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Abstract Solving of MHD flow by the lattice Boltzmann method, utilizing classical equations has been
investigated by presenting MHD mixed convection in a lid-driven cavity by a linearly heated wall. The
Hartmann number varied from Ha = 0 to 100; furthermore, the study has been conducted for Richardson
numbers (Ri) from 0.01 to 100, while the directions of the magnetic field were investigated for θ = 0°
and 90°. Results show that the augmentation of Richardson number causes heat transfer to increase, as
the heat transfer decreases by the increment of Hartmann number for various Richardson numbers and
the directions of the magnetic field. The highest decline of heat transfer on the linearly heated wall was
found at θ = 0° for Richardson numbers of Ri = 100 and Ha = 100. On the other hand, the least effect
of the magnetic field is observed at Ri = 0.01 from Ha = 25 to 100 for both directions on the linearly
heated wall. Moreover, the magnetic field influences heat transfer marginally at θ = 90° against θ = 0°,
which changes dramatically. Heat transfer on the heated wall at the bottom of the cavity behaves like the
linearly heated wall regarding the effect of the magnetic field.

© 2012 Sharif University of Technology. Production and hosting by Elsevier B.V.
Open access under CC BY-NC-ND license.
1. Introduction

Flow and heat transfer analysis in lid-driven cavities is
one of the most widely studied problems in thermo-fluids
areas. Numerous investigations have been conducted in the
past on lid-driven cavity flow and heat transfer, considering
various combinations of imposed temperature gradients and
cavity configurations [1–8]. This is because the driven cavity
configuration is encountered inmany practical engineering and
industrial applications, such as materials processing, flow and
heat transfer in solar ponds, dynamics of lakes, reservoirs and
cooling ponds, crystal growing, float glass production, metal
casting, food processing, galvanizing, metal coating and so on.
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The flow of an electrically conducting fluid in a magnetic
field is influenced by magnetohydrodynamic (MHD) forces
resulting from the interaction of induced electric currents with
the applied magnetic field. An externally imposed magnetic
field is also a widely used tool for control of melt flows
in the bulk crystal growth of semiconductors. One of the
main purposes of electromagnetic control is to stabilize the
flow and suppress oscillatory instabilities, which degrades
the resulting crystal. Wide ranges of investigations were
conducted by researchers in MHD natural convection. Kahveci
and Oztuna [9] investigated MHD natural convection flow and
heat transfer in a laterally heated partitioned enclosure. They
showed that the x-directional magnetic field is more effective
in damping convection than the y-directional magnetic field,
and the average heat transfer rate decreases with an increase
in the distance of the partition from the hot wall. Also, they
demonstrated that the average heat transfer rate decreases
up to 80% if the partition is placed at the midpoint and
an x-directional magnetic, and that flow and heat transfer
have little dependence on Prandtl number. Pirmohammadi
and Ghassemi [10] studied the effect of a magnetic field on
convection heat transfer inside a tilted square enclosure. They
found that for a given inclination angle (ϕ), as the value of
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Nomenclature

B Magnetic field
c Lattice speed
ci Discrete particle speeds
cp Specific heat at constant pressure
F External forces
f Density distribution functions
f eq Equilibrium density distribution functions
g Internal energy distribution functions
geq Equilibrium internal energy distribution func-

tions
gy Gravity

Gr Grashof number

Gr =

βgyH3(TH−TC )

ν2


Ha Hartmann number


Ha2 =

B2L2σe
µ


M Lattice number
Ma Mach number
Nu Nusselt number
Pr Prandtl number
R Constant of the gases
Ra Rayleigh number


Ra =

βgyH3(TH−TC )

να


Ri Richardson number


Ri =

Gr
Re2


T Temperature
x, y Cartesian coordinates
u Magnitude of velocity at x-direction
v Magnitude of velocity at y-direction

Greek letters

ωi Weighted factor indirection i
β Thermal expansion coefficient
τc Relaxation time for temperature
τv Relaxation time for flow
ν Kinematic viscosity
∆x Lattice spacing
∆t Time increment
α Thermal diffusivity
σ Surface tension

Subscripts

avg Average
C Cold
H Hot
n Natural convection
B Magnetic field

Hartmann number (Ha) increases, the convection heat transfer
reduces. Furthermore, they obtained that at Ra = 104, the
value of Nusselt number depends strongly upon the inclination
angle for relatively small values of Hartmann number, and at
Ra = 105, the Nusselt number increases up to about ϕ = 45°
and then decrease as ϕ increases.

Sathiyamoorthy and Chamkha [11] have done a numerical
study for the natural convection flow of electrically conducting
liquid gallium in a square cavity, where the bottom wall is
uniformly heated and the left and right vertical wall are linearly
heated, while the top wall is kept thermally insulated. They
exhibited that the magnetic field with an inclined angle has
effects on the flow and heat transfer rates in the cavity. The
number of researchers investigating the effects of MHD mixed
convection in lid-driven cavities is very limited. Sivasankaran
et al. [12] investigated mixed convection in a square cavity of
sinusoidal boundary temperatures at sidewalls in the presence
of a magnetic field, numerically. They found that the heat
transfer rate increases with the phase deviation up to ϕ = π/2,
and then it decreases for further augmentation in the phase
deviation. Then, it was obtained that the heat transfer rate
increases on increasing the amplitude ratio. Rahman et al. [13]
studied the development of a magnetic field effect on mixed
convective flow in a horizontal channel with a bottom heated
open enclosure. Their results indicate that various Hartmann,
Rayleigh and Reynolds numbers strongly affect the flow
phenomenon and temperature field inside the cavity, whereas
in the channel, these effects are less significant. Oztop et al. [14]
studiedmixed convection heat transfer characteristics for a lid-
driven air flowwithin a square enclosure having a circular body.
The authors found that the circular body has a significant effect
on flow field and temperature distribution. Moreover, Oztop
et al. [15] considered Laminar mixed convection flow in the
presence of a magnetic field in a top sided lid-driven cavity
heated by a corner heater. They exhibited that heat transfer
decreases, with increasing of Hartmann number. Nasrin and
Parvin [16] conducted a numerical work on the Hydromagnetic
effect on mixed convection in a lid-driven cavity with a
sinusoidal corrugated bottom surface. They indicated that the
average Nusselt number (Nu) at the heated surface increases
with a rise in the number of waves, as well as Reynolds number,
while decreasing with an increment in Hartmann number.

For more than one decade, the Lattice Boltzmann Method
(LBM) has been demonstrated to be a very effective numerical
tool for a broad variety of complex fluid flow phenomena
that are problematic for conventional methods [17–21]. The
kinetic nature of the LBM distinguishes it from other numerical
methods, mainly in three aspects. First, the convection operator
of the LBM is linear in velocity space, so computational efforts
are greatly reduced compared to those of some macroscopic
CFD methods, such as the Navier–Stokes equation solvers.
Second, the pressure of the LBM can be directly calculated using
an equation of state, unlike the direct numerical simulation
of the incompressible Navier–Stokes equations in which
the pressure must be obtained from the Poisson equation.
Third, the LBM utilizes a minimal set of velocities in phase
space: therefore, the transformation relating the microscopic
distribution function and macroscopic quantities is greatly
simplified. The main aim of the present study is to demonstrate
the use of the Lattice Boltzmann Method for MHD with a
simple and clear statement, and also solving MHD mixed
convection as a linearly heated side. Richardson number varies
in a wide range from 0.01 to 100. The results of LBM are
validated with previous numerical investigations. Effects of
Richardson number, Hartman number and various directions of
the magnetic field on flow field and temperature distribution
are considered simultaneously.

2. Mathematical formulation

2.1. Problem statement

Plotting of the considered model is shown in Figure 1. It
is a two-dimensional enclosure with different heated walls.
The left vertical is heated linearly and the right vertical wall
is kept at a low temperature (Tc). The top horizontal wall has
been considered adiabatic, as it was driven with a constant
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Figure 1: Geometry of the present study.

speed of U0, and the bottom horizontal wall is maintained at
a high temperature (TH ). The cavity is filled with air at a Prandtl
number of 0.71. The gravitational acceleration acts downward.
The uniform magnetic field, with a constant magnitude (B0), is
applied in the X and Y directions. It is assumed that the induced
magnetic field produced by the motion of an electrically
conducting fluid is negligible compared to the appliedmagnetic
field. The density varies, while the Boussinesq approximation is
valid. The flow is two-dimensional, laminar and incompressible.
In addition, it is assumed that the viscous dissipation and Joule
heating are neglected.

3. The classic equations for MHD natural convection

The continuity equation (1), the momentum equations (2)
and (3) and the energy equation (4) forMHDnatural convection
by macroscopic variables are written as:

∂u
∂x

+
∂v

∂y
= 0, (1)

ρ


u
∂u
∂x

+ v
∂u
∂y


= −

∂p
∂x

+ µ


∂2u
∂x2

+
∂2u
∂y2


+ Fx, (2)

ρ


u
∂v

∂x
+ v

∂v

∂y


= −

∂p
∂y

+ µ


∂2v

∂x2
+

∂2v

∂y2


+ Fy, (3)

u
∂T
∂x

+ v
∂T
∂y

= α


∂2T
∂x2

+
∂2T
∂y2


, (4)

where Fx and Fy are the total body forces in X and Y directions,
respectively, and they are defined as follows:

Fx =
Ha2µ
L2


v sinϕ cosϕ − u sin2 ϕ


, (5)

Fy = ρgβ(T − Tc) +
Ha2µ
L2


u sinϕ cosϕ − v cos2 ϕ


, (6)

where Ha is Ha = LB


σ
µ
as σ is electrical conductivity, B is the

magnitude of themagnetic field, L is the length of the cavity and
φ is the direction of the magnetic field.
Figure 2: Comparison of the streamlines and isotherms for natural convection at Ra = 105 and Ha = 50 between (a) the present results and (b) numerical results
by Sathiyamoorthy and Chamkha [11].
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Figure 3: Comparison of the streamlines and isotherms at various Richardson numbers for Ha = 0. (a) Ri = 0.01, (b) Ri = 1, and (c) Ri = 100.
4. Simulation of MHD with the lattice Boltzmann method

4.1. Brief introduction to LBM

The LBM method with standard, two dimensional, nine
velocities (D2Q9) for flow and temperature are used in this
work; for completeness, only a brief discussion is given in the
following paragraphs.

The Lattice Boltzmann equation with external forces can be
written as:
For the flow field:
fi(x + ci∆t, t + ∆t) − fi (x, t)

= −
1
τv


fi(x, t) − f eqi (x, t)


+ ∆tF . (7)
For the temperature field:

gi(x + ci∆t, t + ∆t) − gi(x, t)

= −
1
τc


gi(x, t) − geq

i (x, t)

. (8)

Eq. (7) recovers the continuity and momentum Eqs. (1)–(3),
where the total body forces was considered by the external
force of Eq. (7). Eq. (8) describes the evolution of the internal
energy and leads to Eq. (4).

u and ρ are the macroscopic velocity and density, respec-
tively, c is the lattice speed and is equal to ∆x/∆y, where ∆x is
the lattice space and, similar to the lattice time step, is equal to
unity. ωi is the weighting factor.
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Figure 4: Comparison of the streamlines and isotherms at various Hartman numbers for Ri = 0.01 and θ = 0°. (a) Ha = 25, (b) Ha = 50, and (c) Ha = 100.
The D2Q9 model for flow and temperature is used in
this work, so the weighting factors and the discrete particle
velocity vectors are different for these twomodels, and they are
calculated as follows:

f eqi (x, t) = ωiρ


1 +

ci · u
c2s

+
1
2

(ci · u)2

c4s
−

1
2
u · u
c2s


, (9)

geq
i = ωiT


1 +

ci · u
c2s


. (10)

For D2Q9:

ωi =

4/9 i = 0
1/9 i = 1 − 4
1/36 i = 5 − 8.

(11)
The discrete velocities, ci, for the D2Q9 (Figure 2a) are defined
as follows:

ci

=



0 i = 0

c

cos


(i − 1)

π

2


, sin


(i − 1)

π

2


i = 1 − 4

c
√
2


cos


(i − 5)

π

2
+

π

4


, sin


(i − 5)

π

2
+

π

4


i = 5 − 8.

(12)

The kinematic viscosity (ϑ) and the thermal diffusivity (α) are
then related to the relaxation times by:

ϑ =


τv −

1
2


c2s ∆t, α =


τc −

1
2


c2s ∆t. (13)
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Figure 5: Comparison of the streamlines and isotherms at various Hartman numbers for Ri = 1 and θ = 0°. (a) Ha = 25, (b) Ha = 50, and (c) Ha = 100.
Also, the external force appears for LBM as follows:

Fi = ωi · F · ci/c2s . (14)

Because of cs = c/
√
3, Eq. (12) is written as:

Fi = 3 · ωi · F . (15)

Finally, the macroscopic variable can be calculated in terms of
these variables, with the following formula:
Flow density:

ρ(x, t) =


i

fi(x, t). (16)

Momentum:

ρu(x, t) =


i

fi(x, t)ci + F . (17)
Temperature:

T =


i

gi(x, t). (18)

4.2. Effect of the magneto field on force term

The effect of the magnetic field was shown only at the force
term,where the total body forces at Eqs. (2) and (3) are replaced
with the external force at Eq. (7). It should bementioned that all
variables must become dimensionless in the force term of LBM.

F = Fx + Fy, (19)

Fx = 3ωkρ

A (v sin(θ) cos(θ)) −


u sin2(θ)


, (20)

Fy = 3ωkρ

(gβ (T − Tm))

+

A (u sin(θ) cos(θ)) −


v cos2(θ)


, (21)
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Figure 6: Comparison of the streamlines and isotherms at various Hartman numbers for Ri = 100 and θ = 0°. (a) Ha = 25, (b) Ha = 50, and (c) Ha = 100.
where A is defined by:

A =

Ha2

  ν

M2


. (22)

It is clear that (ρA) term at Eqs. (18) and (19) is equal to Ha2µ
L2

at
Eqs. (5) and (6), and it just becomes dimensionless.

4.3. Boundary conditions

4.3.1. Flow
Bounce-back boundary conditions were applied on all solid

boundaries, which mean that incoming boundary populations
are equal to out-going populations after the collision. For
instance, for the east boundary, the following conditions are
imposed:
f6,n = f8,n, f7,n = f5,n, f3,n = f1,n, (23)
where n is the lattice on the boundary.
4.3.2. Temperature
The bounce back boundary condition (adiabatic) is used on

the north of the boundaries. Paradigmatically, for the north
boundary, the following conditions are imposed:
g7,n = g5,n, g8,n = g6,n, g4,n = g2,n. (24)
Temperature at the west, east and bottom walls are known in
the west wall, TH(y) = TH − (TH − TC )y/L. Since we are using
D2Q9, the unknowns are g1, g5, g8, which are evaluated as;
g1 = TH(y)(ω1 + ω3) − g3, (25a)
g5 = TH(y)(ω5 + ω7) − g7, (25b)
g8 = TH(y)(ω8 + ω6) − g6. (25c)

4.4. Method of mixed convection solution

Viscosity is selected to insure that the Mach number is
within the limit of incompressible flow (Ma < 0.3). For the
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Figure 7: Comparison of the streamlines and isotherms at various Hartman numbers for Ri = 0.01 and θ = 90°. (a) Ha = 25, (b) Ha = 50, and (c) Ha = 100.
buoyant flow, by fixing Reynolds number, Prandtl number
and Mach number, the viscosity and thermal diffusivity are
calculated from their fixed definition:

ν =
1

√
Gr

MaMc, (26)

where M is the number of lattices in the y-direction (parallel
to gravitational acceleration). Grashof and Prandtl numbers are
defined as Gr =

βgyH3(TH−TC )

ν2
, and Pr =

ν
α
, respectively.

In addition, the speed of the lattice is constant (c =
1

√
3
). Furthermore, the Mach number is fixed at 0.1 in all

computations.
Moreover, the Richardson number (Ri = Gr/Re2) is constant

at three values of 0.01,1 and 100.
For getting the speed of the lid-driven side, the following
conditions are imposed.

u =
Reν
M

. (27)

Eq. (13) are used to calculate the relaxation times for density
and temperature distribution functions.

Nusselt number, Nu, is one of the most important dimen-
sionless parameters in describing the convective heat transport.
The local Nusselt number and the average value at the hot and
cold walls are calculated as:

NUy = −
L

∆T
∂T
∂x

, (28)

NUavg =
1
L

 L

0
NUydy. (29)
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Figure 8: Comparison of the streamlines and isotherms at various Hartman numbers for Ri = 1 and θ = 90°. (a) Ha = 25, (b) Ha = 50 and (c) Ha = 100.
Finally, the following criterion to check for the steady-state
solution was used:

Error = max
T n+1

− T n
 ≤ 10−5. (30)

5. Results and discussion

5.1. Code validation and grid independence

This problem was investigated at a fixed Reynolds number
of (Re = 100) and various Richardson numbers of (0.01 <
Ri < 100), while the Hartmann number changes between
0 and 100, and was considered in X and Y directions. The
lattice Boltzmann method scheme was used for obtaining the
numerical simulations in a cavity filled with air at Pr = 0.71.
A linearly heated boundary was considered. Meanwhile, an
extensive mesh testing procedure was examined to guarantee
a grid independent solution. Five different mesh combinations
and their times were explored for the case of Ri = 1 and
Ha = 0. The present code was tested for grid independence
by calculating the average Nusselt number on the left wall.
In harmony with this, it was found that a grid size of
101_101 ensures a grid independent solution. It was confirmed
that the grid size of (101_101) ensures a grid independent
solution, as portrayed by Table 1. To check the accuracy
of the present results, the present code is validated against
published works in the literature on convective flow in lid-
driven cavities. The results are compared in Table 2. Moreover,
for testingMHD simulation accuracy, as the cavity has a linearly
heated side, we compared the present results against the
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Figure 9: Comparison of the streamlines and isotherms at various Hartman numbers for Ri = 100 and θ = 90°. (a) Ha = 25, (b) Ha = 50 and (c) Ha = 100.
work of Sathiyamoorthy and Chamkha [11] (Figure 2). The
consequences of this comparison demonstrate the appropriate
ability of this method for solving MHD problems.

5.2. Effect of Richardson number on streamlines and isotherms

Figure 3 shows the isotherms and streamlines for various
Richardson numbers at Ha = 0. As the Richardson number
augments, the isotherms near the walls and the gradient of
temperature at heated and linearly heated walls increase. This
phenomenon is due to Grashof number enhancement by the in-
crement of Richardson number, provoking heat convection to
rise. In addition, the streamlines alter their characteristics from
concentration at the top of the cavity in the direction of the lid-
driven velocity to a central form, with a secondary circulation
created at the top left corner of the cavity at Ri = 100, circulat-
ing opposite the main flow in a counterclockwise rotation.

5.3. Effect of Hartmann number on streamlines and isotherms in
an X-direction magnetic field

Figure 4 displays the streamlines and the isotherms for dif-
ferent Hartmann numbers at Ri = 0.01. The effect of Hart-
mann number on the isotherms is observed at T = 0.2, where
it moves up further from the hot wall and finally causes the
gradient of the temperature to fall. The behavior demonstrates
that heat transfer declines with the augmentation of Hartmann
number. As Hartmann number increases from Ha = 0 to 25,
a new circulation is produced at the bottom of the cavity and
the value of the stream function for the main flow decreases.
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Figure 10: Local Nusselt number distributions on the left wall at various
Richardson numbers and Hartman numbers for θ = 0°. (a) Ri = 0.01, (b)
Ri = 1, and (c) Ri = 100.

Figure 11: Local Nusselt number distributions on the left wall at various
Richardson numbers and Hartman numbers for θ = 90° (a) Ri = 0.01, (b)
Ri = 1, (c) Ri = 100.

At Ha = 50, the value of the stream functions continue their
declining trend, and a new weak circulation is created, which
agrees with the main flow. The second circulation, which circu-
lates counterclockwise in the middle of the cavity, ameliorates,
and themain flow at the top of the cavity weakens, whereas the
third circulation extends at Ha = 100.

Figure 5 exposes the effect of Hartmann number at Ri = 1.
The isotherm has a similar profile with Ri = 0.01 against
the increment of Hartmann number. The core of the stream
function moves up at Ha = 25 and a vortex is erected by a
marked increase in Hartmann number to Ha = 50. But, at
Ha = 100, a secondary circulation exists marginally in the
middle of the cavity as two main circulations surround it.

In Figure 6, we consider the isotherms and the streamlines
for multifarious Hartmann numbers and Ri = 100. The effect
of Hartmann number in the isotherms is evident where they
rise toward the top wall, and a depletion of the temperature
Table 1: Grid independence study.

Mesh size NUh Time (s)

25 × 25 1.19 15.953
50 × 50 1.125 23.953
75 × 75 1.146 43.453
100 × 100 1.165 104.875
125 × 125 1.165 356.281

gradient on the hot bottom wall is seen. At Ha = 25, secondary
circulation develops and the core of the main flow moves
downwards. For high Hartmann numbers, the change in the
stream functions is negligible, and exclusively the power of the
secondary circulation decreases, andmarginalmovement at the
top of the cavity for the stream function was observed.

5.4. Effect of Hartmann number on the streamlines and isotherms
in a Y-direction magnetic field

Figure 7 illustrates the isotherms and streamlines for three
different Hartmann numbers, as Richardson number is fixed
at Ri = 0.01. It is obvious that the changes of the isotherms
are marginal by the growth of Hartmann number. But, the
streamlines exhibit sundry trends for each Hartmann number,
whilst the core of the main flow approaches the top wall of
the cavity. Meanwhile the value of the stream function drops
steadily and the streamlines form linearly in the middle of the
cavity by the rise of Hartmann number.

Figure 8 shows the effect of Hartmann number on the
streamlines and isotherms at Ri = 1. As can be seen, the
counters have a similar pattern, with Ri = 0.01, towards the
growth of Hartmann number. With the differences that the
streamlines have a downward inclination in the center of the
flow field and at Ha = 25, the isotherms have more convection
against Ri = 0.01, where T = 0.3 draws to the edges of the
cavity, conversely at Ri = 0.01.

Figure 9 explores the isotherms and streamlines for various
Hartmann numbers at Ri = 100. As Hartmann number soars,
the secondary circulation at the corner of the cavity become
intense and the circular core of the flow changes to an elliptical
form. Hartmann number influences the isotherm noticeably,
just at T = 0.5, which moves up.

5.5. Effect of magnetic field on Nusselt number

Distribution of the local Nusselt number on the linearly
heated wall for various Hartmann and Richardson numbers, as
θ = 0°, was considered in Figure 10. At Ri = 0.01 and 1,
the Nusselt number exhibits a similar manner, decreasing with
the augmentation of Hartmann number. A noticeable point at
Ri = 0.01 is at 0.2 < y < 0.4 for Ha = 25, which places it
at the lowest point contrary to the impression. Also, the space
between Hartmann numbers of 0 and 25 is more at Ri = 0.01.
A sinusoidal behavior is observed for distribution of the local
Nusselt number at Ri = 100, as it is irregular for various
Hartmann numbers, but it is interesting that the maximum and
minimum values of Nusselt number occur at Ha = 50.

Figure 11 depicts the local Nusselt number on the left wall,
as Hartmann number and Richardson number vary at θ = 90°.
The local Nusselt number declines gradually by the growth of
Hartmann number, except at 0 < y < 0.2, where Ha = 0
has the lowest value. At Ri = 100, similar to θ = 0°, it has
a sinusoidal distribution, with this difference, that it behaves
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Table 2: Comparison of average Nusselt number with available results in the literature for lid-driven cavity for Gr = 100 and Pr = 0.71.

Re Ri Present work Waheed [1] Tiwari and
Das [7]

Abdelkhalek [6] Khanafer
et al. [5]

Sharif [4] Khanafer and
Chamka [3]

Iwatsu
et al. [2]

1 100 1.0094 1.00033 – – – – – –
100 0.01 2.09 2.03116 2.10 1.985 2.02 – 2.01 1.94
400 0.00062 4.08082 4.0246 3.85 3.8785 4.01 4.05 3.91 3.84

1000 0.0001 6.54687 6.48423 6.33 6.345 6.42 6.55 6.33 6.33
Figure 12: Average Nusselt number distributions on the left wall at various Richardson number for (a) θ = 0°, and (b) θ = 90°.
regularly and steadily, whilst the maximum and minimum
values of Nusselt number belong to Ha = 100.

Figure 12 demonstrates the average Nusselt number on the
left and the bottom walls for two directions of magnetic field.
Generally, the average Nusselt number drops gradually with an
increase in Hartmann number at θ = 90° for twowalls, while at
θ = 0°, this decline is sharp, and the behavior ismore evident at
Ri = 100.Meanwhile, it shows that the effect of high Hartmann
number is negligible at Ri = 0.01 and 1 for all cases.

6. Conclusion

In this paper, the effects of a magnetic field on mixed
convection flow in a lid-driven cavity with a linearly heated
wall have been analyzed using the lattice Boltzmann method.
In this method, just the force term at LBM changes in the
presence of MHD flow, as the added term rises from the classic
equations of fluid mechanics. Moreover, all parameters of the
added term and the method of their computing are exhibited.
This study has been carried out for pertinent parameters in
the following ranges: the Richardson number of base fluid,
Ri = 0.01 − 100, the Hartmann number of the magnetic
field between 0 and 100, and Reynolds number fixed at Re =

100, where the direction of the magnetic field was conducted
at θ = 0° and 90°. This investigation was performed for
various mentioned parameters, and some conclusions were
summarized as follows:

(a) A good agreement, validwith previous numerical investiga-
tions demonstrates that the Lattice BoltzmannMethod is an
appropriate method for different applicable problems.

(b) Heat transfer is augmented by the growth of Richardson
number.

(c) Heat transfer declines with the increment of Hartmann
number for various Richardson numbers and the directions
of the magnetic field.

(d) At Ri = 0.01 and 1, the effect of the magnetic field is
marginal for high Hartmann numbers.

(e) At θ = 0°, heat transfer reduces with augmentation of the
Hartmann number higher than θ = 90° for Ri = 100, but,
for Ri = 0.01 and 1, the trend is similar.
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(f) At θ = 0°, for high Hartmann number, a secondary circula-
tion is created opposite to the main flow direction, causing
heat transfer to decrease.
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