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The interaction between T cell and dendritic cells (DCs) that leads to T cell activation
affects the progression of the immune response including autoimmune diseases.
Antigen presentation on immune cell surface, formation of an immunological synapse
(IS), and specific identification of complex by T cells including two activating signals
are necessary steps that lead to T cell activation. The formation of stimulatory IS
involves the inclusion of costimulatory molecules, such as ICAM-1/LFA-1 and CD28/B7-
1, and so on. Some fusion proteins and monoclonal antibodies targeting costimulatory
molecules have been developed and approved to treat autoimmune diseases, including
rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS),
type I diabetes (T1D), inflammatory bowel disease (IBD), and psoriasis. These biological
agents, including CTLA-4- and LFA-3-Ig, anti-CD3 monoclonal antibody, could prevent
the successful engagement of DCs by T cell with significant efficacy and safety profile.
In this article, we reviewed the molecular mechanisms of T cell activation during the
interaction between T cells and DCs, and summarized some biological agents that target
costimulatory molecules involved in the regulation of T cell activation.
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INTRODUCTION

Various organ specific autoimmune diseases are mediated by an imbalance of T cell subsets, e.g.,
an absence of regulatory T cells, or tissue injury driven by pathological T helper cell responses.
Examples are rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis
(MS), type I diabetes (T1D), and inflammatory bowel disease (IBD) (Fletcher et al., 2010; Burmester
et al., 2014; Geem et al., 2015; Suarez-Fueyo et al., 2016; Pugliese, 2017). In an inflammatory
environment, autoreactive T cells are activated initially by dendritic cells (DCs). Like macrophages
and B cells, DCs are professional antigen-presenting cells (APCs). However, DCs have the unique
property of inducing the differentiation of naïve CD4+ T cells into helper and effector T cells with
a unique combination of abilities, which allows DCs to effectively process antigen, strongly express
costimulatory molecules, secrete cytokines, and migrate to tissues or lymphoid organs to prime T
cells (Steinman, 2007). Therefore, DCs emerged as critical players in the initiation and development
of immune response.

Frontiers in Pharmacology | www.frontiersin.org 1 June 2018 | Volume 9 | Article 642

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2018.00642
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphar.2018.00642
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2018.00642&domain=pdf&date_stamp=2018-06-26
https://www.frontiersin.org/articles/10.3389/fphar.2018.00642/full
http://loop.frontiersin.org/people/467434/overview
http://loop.frontiersin.org/people/339244/overview
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-00642 June 22, 2018 Time: 16:50 # 2

Tai et al. T Cells Activation by DCs

In identifying pathogen-associated cues, DCs undergo a series
of functional changes known as maturation. Mature DCs present
antigenic peptides in the context of major histocompatibility
complex (MHC) class II to the T cell receptor and express
co-stimulatory molecules CD40 and B7. Mature DCs are
characterized by the production of cytokines, such as IL-12,
and by the expression of homing receptors, such as CCR7,
which directs the migration of DCs into the T-cell regions
of secondary lymphoid organs. Together these changes enable
DCs to effectively activate naïve T cells. At the same time,
DCs induce the expression of the corresponding costimulatory
molecules of CD40L, CD28, on T cells. Mature DCs promote
naïve T cells differentiate into Th1, Th2, Th17, or Treg cells
in a stimulus-dependent manner by secreting cytokines. In a
mouse model of EAE in vivo and in vitro, DCs which express
aberrant P38 can promote the differentiation of Th17 cells by
inducing the secretion of IL-17 and the expression of IL-23
receptors (IL-23R) (Huang et al., 2012). Detection of mature DCs
producing large quantities of IL-12 and IL-23 strongly supports
the notion that DCs play a key role in autoimmune diseases
by promoting a deleterious imbalance between Th1, Th2, and
Th17 cells (Lebre et al., 2008; Tournadre et al., 2012; Segura
et al., 2013).The majority of DCs exist in the inflammatory
synovia fluid of RA patients, expressing CD1a and secreting IL-
23 (Segura et al., 2013). Furthermore, DCs with a gene deletion of
interleukin 1 receptor related kinase M (IRAK-M) show strong
antigen presenting ability, resulting in the abnormal activity of
diabetogenic T cells and autoimmune reaction in vitro and the
rapid onset of T1D in vivo in immunodeficient NOD mice when
cotransferred with diabetogenic T cells (Tan Q. et al., 2014).

DCs include immunogenicity DCs and tolerogenic DCs
according to function. Interactions between tolerogenic DCs and
CD4+Foxp3+ regulatory T cells (Tregs) play a critical role in
maintaining peripheral tolerance and preventing activation of T
cells (Audiger et al., 2017). Peripheral tolerance is associated with
a high activity of Tregs and a reduced inflammatory profile of
Th cells (Min et al., 2006; Li et al., 2008). CD4+ Treg in both
the spleen and lymph node help to maintain tolerogenic status
of DCs through the expression of CTLA-4 in mice (Wing et al.,
2008).

DCs from different location exert different functions.
Plasmacytoid DCs secrete large amounts of type I interferons
(such as IFN-alpha and IFN-beta) after identification of
the viruses through TLR7 and TLR9, which are located in
intracellular compartments (Gilliet et al., 2008). The central role
of plasmacytoid DC in autoimmune diseases is emphasized by
its association with type I-interferon signal. Type I interferons
produced by plasmacytoid DC from human PBMCs also supports
IL-17 secretion and Th17 responses (Lombardi et al., 2009).
Furthermore, human plasmacytoid DCs enhance thymic Treg
expansion and generation of peripheral Treg through the
production of indoleamine 2, 3-dioxygenase (IDO) and the
expression of programmed death-ligand 1 (PD-L1) in vivo and
in vitro (Chen et al., 2008; Amarnath et al., 2011; Creusot et al.,
2014). Lymphoid-resident DCs rapidly extracts antigens from
lymph and blood for presentation to T cells (Sixt et al., 2005).
In particular, CD205+ DCs in the spleen of mice are able to

induce the tolerance of CD4+ T cell under suboptimal activation
conditions (Yamazaki et al., 2008).

The interaction between T cells and DC leads to the formation
of immunological synapse (IS) and is maintained by highly
expressing adhesion molecules (LFA-1, LFA-3, ICAM-1, ICAM-
2), cytokines and chemokines (Lee et al., 2002; Tseng et al., 2008).
In this article, we reviewed the molecular mechanism of T cells
activation by DCs and immunotherapy targeting T cell activation
in autoimmune diseases.

MOLECULAR MECHANISMS OF T CELL
ACTIVATION BY DCS

There are three stages during T cells activation by DCs, namely
antigen presenting, antigen recognition of T cells and two signals
formation. In addition, IS formation between T cells and DCs
plays an important role in T cell activation.

Antigen Presenting
Germline encoded pattern recognition receptors (PPR) specific
for pathogen-associated patterns (PAM) are present on immature
DCs. An engagement of these membrane-bound receptors
trigger a maturation of DCs and lead to an up-regulation of
costimulatory molecules (Kabelitz and Medzhitov, 2007). Mature
DCs in mice express chemokine receptor 7 (CCR7) and begin
to migrate into regional lymph nodes after an encounter with
antigen (Ritter et al., 2004).

For a presentation with MHC class II, antigen is degraded by
DCs to a suitable length (approximately 12 amino acids) utilizing
proteasomes in the endogenous pathway. These antigenic
peptides bind to specific grooves in the MHC class II molecules
(Jones et al., 2006). Peptide-MHC II complexes are formed in
the rough endoplasmatic reticulum and transported to the cell
surface for presentation (Vyas et al., 2008; Neefjes et al., 2011).
At the local draining lymph node, DC present complexes of
processed peptides together with MHC class II to naïve CD4+ T
cells which bind to this combination with their TCR and initiate
signaling. The peptide binding to MHC class I and the subsequent
presentation to CD8+ T cells is similar in many aspects and
will not be discussed in detail. Overall, antigen presentation with
MHC class II and MHC class I are mainly two modes for DCs.

A third mode of antigen presentation utilizing the conserved
non-classical MHC class I molecule CD1 plays an important role
in microbial infection and the immune response to lipid antigens
(Shao et al., 2005; Barral and Brenner, 2007). CD1 has 30%
homology with MHC class I molecules, and there are main five
types of CD1 in humans, termed CD1a-e (Barral and Brenner,
2007). Probably the best studied member of the CD1 family is
CD1d which presents predominantly lipids to CD1-restricted T
cells that have a limited repertoire of TCR and have been termed
Natural Killer (Kang et al., 2014). Although interferon (IFN)-
gamma secretion by CD1-restricted T cells during infection had
been shown before, the function of CD1 restricted T cells was not
entirely understood for a long time (Gilleron et al., 2004). Only
recently, it was demonstrated that the expression of human class
I CD1 molecules in transgenic mice caused a rapid response of
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CD1-restricted T cells after re-exposure to antigen, suggesting
a protective effect of CD1-restricted T cells (Felio et al., 2009).
Natural sebum can be used as a headless antigen and presented
to autoreactive T cells through CD1a (de Jong et al., 2010). In
addition, researchers have found a group of highly conserved T
cells in tuberculosis (TB) patients. These conserved T cells could
recognize specifically mycobacterial antigens presented by CD1b
(Van Rhijn et al., 2013). These findings suggest that the antigen-
presenting molecule CD1 plays an important role during special
antigen presentation.

Antigen Recognition of T Cells
T cell receptor (TCR) on T cells not only identify peptide-MHC
complexes derived from host cells infected by pathogens, but
also recognize similar structures derived from healthy host cells,
so called autoantigens. The specificity of the TCR for antigen
is located in the V segment, which is composed of N-terminal
of two TCR polypeptides (Govers et al., 2010). Both V alpha
and V beta have 3 hypervariable regions and are also known as
the complementarity determining region, namely CDR1, CDR2,
and CDR3. CDR3 is a largest hypervariable region and directly
determines the antigen binding specificity of TCR (Feng et al.,
2015). The TCR identifies simultaneously the entire complex of
antigenic peptide and MHC molecule as a first step in T cell
activation (Reiser et al., 2000). The comparison between the
TCR conformation and the conformation of TCR bound to the
peptide-MHC complex indicates that CDR3 region undergoes
a large conformational transition in order to obtain a diagonal
position that allows the binding to peptide-MHC complex
(Garcia, 2012). When the V segment of the TCR identifies
an antigen/MHC complex, the TCR heterodimer deliver the
activation signal to the cell nucleus through the constant
transmembrane components of the CD3 complex. (Schamel et al.,
2005). Therefore, TCR signaling has a key role in determining
T cell fate. TCR-peptide-MHC complexes appear to support a
model of physical specificity between TCR germline V regions
and MHC.

Two Signals Are Necessary for Activation
of Naïve T Cells
Naïve T cell activation by DCs requires two signals, termed
signal-1 and signal-2 (Anderson and Siahaan, 2003). Signal-1 is
equivalent to the binding of TCR to peptide-MHC complex (Garg
et al., 2010; Vesely et al., 2011; Manikwar et al., 2012). Signal-
2 requires the interaction of costimulatory molecules at the
interface between DCs and T cells (B7/CD28, LFA-1/ICAM-1 and
ICAM2, CD2/LFA-3) (Figure 1). The combination of TCR and
peptide-MHC complex (signal 1) will lead to phosphorylation of
the immunoreceptor tyrosine-based activation motif (ITAM) on
CD3, which is closely adjacent to TCR by Lck kinase (Rossy et al.,
2013). T cells receive signal-1 when the activation cascade leads
to signaling through multiple TCR for several hours (Frauwirth
and Thompson, 2004). This sustained signaling is necessary for
the effective activation of signal transduction pathways that lead
to the activation of nuclear transcription factors. The clustering
of TCR in IS at the interface between T cells and DC is necessary

FIGURE 1 | Molecular interactions at the interface of T-cell and APC. Signal-1
is provided by the interaction between TCR and the MHC-peptide complex.
The co-stimulatory signal (Signal-2) can be delivered by different pairs of
molecules.

for continuous signal transduction and will be discussed in
more detail later. Signal-2 was initialized by the interaction of
costimulatory molecules expressed DCs and T cells. Positive
signals, such as CD28/B7-1 (CD80) and CD28/B7-2 (CD86), and
negative signals, such as CTLA-4/CD80 and CTLA-4/CD86 have
been identified (Huang et al., 2012; Manikwar et al., 2012). As
mentioned above pairs of costimulatory molecules (CD80/CD28,
LFA-1/ICAM-1, or ICAM2, CD2/LFA-3) provide signal 2. The
activation signal of these costimulatory molecules is delivered to
T cells via the ITAM of the cytoplasmic domain, which enhances
the TCR response to antigen (Acuto et al., 2008). It was two
signals model for T-cell activation. T cells could be activated
in simultaneously receiving signal-1 from T-cell recognition of
antigen and signal-2 from costimulatory molecular. However, it
was an off signal to T cells in only receiving signal-1, and T cells
would translate into tolerance, clone incompetent or deletion.

CD28/CD80 was a pair of co-stimulatory molecules that
mediated and enhanced immune responses, but these molecules
were not directly involved in memory immune responses (Kopf
et al., 2000). Furthermore, the co-stimulatory signal of CD28 was
related mainly to initiating interaction between DCs and T cells.
The CD28/CD80 signal activate T cells to express multiple other
costimulatory molecules, these costimulatory molecules control
the balance of immune response and the stability of internal
environment. The interaction between cytotoxic T lymphocytes
(CTL) and Th or Th and B cells rests on other costimulatory
molecules, such as OX40 (CD134), inducible T-cell costimulator
(ICOS) (Bansal-Pakala et al., 2004). The costimulatory molecule
4-1BB and its ligand 4-1BBL can control adaptive immunity
(Lee et al., 2008). Treg cells up-regulate the expression of 4-1BB
in response to IL-2 and suppressed T cell proliferation. At the
same time, the synergy of 4-1BB and CD28 signal can affect cell
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polarization, and promote Th0 cells differentiation into Th1 cells
which are characterized by the production of IFN-gamma (Elpek
et al., 2007).

CTLA-4 (CD152) is homologous to CD28 and also expressed
on activated T cells, but the cytoplasmic domain of CTLA-4
has an immunoreceptor tyrosine-based inhibitory motif (ITIM)
(Topalian et al., 2015). Therefore, CTLA-4 binds to CD80
in competition with CD28 with an affinity that is 20 times
higher than CD28/CD80 and can send an inhibitory signal to
activated T cells through its ITIM motif to restore the balance
of immune response (Pentcheva-Hoang et al., 2004; Vogel
et al., 2015). CTLA-4 activates protein tyrosine phosphatase
(PTP) through the ITIM structure and inhibits T cell activation
signal transduction, leading to a negative regulation of T cell
activation (Chemnitz et al., 2004). Additionally, CTLA-4 inhibits
the expression of IL-2 receptor alpha chain, IL-2 secretion and
IL-2 mRNA accumulation, also resulting in an inhibition of the
activation of T cells in preclinical mouse models (Hannani et al.,
2015). Hence, costimulatory signals mediated by costimulatory
molecules, including positive signals and negative signals, play
important role in regulating interaction between T cell and DCs
and maintaining the balance of immune response.

IS Formation Plays an Important Role in
T Cell Activation
IS play an important role in T cells activation, and IS formation
involves a variety of costimulatory molecules, such as ICAM-
1/LFA-1, CD28/B7-1, and so on (Schwartz et al., 2002).

Formation Mechanisms of IS
In the process of T cell and DC interaction, a variety of
transmembrane molecules accumulate in a “raft” structure that
is rich in sphingomyelin and cholesterol, and are clustered at the
interface of T cell and DC contact. This special “raft” structure
has been termed IS. Before the formation of IS, T cells form
pseudopods in search of peptide MHC complexes on APCs.
After the initial contact the formation of IS is a dynamic process
that has been described to depend on a planar lipid bilayer.
IS formation includes three phases: (i) The first stage is the
connection of TCR and peptide MHC complex. The adhesion
molecules such as LFA-1/ICAM-1 and CD2/LFA-3 are recruited
to the nascent rafts (Barreiro et al., 2007); (ii) The second stage
has been termed the peptide MHC complex transfer stage. In
the early stages of IS formation, TCR- peptide MHC complex
is transported to the central region of IS, while LFA-1/ICAM-
1 is transferred to the peripheral region to form mature IS; (iii)
The third stage is the formation of a stable contact region at
the interface of T cell and antigen presenting cell. In this stage,
the super molecular structure of a mature IS can be maintained
for 1 h, while PKC theta, Bcl10, IKK beta are recruited to IS by
cytoskeleton changes (Dustin, 2005).

Molecular Structure of IS
The molecular structure of IS include three areas, namely central
supermolecular activation cluster (cSMAC), peripheral SMAC
(pSMAC), and distal SMAC (dSMAC). The molecules in cSMAC

area mainly includes TCR- peptide MHC complex, CD3, CD28,
and signal transduction molecules such as PKC theta and Lck
(Valitutti, 2008). Adhesion molecules such as LFA-1/ICAM-1 or
DC-SIGN surround pSMAC area (Dustin, 2005). CD2/LFA-3 is
located between cSMAC and pSMAC, and CD43, CD45, and
PSGL-1 are located at dSMAC. The number of TCRs in cSMAC is
only double that of in pSMAC, but the number of LFA in pSMAC
is almost 6 times that of in cSMAC. In fact, cSMAC and pSMAC
do not show obvious boundaries. Although cSMAC and pSMAC
can be maintained for several hours, the numbers of receptors
and molecules in IS are changed dynamically (Dustin, 2005).
CD45 is a unique molecule that is transferred to dSMAC from
cSMAC, which may be related to the activation of Lck at the stage
of early IS formation (Grigorian et al., 2009). cSMAC take part
in the reuse and degradation of TCRs, which down-regulate the
TCR and attenuate signals (Figure 2). Thus it can be seen that the
molecular structure of IS was very complex involving in many
molecules and signals, which take part in IS formation through
interaction and dynamically balance.

Factors That Influence IS Formation
TCR signaling is necessary for the maintenance of IS. TCR-
microclusters (TCR-MCs) are formed immediately after the TCR
on T cells adheres to peptide MHC complex including many
signal molecules such as CD3, SLP-76, TCR, and ZAP-70 (Campi
et al., 2005; Saito and Yokosuka, 2006). TCR-MCs are the
activation site of initial signal. TCR stimulation, calcium influx,
tyrosine activation occur before the formation of cSMAC. TCR-
MCs are continuously produced, even after IS formation (Barda-
Saad et al., 2005). TCR is rapidly internalized about 5 min after
the exposure to DC, but TCR stimulation will continue for several
hours, which results in the activation signal in the peripheral
MCs rather than cSMAC. Blocking TCR-peptide–MHC complex
within 10 hours results in IS dissolution, decreasing the level of
calcium influx and causes cell separation. These findings indicate
that the maintenance of TCR signaling is necessary for the
maintenance of IS and the full activation of T cells.

CD4 molecule could promote IS formation. CD4 can improve
the sensitivity of T cells to antigens and can accumulate Lck to
the center region of IS after the initial exposure of DCs to T
cells. CD4-deficient T cells have a reduced proliferative response
to antigen stimulation and the effect of IS formation is also
significantly reduced. The cells expressing CD4 or displaying a
peptide MHC complex have a strong binding, suggesting that
CD4 is not only an auxiliary receptor but also contributes to
cell adhesion. The actual lipid raft is the key components of a
functional IS. The accumulation of lipid rafts was observed at
cSMAC, indicating that the formation of IS was accompanied
by the movement of lipid rafts to cSMAC and gathered on the
contact interface of cells (Henel et al., 2006). Lck and LAT are
linked to lipid rafts by deacylation. Other signaling molecules
such as PLC gamma, SLP76, and Vav are transferred to IS by
binding to phosphorylated tyrosine on LAT (Phee et al., 2005;
Braiman et al., 2006; Soares et al., 2013). CTLA-4 limits the
accumulation of lipid rafts, thereby inhibiting T cell proliferation
and cytokine secretion (Teft et al., 2006). Actin movement is
associated with the transportation of cytoskeleton and can be
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FIGURE 2 | En face view of the IS with cSMAC, pSMAC, and dSMAC. Active reorganization via cytoskeleton-directed movements gives rise to the cSMAC. The
mature synapse with the cSMAC, the pSMAC, and the dSMAC is observed after T-cell–APC contact.

blocked by the myosin inhibitor butanedione monoxime (van der
Honing et al., 2010).

Overall, TCR signaling, CD4 molecule, lipid raft, PLC gamma
and CTLA-4, and so on not only involve in IS information
but also modulate IS information. Any abnormal signals or
the imbalance among molecules would lead to abnormal T cell
activation in autoimmune diseases. These molecules might be
new drug targets, and it would offer new therapy strategies
through developing new drugs targeting above molecules.

IMMUNOTHERAPY TARGETING T CELLS
ACTIVATING IN AUTOIMMUNE
DISEASES

Detailed insights into the molecular mechanisms of the
interaction between T cells and DCs are helpful to design
immunotherapy strategies that target T cell activation in
autoimmune diseases. At present, some biological agents, such as
CTLA-4Ig (Abatacept), Anti CD3 monoclonal antibody, LFA-3
Ig fusion protein (Alefacept) that target co-stimulation molecules

on T cell have been developed and approved to treat autoimmune
diseases.

CTLA-4Ig Modulates Co-stimulatory
Signals and Inhibits T Cell Activation
The recombinant fusion protein, CTLA-4Ig (Abatacept) that
comprises the extracellular domain of human CTLA4 and a
fragment of Fc domain of human IgG1 belongs to a new
type of selective co-stimulatory modulators. Abatacept prevents
complement fixation and modulates the necessary co-stimulatory
signal for T cell activation. Furthermore, it binds to CD80 and
CD86, thus competing with CD28 and reducing T cell activation
(Cutolo and Nadler, 2013; Keating, 2013). The fusion protein
affects multiple downstream pathways through modulation of
upstream events of T cells activation. Additionally, Abatacept
inhibits T-cell proliferation and the secretion of IFN-gamma,
IL-1, IL-6, and TNF-alpha (Koenders et al., 2012; Whitfield et al.,
2017).

As therapy, Abatacept is mainly used in RA treatment
(Genovese et al., 2005; Dorner et al., 2010). It has been proven to
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be efficient, safe, and tolerable in combination with methotrexate
(MTX) in clinical trials with RA patients when the response to
MTX was inadequate (Kremer et al., 2005). In Europe, Abatacept
is approved for the treatment of patients with highly active and
progressive RA, who have never received MTX treatment. It
is also approved for the treatment of patients with moderate
to severe active RA, who have shown inadequate responses
in previous therapies with at least one conventional disease-
modifying antirheumatic drug (cDMARDs) such as MTX or
a TNF inhibitor. In phase III clinical trials, intravenous or
subcutaneous injection regimens of Abatacept were beneficial for
RA symptoms, disease activity, structural damage progression
and physical function of the joint. In a long-term follow-
up, the efficacy could be shown to be maintained. The
drug-free remission rates following discontinuation of all RA
treatment were significantly higher after treatment of Abatacept
plus methotrexate than of methotrexate alone. Intravenous
and subcutaneous injections of Abatacept were generally well
tolerated and showed low immunogenicity (Blair and Deeks,
2017). Previous studies using synovial tissue from RA patients
treated with Abatacept found the inhibition of B-cell proliferation
and down regulation of the expression of B-cell markers (Buch
et al., 2009).

Abatacept was also used to treat lupus nephritis by inhibiting
CD28 engagement on T cells and plasma cells (Bahlis et al., 2007).
This mechanistic rationale is strongly supported by the studies in
SLE murine models, in which treatment with Abatacept or other
forms of CTLA4-Ig have been shown to arrest and even reverse
established lupus nephritis. Treatment with Abatacept induced
remission by binding to CD80 on renal podocytes in patients with
focal segmental glomerulosclerosis (Yu et al., 2013; Group, 2014).

Anti-CD3 mAbs by Induce Anergy and
Apoptosis of Activated T Cells
Anti CD3 monoclonal antibodies are an immunosuppressant.
Muromonab-CD3 is a murine IgG2, which specifically binds
to CD3 on T cells and blocks proliferation and function of
T cells. Tolerance induction by anti-CD3 mAbs is related to
the induction of Tregs that control pathogenic autoimmune
responses preferentially by inducing anergy or apoptosis in
activated T cells while ignoring Tregs (You et al., 2008; Penaranda
et al., 2011). Consequently, anti-CD3 mAb therapy is associated
with an increase in number and function of Treg and regulatory
cytokines such as TGF-beta and IL-10. The heterogeneity of
TCR expression by different T-cell subsets might explain the
differential effect of anti-CD3 mAb on effector, regulatory or
naïve T cells (Valle et al., 2015). At the same time anti-CD3 mAb-
induced signaling through the CD3/TCR complex can render the
T cell anergic or trigger apoptosis. Various studies have shown
that anti-CD3 mAbs effectively treat chronic inflammatory and
autoimmune diseases, such as IBD, T1D and MS. Intravenous
administration of anti-CD3 mAb has been successfully tested
in numerous animal models of autoimmunity, including the
experimental autoimmune encephalomyelitis (EAE) model of
MS, diabetic NOD mice, TNP-KLH induced colitis (a model
of IBD) and collagen-induced arthritis (Kohm et al., 2005;

Chatenoud and Bluestone, 2007; Notley et al., 2010; Wu et al.,
2010).

Biological agents targeting CD3 include teplizumab,
otelixizumab, and visilizumab. It has been observed that
administration of otelixizumab, teplizumab, or visilizumab result
in positive clinical responses (Keymeulen et al., 2005, 2010;
Plevy et al., 2007). Otelixizumab and teplizumab were foremost
tested in T1D patients, while visilizumab and foralumab were
mainly studied in IBD (Yu et al., 2008; Daifotis et al., 2013). In
clinical trials, the tolerogenic activity of humanized anti-CD3
mAb (visilizumab) in T1D was found to be excellent. In a second
Phase I/II trial, teplizumab improved insulin production and
metabolic control in patients with recent onset T1D. A phase
II trial that assessed the safety and efficacy of visilizumab in
patients with severe corticosteroid-refractory ulcerative colitis
had promising results (Plevy et al., 2007). In general, non-FcR
binding anti-CD3 mAb are promising models for treatment of
autoimmune and inflammatory diseases (Herold et al., 2003).

LFA-3 Ig (Alefacept) and Anti-LFA-1
Antibody (Efalizumab) Inhibit CD2
Signaling in T Cells
It had been demonstrated that an LFA-3 Ig fusion protein
(Alefacept) could reduce psoriasis lesions (Nickoloff and Nestle,
2004). Alefacept competes with LFA-3 for binding to CD2
on T cells and efficiently interferes with LFA-3/CD2 binding,
consequently stopping T cell activation. Furthermore, the
Ig part of Alefacept binds to immunoglobulin receptor Fc-
gamma-RIII on the surface of natural killer cells and some
T cell subpopulations inducing apoptosis of memory T cell
subgroups (da Silva et al., 2002; Rigby et al., 2015). Finally,
administered intramuscularly or intravenously Alefacept inhibits
T cell activation and proliferation, and induces the apoptosis of
memory-effector (CD45RO+) T cells (Konig et al., 2016).

In psoriasis the presence of LFA-1 in IS is very important.
A separate anti-LFA-1 antibody (Efalizumab) has been shown
to block adhesive interaction in the treatment of psoriasis. The
antibody reduced skin lesions by blocking the adhesion molecule
on T cells and was well tolerated and resulted in significant
improvement in patients with moderate to severe plaque psoriasis
(Papp et al., 2006).

CONCLUSION

In summary, the interaction between T cells and DCs involves
in the pathogenesis of autoimmune disease. Autoreactive T
cells are activated by autoantigens presented by DCs during
the interaction between T and DC (Tan T. et al., 2014).
The underlying molecular mechanisms of T cell activation
by DCs have been well understood. Three stages during
T cells activation by DCs, including antigen presenting,
antigen recognition of T cells, and two signals formation
have been investigated in great detail. T cells could be
activated in two signals model by simultaneously receiving
signal-1 from T-cell recognition of antigen and signal-2 from
costimulatory molecular. In addition, IS formation between
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T cells and DCs plays an important role in T cell activation.
cSMAC, pSMAC, and dSMAC form the molecular structure of
IS. IS molecular structure is very complex involving in a variety
of molecules and signals, which take part in IS formation through
interaction and dynamically balance.

Understanding the molecular mechanisms of the interaction
between T cells and DCs is helpful to discover new drug targets
and design immunotherapy strategies that target T cell activation
in autoimmune diseases. At present, some recombinant fusion
protein and monoclonal antibodies targeting costimulatory
molecules, such as CTLA-4- and LFA-3-Ig, anti-CD3 monoclonal
antibody, and so on have been developed and approved to treat
autoimmune diseases, such as RA, SLE, IBD, MS, and psoriasis.
These biological drugs show a significant efficacy and have a
high safety profile. More biological agents that modulate T cell
activation will be developed based on a better understanding of
the molecular mechanisms of T cell activation in the near future.
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