stocks equations, governing equations for flow and tem-
perature functions are: 

Figure 1. Geometry of the present study 
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– for the flow field: 
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– for the temperature field: 

 1( , ) ( , ) ( , ) ( , )eq
i i i i i

c
g x c t t t g x t g x t g x t

τ
⎡ ⎤+ ∆ + ∆ − = −⎣ ⎦  (2) 

where ci  is the discrete particle velocity vector defined (fig. 2), 
∆t – the lattice time step which is set to unity, τv, and τc are the 
relaxation times for the flow and temperature fields, respective-
ly, fi

eq, and gi
eq – the local equilibrium distribution functions 

that have an appropriately prescribed functional dependence on 
the local hydrodynamic properties which are calculated with 
eqs. (3) and (4) for flow and temperature fields, respectively. Fi 
is an external force term. 
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For the 2-D case, applying third-order Gauss-Hermite quadrature leads to the D2Q9 
model with the following discrete velocities ci, where i = 1 … 8: 
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where ω0 = 4/9, ω1–4 = 1/9, ω5–9 = 1/36, and c = (3RTm)–1/2 (to improve numerical stability Tm 
is the mean value of temperature for the calculation of c). 

Using a Chapman-Enskog expansion, the Navier-Stokes equations can be recovered 
with the described model. The kinematic viscosity υ and the thermal diffusivity α are then re-
lated to the relaxation times by: 

 2 21 1and
2 2v s c sc t c tϑ τ α τ⎛ ⎞ ⎛ ⎞= − ∆ = − ∆⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (6) 

where cs is the speed of sound and equals to c/31/2. 
In the simulation the Boussinessq approximation is applied to the buoyancy force 

term. In that case, the external force F appearing in eq. (1) is: 

 3i i yF g Tω β= ∆  (7) 

Figure 2. The discrete velocity 
vectors for D2Q9 
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where gy, β, and ∆T are gravitational acceleration, thermal expansion coefficient, and temper-
ature difference, respectively. 

Finally, the macroscopic variables ρ, u, and T can be calculated: 

 – flow density:
 

i
i

fρ = ∑  (8) 

 – momentum: j i ij
i

u f cρ = ∑  (9) 

 – temperature: i
i

T g= ∑  (10) 

Large eddy simulation method 

In this model the main aim is obtaining νt and αt = νt/Prt where Prt is the turbulent 
Prandtl number which is assumed to be 0.5. In order to evaluate νt we perform: 

 
1/2

22 Pr( )
Pr

ν
⎛ ⎞
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t
t

gC S T
g
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where C is considered the Smagorinsky constant and in this paper it is assumed as 0.1 [17] 
and is gained from ∆ = [(∆x)2 + (∆y)2]–1/2, where ∆x and ∆y are the grid extents in x- and y-di-
rections. 

For S  we have: 

 2S S Sαβ αβ=  (12) 

 2
u u

S α β β α
αβ

∂ + ∂
=  (13) 

Lattice Boltzmann method based on  
large eddy simulation model 

Large eddy model can be easily incorporated in LBM if we apply the following in-
fluence of νt on relaxation time [18-20].  

 2
total 0( 0.5)s m tcν τ ν ν= − = +  (14) 

where νtotal and ν0 are total viscosity and initial viscosity, respectively. 
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To obtain νt in LBM we have: 
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If we put S  in eq. (11): 
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and if we substitute the eq. (18) in eq. (15): 
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To obtain relaxation time in temperature function equation we have: 

 0 02 2
/ Prα ν

τ τ τ= + = +t t t
h D D

s sc c
 (20) 

where 2
0 0( / ) 0.5.τ α= +D sc  
Substituting new relaxation time in eqs. (1) and (2) yields to Lattice Boltzmann 

equations based on large eddy model. 
 

Boundary conditions 

Flow 

Implementation of boundary conditions is very important for the simulation. The 
unknown distribution functions pointing to the fluid zone at the boundaries nodes must be 
specified. Concerning the no-slip boundary condition, bounce back boundary condition is 
used on the solid boundaries. For instance the unknown density distribution functions at the 
boundary east can be determined by the conditions: 

 f6,n = f8,n,    f7,n = f5,n,    f3,n = f1,n (21) 

where n is the lattice on the boundary. 

Temperature 

The north and south of the boundaries are adiabatic then bounce back boundary 
condition is used on them. Temperature at the west and east wall are known, in the west wall 
TH =1.0. Since we are using D2Q9, the unknowns distribution function are g1, g5, and g8 at 
west wall which are evaluated as: 

 1 1 3 3 5 5 7 7 8 8 6 6( ) , ( ) , ( )ω ω ω ω ω ω= + − = + − = + −H H Hg T g g T g g T g  (22abc) 

Nusselt number Nu is one of the most important dimensionless parameters in de-
scribing the convective heat transport. The local Nusselt number and the average value at the 
hot and cold walls are calculated as: 

 Nu ∂
= −

∆ ∂y
H T
T x

 (23) 
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 avg
0

1Nu Nu d
H

y y
H

= ∫  (24) 

Finally, the following criterion to check for the steady-state solution was used: 

 1 5max 10+ −= − ≤n nError T T  (25) 

Code validation  

The tall enclosures were investigated 
at different Rayleigh numbers of 107, 
108, and 109, with three various aspect 
ratios of A = 0.5, 1, and 2. Turbulent 
natural convection with LES method 
were conducted in this paper. An exten-
sive mesh testing procedure was con-
ducted to guarantee a grid independent 

solution. Finally numbers of the lattices for different Rayleigh numbers and average Nusselt 
number comparison of present results with two previous studies were displayed at tab. 1.  

The present numerical method was validated with experimental researches of 
Ampofo and Karayiannis [3]. A comparison with velocity at the middle section of the cavity 
and local Nusselt number on the hot wall were considered with experimental results of 
Ampofo and Karayiannis [3] in fig. 3. Table 1 shows the comparison of the average Nusselt 
numbers for different Rayleigh numbers between present results and finds of Barakoset al [2], 
Dixit [16] as cavity was filled by air with Pr = 0.71. Clearly it is seen that the results match 
previous works. Furthermore this table demonstrates needful various meshes to utilize for dif-
ferent Rayleigh numbers. These comparisons show that the present study has a good agree-
ment with previous studies. 

(a)    (b)  
Figure 3. Comparison of the velocity on the axial midline (a) and local Nusselt number (b) between the 
present results and numerical results by Ampofo and Karayiannis [3] (Ra = 1.58·109) 

Results and discussions 

Figure 4 shows the contour maps for the isotherms at various Rayleigh numbers and 
different enclosure aspect ratios. When Rayleigh number increases, the convection process in 

Table 1. Comparison of mean Nu with previous works 

Ra  
number Mesh Mean Nu 

(this work) 
Mean 
Nu [2]

Mean Nu
[16]

107 256 × 256 17.2 – 16.8 
108 512 × 512 31.2 32.3 30.5 
109 1024 × 1024 58.1 60.1 57.4 
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the isotherms for various aspect ratios augments. The process is obvious whereas the isotherm 
of T = 0.9 moves from the upper left corner of the enclosure at Ra = 107 toward the cold wall 
of the enclosure at Ra = 109. The isotherms are vibrant at Ra = 107, but this manner changes 
to a steady-state at higher Rayleigh numbers. The increment of the aspect ratios causes the 
movement of the isotherms from the hot wall to the cold wall declines. This phenomenon is 
quite obvious at Ra = 107 whereas both isotherms of T = 0.8 and 0.2 at A = 2 set between two 
vertical walls and move towards the horizontal walls.  

Ra = 107 

AR = 0.5 

 

AR = 1 

 

AR = 2 

 

Ra = 108 

  

 

Ra = 109 

 

 

Figure 4. Comparison of the isotherms at various aspect ratios and Rayleigh numbers 

Figure 5 displays the streamlines at various Rayleigh numbers and different enclo-
sure aspect ratios. The streamlines have a regular process until Ra = 108 and the changes are 
marginal into the streamlines, but at Ra = 109 the form of the streamlines change completely 
and they revolve around some different vortexes at this Rayleigh number. The maximum val-
ues of the streamlines behave erratically for different aspect ratios and Rayleigh numbers. The 
maximum values of the streamlines decrease from Ra = 107 to 108 while the value at Ra = 109 
jumps to a higher amount of Ra = 107 suddenly. Moreover, the maximum values of the 
streamlines have the most their values at AR = 1 among different aspect ratios and Rayleigh 
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numbers. It is clear that turbulence in the enclosures at AR = 2 is less than other two aspect 
ratios for various Rayleigh numbers and their trend is smooth so the maximum values of the 
streamlines has the least their values at AR = 2. 

Ra = 107 

AR = 0.5 

 
lψminl = 2.7·10–3 

AR = 1 

 
lψminl = 3.9·10–3 

AR = 2 

 
lψminl = 1.8·10–3 

Ra = 108 

 
lψminl = 2.4·10–3 

 
lψminl = 2.8·10–3 

 
lψminl = 1.3·10–3 

Ra = 109 

 
lψminl = 3.5·10–3 

 
lψminl = 7.8·10–3 

 
lψminl = 3.3·10–3 

Figure 5. Comparison of the streamlines at various aspect ratios and Rayleigh numbers 

Figure 6 illustrates the distribution of the local Nusselt number on the hot wall for 
different aspect ratios and Rayleigh numbers. The trend of the local Nusselt number is the 
same for various Rayleigh number and just their values increase by the augmentation of Ray-
leigh number at various aspect ratios. The effect of aspect ratios on the local Nusselt number 
is negligible and the difference is considerable at Y/H > 0.8 for AR = 2,1, and Y/H > 0.4 for 
AR = 0.5, whereas the isotherm of T = 0.9 have an important influence on the isotherms. 

Figure 7 demonstrates the values of the vertical velocity on the axial midline for dif-
ferent Rayleigh numbers and aspect ratios. When Rayleigh enhances, the sudden changes near 
the vertical walls happen in a closer place to the walls. The maximum and minimum of the 
vertical velocity on the axial midline which are close to vertical walls augments with the 
growth of Rayleigh numbers. On the other hand, when the aspect ratio increases, the vertical 
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velocity on the axial midline vibrates at Ra = 109 and the increment of the aspect ratio in-
crease the amplitudes values of the vibrations. 

(a)  

(b)  

(c)  
Figure 6. Values of the local Nusselt number  
for different aspect ratios (a) AR = 0.5,  
(b) AR = 1, and (c) AR = 2 

(a)      

(b)      

(c)      
Figure 7. Values or the vertical velocity on the axial 
midline for different Rayleigh numbers and aspect 
ratios (a) AR = 0.5, (b) AR = 1, and (c) AR = 2 

Figure 8 exhibits the values of the temperature on the axial midline for different 
Rayleigh numbers and aspect ratios. It is clear that the value declines with the augmentation 
of Rayleigh numbers whereas this fall is marginal at AR = 0.5 and has the greatest value at 
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AR = 2. When the aspect ratio increases, the values change near the vertical walls gets less 
and smooth. 

(a) (b)  

(c)  

Figure 8. Values of the temperature on the axial 
midline for different Rayleigh numbers and aspect 
ratios (a) AR = 0.5, (b) AR = 1, and (c) AR = 2 

Figure 9 indicates the value of the average Nusselt number and the normalized aver-
age Nusselt number. The figure shows that the average Nusselt number decreases with the in-
crement of the aspect ratios at various Rayleigh numbers. The values of the normalized aver-
age Nusselt number demonstrates that the greatest effect of aspect ratios happens at Ra = 107 
while the least effect observes at Ra = 108. 

Conclusions 

Turbulent natural convection in tall enclosures which are filled with air with  
Pr = 0.71 has been conducted numerically by LBM. This study has been carried out for the per-
tinent parameters in the following ranges: the Rayleigh number of base fluid (Ra = 107-109), as-
pect ratios (AR) of the enclosure (AR = 0.5-2), and some conclusions were summarized. 
● A proper validation with previous numerical investigations demonstrates that LBM is 

an appropriate method for turbulent flows problems. 
● Generally, the decrease in the aspect ratios and the Rayleigh numbers enhancement re-

sult in the augmentation of heat transfer. 
● The form of the streamlines changes completely when Rayleigh number increases from 

Ra = 108 to 109.  
The most effect of the aspect ratio changes is observed at Ra = 107 among consid-

ered Rayleigh numbers. 
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Ra = 107 

(a) (b)

 

Ra = 108 

 

Ra = 109 

 
Figure 9. Average Nusselt number (a) and (b) normalized Nusselt number distributions on the hot wall 
at different aspect ratios and Rayleigh numbers 

Nomenclature 
c – lattice speed 
ci – discrete particle speeds 
cp – specific heat at constant pressure  
F – external forces 
f – density distribution functions 
feq – equilibrium density distribution functions 
g – internal energy distribution functions 
geq – equilibrium internal energy distribution functions 
gy – gravity 
H – cavity height 
Nu – Nusselt number 
Pr – Prandtl number 
R – constant of the gases 
Ra – Rayleigh number 
Sαβ  – strain rate tensor 
T – temperature 
∆t – time increment 
∆x – lattice spacing 

x, y – Cartesian co-ordinates 
Vm – vertical velocity on the axial fields 
W – cavity width 

Greek symbols 

µ – dynamic viscosity  
ν – kinematic viscosity  
ρ – density 
τc – relaxation time for temperature  
τv – relaxation time for flow 
ωi  – weighted factor in direction i 

Subscripts 

avg – average  
C – cold 
f – fluid 
H – hot 
t – turbulence
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