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Abstract
In this paper, we evaluate the predictive performance of an adaptive neuro-fuzzy inference

system (ANFIS) using six different membership functions (MF). In combination with a

geographic information system (GIS), ANFIS was used for land subsidence susceptibility

mapping (LSSM) in the Marand plain, northwest Iran. This area is prone to droughts and

low groundwater levels and subsequent land subsidence damages. Therefore, a land sub-

sidence inventory database was created from an extensive field survey. Areas of land

subsidence or areas showing initial signs of subsidence were used for training, while one-

third of inventory database were reserved for testing and validation. The inventory data-

base randomly divided into three different folds of the same size. One of the folds was

chosen for testing and validation. Other two folds was used for training. This process

repeated for every fold in the inventory dataset. Thereafter, land subsidence related factors,

such as hydrological and topographical factors, were prepared as GIS layers. Areas sus-

ceptible to land subsidence were then analyzed using the ANFIS approach, and land

subsidence susceptibility maps were created, whereby six different MFs were applied.

Lastly, the results derived from each MF were validated with those areas of the land

subsidence database that were not used for training. Receiver operating characteristics

(ROC) curves were drawn for all LSSMs, and the areas under the curves were calculated.

The ROC analyses for the six LSSMs yielded very high prediction values for two out of the

six methods, namely the difference of DsigMF (0.958) and GaussMF (0.951). The inte-

gration of ANFIS and GIS generally led to high LSSM prediction accuracies. This study

demonstrated that the choice of training dataset and the MF significantly affects the results.
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1 Introduction

Land subsidence is the downward motion of a land surface, including rock and soil. This

movement happens suddenly or gradually when the underground layers cannot withstand

the pressure of the upper layers (Pacheco et al. 2006; Ashraf and Cawood 2015). In most

cases, land subsidence is a slow geological process that is hardly noticeable. The final

result is a gradual reduction in the total height of the Earth’s surface (Ganguli 2011).

Factors contributing to this phenomenon include earthquakes and the movement of the

earth’s crust, melting glaciers, human activities in the fields of drilling and mineral

extraction from underground sources, such as oil, and the drainage of water from under-

ground aquifers (Dehghani et al. 2014). More than 80% of land subsidence that occurs in

the United States of America has been caused by continuous extraction of groundwater

(Galloway et al. 1999). The same situation also applies for Iran’s plains in general and the

Marand plain in particular. Reductions in the volume of an aquifer through numerous water

wells, excavated mainly for agricultural purposes, result in land subsidence. This natural

hazard damages natural resources and human properties and constructions. In recent years,

several studies have been carried out in the field of land subsidence with different methods

and approaches. In southern New Jersey, Sun et al. (1999) used statistical and regression

methods to study the relationship between land subsidence and the exploitation of

groundwater. In a similar study in West Bengal (India), Ganguli (2011) proposed

spreadsheet-based statistical analyses. Lee et al. (2012) assessed ground subsidence sus-

ceptibility (GSS) in South Korea using artificial neural networks (ANN). A GIS-MCDA

method was also used by Ghorbanzadeh et al. (2017) to identify areas that are prone to land

subsidence in the Marand plain, while Dehghan-Soraki et al. (2015) applied ASAR and

PALSAR data to analyze and measure the land surface change rates caused by subsidence.

Karimzadeh et al. (2013) and Karimzadeh (2015) used the same type of data in order to

distinguish the surface deformation in another basin in the Northwest of Iran.

Using modeling to detect areas that are highly susceptible to land subsidence is consid-

ered an appropriate way of predicting future possible land subsidence (Lee et al. 2012).

Moreover, such predictions are essential for environmental planning managers to control and

reduce the adverse impacts of land subsidence (Vaezinejad et al. 2011). Land subsidence

susceptibility mapping (LSSM) has been proven as a useful strategy to predict and identify

high-risk areas of this phenomenon. Methodologically, there are several approaches for

producing the final susceptibility maps. The most common approach is using the spatial

models with input data consisting of a variety of related geographic factors and parameters.

This is frequently used in environmental modeling (Navas et al. 2012). It has been stated that

particularly the availability of final susceptibility maps in combination with a geographic

information system (GIS) and efficient database of an area enables the better management of

various spatial phenomena (Gaspar et al. 2004). In order to map areas susceptible to natural

hazards, some recent attempts have been made to utilize mathematical or statistical methods,

such as artificial neural networks (ANN, Lee et al. 2004, 2012; Pradhan and Lee 2010; Chen

et al. 2017a, b), fuzzy logic (FL, Pradhan 2011; Feizizadeh et al. 2014a; Shadman Rood-

poshti et al. 2016), support vector machine (SVM, Feizizadeh et al. 2017), decision tree (DT,

Lee and Park 2013), neuro-fuzzy (NF, Vahidnia et al. 2010) and adaptive neuro-fuzzy

inference system (ANFIS, Cam and Yildiz 2006; Oh and Pradhan 2011; Bui et al. 2012;

Sezer et al. 2011; Basser et al. 2014; Polykretis et al. 2017; Chen et al. 2017a, b). We may

conclude from the literature review that a variety of methods has been used to map the

susceptibility of the land to environmental hazards. Over the last decade, researchers have
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tried to develop more and more accurate methods to map susceptible areas, either through

combining different methods such as combining AHP and fuzzy logic (Feizizadeh et al.

2013), using factor score matrix with AHP that called modified AHP (M-AHP) (Nefeslioglu

et al. 2013), integrating interval pairwise comparison matrices with the GIS-MCDAs

(Feizizadeh and Ghorbanzadeh, 2017) and combining ensemble frequency ratio with logistic

regression models (Umar et al. 2014) and analytic network process (ANP) (Pirnazar et al.

2017). There are also several attempts to develop new methods such as the methodology of

using the global sensitivity analysis for GIS-MCDAs developed by Ligmann-Zielinska and

Jankowski (2012) (Ghorbanzadeh et al. 2017). Our research utilizes the ANFIS by applying

the Takagi–Sugeno rule format. This format is a combination of optimized premise MFs with

an optimized consequent equation (Bui et al. 2012). ANFIS is an inference system with a

high capacity (Sezer et al. 2011). It has also some advantages compared to other suscepti-

bility mapping methods such as expert-knowledge-based GIS-MCDA. GIS-MCDA is

sometimes criticized for the expert knowledge to be a major source of uncertainty among the

results (Şalap-Ayça and Jankowski 2016; Feizizadeh and Kienberger 2017; Erlacher et al.

2017; Feizizadeh and Ghorbanzadeh 2017; Cabrera-Barona and Ghorbanzadeh 2018) or

ordinary neural networks because they use if–then rules (Bardestani et al. 2017). The pro-

posed method does not apply expert opinions at any stage. In addition, it provides the

possibility of using a variety of fuzzy MFs. This method is also known for fast convergence

times (Pandey and Sinha 2015). By using the input and target data, ANFIS can provide a

fuzzy inference structure (Cakıt and Karwowski 2017) in which the MF parameters use

hybrid learning algorithms to adjust themselves (Bui et al. 2012). The main differences

between the literature discussed above and our study are that we used the ANFIS method

with different MFs and also k-fold cross-validation (CV) applied to LSSM. We used the

k-fold CV approach to deal with the randomness effects on model performance (Gilks and

Richardson 1995). With respect to the spatial distribution of land subsidence areas, it is

expected that the performance of ANFIS method affect with the random selection of training

data. We also used a different approach to bring the layers (maps) related to the ANFIS

calculation as input data into the MATLAB software. We used GIS capabilities for the

integration of various spatial information with varying spatial resolutions and entities and for

applying overlay methods within the ANFIS process. In addition, although the environmental

modeling community relies on ANFIS as a powerful and precise method, it has, to our best

knowledge, not been used for LSSM. Our study consists of three stages: first, we will

introduce the data layers and maps related to land subsidence in the Marand plain. Second,

we will produce maps of susceptible areas using these layers combined with hybrid learning

and different MFs. Finally, we will validate the maps produced for each of the MFs.

2 Study area

The study area is the Marand plain, which is located in the East Azerbaijan Province in

northwestern Iran (Fig. 1). The study area is confined by the mountain ranges of the

Mishow Dagh in the North and the Ghezel-Dagh and Ghaleh-Dagh ranges in the South.

The northern and southern border areas of the plain to these mountain ranges comprise

moderate slopes between 2% and 5%. Most of the precipitation of the study area is snow

rather than rain and usually falls during the seasons of autumn, winter and spring with its

maximum between December to the end of March. The average annual precipitation is

about 242 mm (Fakhri et al. 2015). This study area is located between the Alborz zone to

the East and Azerbaijan zone to the North and West, and it belongs to the Central Iran
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structural units (Barzegar et al. 2017). The Marand plain is part of the Khazar basin, which

is one of the six major hydrological basins in Iran and covers most parts of Northern Iran

(Karimzadeh 2015). From a geological point of view, the study area coincides with the

same lithological formation, namely a high level piedmont fan and valley terrace deposits

Qft1 belonging to the Quaternary age (Khaleghi and Shahverdizadeh 2014).

The primary local activity is agriculture, including irrigated and rain fed agriculture and

orchards (Khorrami 2016; Ghorbanzadeh et al. 2017). Agriculture in the region requires a

huge amount of surface and underground water. Over the last years, the mean annual

precipitation amounts have declined in the study area (Hajalilou and Khaleghi 2009), thus

increasing the need to use excessive groundwater extraction (Karimzadeh 2015). This is

the main contributing factor leading to the reduction of groundwater levels in this area

(Fakhri et al. 2015). Still, the analysis cannot focus on agriculture alone but needs to

address complex land use patterns and, in particular, the different water sources such as

excavated water wells and dams.

3 Materials and methods

3.1 Data used

In the present LSSM study, seven inter-related factors affect the land subsidence in our

study area, including distance to excavated water wells, DEM, slope, land use/cover, depth

of groundwater, distance to streams and distance to fault. Ultimately, the lithology layer

was not used in the model because almost the entire Marand plain consists of the same

lithological formation, namely a high level piedmont fan and valley terrace deposits. All

layers were stored in raster format with a pixel size of 100 m (Fig. 2). Although the spatial

Fig. 1 Study area: Marand plain, northwestern Iran
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resolution of the Landsat satellite images that served as the basis of the land cover map,

and the SRTM data on which the topography dataset indictors are based, are 30 m, all

pixels were aggregated to 100 m for the modeling for performance reasons and faster

computation. As land subsidence phenomena typically cover relatively large areas, this

resolution seems appropriate. Moreover, a land subsidence inventory map with a total of 23

land subsidence areas with 522 pixels was prepared to train, test and validate the model.

Fig. 2 Seven input land subsidence factors used in the ANFIS model: a Distance to wells. b Distance to
faults. c DEM. d Distance to rivers. e Water depth. f Land use/cover. g Slope
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The land subsidence inventory has been collected by locals based on inquiries from the

Department of Natural Resources (East Azerbaijan Province, Iran). 70% (364 pixels) of

land subsidence areas within the study area were randomly selected and used as training

data. These pixels obtain the information from corresponding pixels of each layer and were

used to train the models. The rest of the pixels were used as testing and validation data in

two separate groups.

3.2 Land subsidence susceptibility mapping using an adaptive neuro-fuzzy
inference system

3.2.1 Fuzzy inference system

A fuzzy inference system (FIS) includes expert knowledge and experience to design a

process with input and output fuzzy sets that are controlled by if–then rules (Armaghani

et al. 2015a). In simple terms, a FIS is a system which can obtain new knowledge from

existing knowledge by using fuzzy logic (Camastra et al. 2015; Cavallaro 2015). A fuzzy

inference system is made up of three sections: the first section is the fuzzification process

when all crisp values are converted to a linguistic input value using a MF of the system

(Tahmasebi and Hezarkhani 2012). The inference engine is the second part and is used to

assess the degree of membership of input data based on the output fuzzy sets (Bui et al.

2012). Finally, the fuzzy output values are converted to crisp values in a process called

defuzzification (Armaghani et al. 2015a). It can be said that the inference system can

produce fuzzy output values based on inference rules as soon as it obtains fuzzy values.

The process is presented in Fig. 3.

Generally, three main fuzzy inference systems are used in the literature: The Mamdani

model, the Takagi and Sugeno (TKS) model, and the Tsukamoto model. The second model

(TKS) is more common (Shabankareh and Hezarkhani 2016) and used in this study. This

model renders possible to create fuzzy rules from input data. Moreover, most of the problems

do not need rigid conditions in their relative factors which are introduced to the model as

input data (Wang et al. 2011). The difference between the Mamdani and TKS models were

explained by Cavallaro (2015). The main reason for using the Takagi and Sugeno model in

this study is that it is a linear combination of inputs and has fuzzy inputs and crisp outputs

(Naderloo et al. 2017). It is also a very efficient computational method for optimization as

well as in terms of its implementation (Takagi and Sugeno 1985; Cavallaro 2015).

Fig. 3 Structure of a fuzzy inference system
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3.2.2 Introducing adaptive neuro-fuzzy inference system structure

ANFIS consists of a hybrid model in which the nodes in different layers of the network

provide a neural network for estimating the fuzzy parameters (Polykretis et al. 2017).

This model takes advantage of both fuzzy logic and artificial neural networks and

combines both approaches making the most of their respective advantages. For further

explanation, part a of Fig. 4 shows a Sugeno fuzzy model with two rules of fuzzy if–

then, with two input values x and y, and f as an output (Jang 1993; Armaghani et al.

2015b).

If x is A1 and y is B1, then f1 = p1x ? q1y ? r1 (rule 1)

If x is A2 and y is B2, then f2 = p2x ? q2y ? r2 (rule 2)

The functions of x and y are A1, A2, B1, B2 and output function parameters include, p1,

q1, r1, p2, q2, r2. Each fuzzy inference system consists of five different layers and two types

of nodes which are adaptive and fixed nodes (see part b of Fig. 4).

Fig. 4 a Sugeno fuzzy model with two rules, b typical ANFIS architecture
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The difference between these two types of nodes is that adaptive nodes are flexible while

fixed nodes are determined through cycles. In the case of differences between layers, it can

be noted that the nodes with an index i in layer (1) are adaptive and related to linguistic

variables (Lin et al. 2012). Input values are sent directly to the next layer by these nodes.

O1;i ¼ lAiðxÞ ð1Þ

O1;i ¼ lAiðyÞ ð2Þ

All nodes in layer (2), which are shown with a P sign, are fixed nodes, and each node

determines the input and output signals (Zhang et al. 2017).

O2;i ¼ x ¼ lAiðyÞBðyÞ i ¼ 1; 2 ð3Þ

In layer (3), all nodes are shown with an N; they are fixed and are also identified with

circles (Bardestani et al. 2017). Another issue in this layer is that outputs are normalized.

O3;i ¼ �x ¼ wi
P2

j¼1 wj

i ¼ 1; 2 ð4Þ

All nodes in layer (4) are adaptive, and their forms are as described by the following

function:

O4;i ¼ �xifi ¼ �xðpixþ qiyþ riÞ ð5Þ

Layer (4) is considered to be the final layer. It has only one fixed node which is shown

with a
P

representing the sum. The output value of the layer is obtained by the sum of

input signals (Basser et al. 2014; Bardestani et al. 2017).

o5;i ¼
X

i

�xifi ¼
P

i xifiP
i xi

i ¼ 1; 2 ð6Þ

3.2.3 Hybrid learning algorithm

An ANN learning algorithm is used in ANFIS to set up the fuzzy inference system with

determined input and output data (Tahmasebi and Hezarkhani 2012). A hybrid learning

algorithm was used for training. This algorithm consists of a least-square estimator and

gradient descent method (Anwer et al. 2012; Pandey and Sinha 2015). The main objective

of the training is to find the optimal parameters for the fuzzy inference system with the

minimum value of the error function E, which is the difference between the target amount

(ti) and the output value of the model (fouti) (Bui et al. 2012). Assume that the training data

includes n input data.

E ¼
Xn

i¼1

ðfouti � tiÞ2 ð7Þ
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Output that results of layer 5 can be expressed by the equation:

f ¼ �x1f1 þ �x1f2 ¼ ðx1xÞp1 þ ðx1yÞq1 þ �x1r1 þ ðx2xÞp2 þ ðx2yÞq2 þ �x2r2 ð8Þ

The above equation can be summarized as follows: f = A.R where any of the equation

parameters are defined as (9):

F ¼

fout1

fout2

� � �
foutn

2

6
6
6
4

3

7
7
7
5
; A ¼

�x1x1 �x1y1 �x1 �x2x2

�x1x2 �x1y2 �x1 �x2x2

� � � � � � � � � � � �
�x1xn �x1yn �x1 �x1xn

�x2y2

�x2y2

� � �
�x1yn

�x2

�x2

� � �
�x2

2

6
6
6
4

3

7
7
7
5
;

RT ¼ p1 q1 r1 p1 q1 r1½ �

ð9Þ

Parameters pi, qi, and ri are unknowns, which can be obtained using the following

equation:

R = (AT A) -1 ATf were T is the transpose of the matrix.

The forwards pass of the model moves to the output of the fourth layer of nodes. The

backwards pass acts when the next optimal parameters are found (Sengur, 2008; Bui et al.,

2012). In this stage, error signals were spreading to the rear side, and premise parameters

are restored using gradient descent [see Eq. (10)] (Esen et al. 2017):

Da ¼ �g
dE
da

� �

ð10Þ

where g is a learning rate.

3.2.4 Obtaining land subsidence indexes for mapping

In this study, seven criteria maps were used as input data, and the land subsidence areas

layer was defined as the target. The pixels of these areas received all data from the

corresponding pixels in the seven criteria maps during the implementation of ANFIS. All

these layers were prepared and finally extracted from ArcGIS software (version 10.1) with

a pixel size of 509 9 207. Each creation layer is composed of 105, 363 pixels in total. The

entire ANFIS process, including training and testing, was implemented in MATLAB.

Generally, the ANFIS model requires two types of data, namely training data and testing

data (Dixon 2005; Bui et al. 2012). There were 23 land subsidence areas in this study,

consisting of 522 pixels. k-fold CV approach was used for dividing our inventory dataset

into training and testing. In this approach, the dataset D is randomly divide into mutually

exclusive k-folds D1, D2,…, Dk of equal size. Thereafter, the model is run k times and each

time t [ {1, 2, …, k}. For the time of t, the model is trained with dataset D without the

subset of Dt, and tested with Dt (Kohavi 1995). The selection of the number of folds is

depending on several relative factors such as the volume of the inventory dataset, the

complexity of the problem and the methodology used. However, in spatial applications, the

number of folds is often specified by the researcher without empirical evidence. For

instance, Wiens et al. (2008) selected a fivefold cross-validation, Václavı́k and Meente-

meyer (2009) selected a fourfold cross-validation and a threefold cross-validation was

chosen by Boria et al. (2014). Considering the size of our database and the amount of

computational within six different membership functions, three folds are therefore con-

ducted in this study. As our inventory dataset was divided into three folds, two folds of

them served as the training data in each time, while the third fold was used for testing and
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validation. In the third fold, pixels were divided randomly into two separate groups, 87

pixels for testing and 87 pixels for data validation. The dispersion of land subsidence

inventory in different three folds is shown in Fig. 5. Descriptive information of all layers

was transferred to MATLAB as a matrix. The first column of the matrix was the joint field

of each pixel for all layers of criteria including the land subsidence areas layer. The joint

field is essential to maintain the structure of the maps. It maintains cohesion, arrangements

and the position of pixels in all phases of the process. Each of the next seven columns was

assigned to descriptive information of each criterion. Finally, the last column was dedi-

cated to land subsidence areas with possible values in this column of zero or one. A value

of one indicates that subsidence occurred in that pixel, and a value of zero indicates the

absence of the phenomenon. As previously mentioned, the type of fuzzy inference system

used is the Sugeno model. It was run with six different types of MFs (see Table 1). Fifty

epochs were employed for training the model. The model output for each of the six MFs

was a respective matrix with elements between 0 and 1.

Although there are ways of converting the GIS layers into a format that is usable in

MATLAB, and vice versa, the fishnet function in ArcGIS was used for converting. In the

input data, the value of each pixel was given to a point. Likewise, the output data of the

model were transferred into a matrix in the GIS software, while the value of each element

was transferred to the corresponding pixels of the fishnet. Pixels that were exactly the same

size and had the same number of input layers were placed in the same rows and columns

(Parish et al. 2012). As discussed earlier, the LSSM maps were produced using six dif-

ferent MFs. The performance assessments of the trained land subsidence models were

examined with two evaluating statistical parameters, namely, the root-mean-square error

(RMSE) (11) and the coefficient of determination (R2) (12), as suggested by various

researchers (Bui et al. 2012; Folorunsho et al. 2012; Chai and Draxler 2014; Singh et al.

2017).

Fig. 5 Varying the dispersion of land subsidence inventory in different three folds
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xn

i¼1

ðfouti � tiÞ2
s

ð11Þ

R2 ¼ 1�
Pn

i¼1 ðfouti � tiÞ2
Pn

i¼1 fout
2
i

" #

ð12Þ

where fouti and ti are the ith observed and the model predicted outputs (Singh et al. 2012).

The observed subsidence polygons were created with GPS from field survey. After that,

they mapped in a layer same as other input layers with ArcMap software. Then, all layers

transferred to MATLAB as matrices that each element corresponding to a pixel. The pixels

within the subsidence polygons were used in developing those matrices and then calcu-

lating RMSE and R squared values. In terms of resulted values of R2, the best performance

was obtained for Gauss2MF in the second fold with the value of 0.980. The best result of

RMSE value was 0.158 for TriMF again in the second fold. However, the lowest RMSE

and R2 values were obtained with GbellMF (0.185) and TrapMF (0.892), respectively.

Both lowest values were obtained from the third fold of the dataset. All values are shown in

Table 1. As we present in Sect. 4, the model got the best result with using the second fold

of dataset for testing and rest parts for training. The best results by the second fold are

presented in Fig. 6, and other results are not presented keeping in mind the length of the

manuscript. Generated maps were classified into five classes from very low to very high

susceptibility of land subsidence, and the area of each class is represented in Table 2. They

are also compared with each other in Fig. 7.

4 Validation

Validation is considered to be an essential phase in preparing susceptibility maps and in

assessing the ability of the model to predict possible future hazards (Pourghasemi et al.

2012; Feizizadeh et al. 2014b). ANFIS method uses training and testing dataset that are

randomly selected, the k-fold CV approach was used to mitigate the uncertainties resulted

by random selection of dataset (Hahn et al. 2010). The CV approach is often used to select

Table 1 Description MFs and statistical criteria of RMSE, R2 for each fold

No. Type of MF and descriptions Fold 1 Fold 2 Fold 3

RMSE R2 RMSE R2 RMSE R2

1 Gaussian curve membership function (Gauss) 0.1703 0.912 0.1714 0.963 0.1758 0.950

2 Two-sided Gaussian membership function
(Gauss2)

0.1619 0.938 0.1705 0.980 0.1702 0.954

3 Triangular-shaped membership function (Tri) 0.1766 0.917 0.1587 0.967 0.1738 0.933

4 Trapezoidal-shaped membership function (Trap) 0.1825 0.893 0.1773 0.921 0.1827 0.892

5 Difference of two sigmoid membership
functions (Dsig)

0.1711 0.952 0.1709 0.951 0.1769 0.947

6 Generalized bell curve membership function
(Gbell)

0.1798 0.931 0.1780 0.945 0.1751 0.961
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the regularization parts in big datasets (Lim and Yu 2016). The simplicity and universality

of this approach make it a widespread strategy for the estimate of model performance

(Arlot and Celisse 2010). As mentioned in Sect. 3.2.4, we randomly split our dataset D to

mutually exclusive 3 folds D1, D2, D3 of equal size. Complete CV is calculated by the

average of all
m
m=k

� �

possibilities for any selection of m/k instances out of m (Kohavi

1995). The resulted CV values for each MF are presented in Table 3. In our case, as we

have three folds, maximum possibilities are only three. Therefore, the whole process (see

Fig. 8) was implemented three times with completely different folds of training and testing

Fig. 6 Land subsidence susceptibility maps using the ANFIS model with the second fold and six different
MFs, namely: a GaussMF. b GbellMF. c DsigMF. d TriMF. e Gauss2MF. f TrapMF
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Table 2 The class areas for each of the MFs

Type of MF Class Area (ha) Area (%) Type of MF Class Area (ha) Area (%)

Gaussian curve Difference of two sigmoid

Very low 1019 1.76 Very low 11870 20.59

Low 22985 39.88 Low 27628 47.94

Average 18633 32.33 Average 12610 21.88

High 13781 23.91 High 3873 6.72

Very high 1211 2.10 Very high 1648 2.85

Two-sided Gaussian Trapezoidal-shaped

Very low 10739 18.63 Very low 7258 12.59

Low 21642 37.55 Low 27335 47.43

Average 17857 30.98 Average 17157 29.77

High 6462 11.21 High 4347 7.54

Very high 929 1.61 Very high 1532 2.65

Generalized bell curve Triangular-shaped

Very low 6639 11.52 Very low 6246 10.83

Low 30536 52.98 Low 29771 51.65

Average 16178 28.07 Average 15769 27.36

High 3322 5.76 High 3824 6.63

Very high 954 1.65 Very high 2019 3.50
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Fig. 7 Comparing the percentage of areas for each of the MFs

Table 3 The percentage of accuracy results of each fold

MF AUCFold 1 AVEFold 1 AUCFold 2 AVEFold 2* AUCFold 3 AVEFold 3 CV

Gauss 94.19 92.98 95.12 94.11 95.00 93.79 94.77

Gauss2 91.62 92.79 93.33 92.58

Tri 91.53 92.83 92.22 92.19

Trap 91.46 93.04 92.59 92.36

Dsig 95.08 95.88 95.13 95.36

Gbell 94.01 95.03 94.49 94.51
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data. The accuracy of each land subsidence susceptibility map was calculated by applying

a common validation procedure based on the known land subsidence areas in the Marand

plain. 87 pixels of land subsided areas were used to evaluate the results. Each map was

compared to each fold of validation data using the receiver operating characteristics (ROC)

curve method. The ROC curve is an efficient method for determining the authenticity of

Fig. 8 Flow chart of the production of LSSMs and accuracy assessments for each fold of the inventory
database
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prediction systems (Swets 1988; Oh and Pradhan 2011) and based on the theory behind the

ROC, the area under the curve (AUC) indicates the quality of a prediction system, whereby

values close to 1.0 are considered to indicate the best results of a model (Lombardo et al.

2015). Based on resulted LSSMs, ROC curves were calculated separately for each fold (see

Fig. 9) and each MF (see Fig. 10). The rate of true-positives was plotted on the vertical

axis. The horizontal axis shows the rate of false-positives for all resulting prediction maps.

Each scenario corresponds to a point in the plotted space. Finally, the accuracy results of

each MF within each fold were calculated and are presented in Table 3. The average values

of MF accuracies for each fold are also presented for better comparison. Based on the

average values, AVEFold 2
* indicates the most accurate results derived from the ANFIS

method using second fold data sets among the three folds. Figure 6 presents the LSSMs

that are generated and tested with the second fold dataset. In the case of using this fold

model, DsigMF yielded the best result in ROC value (0.958), followed by GaussMF

(0.951), GbellMF (0.950), TrapMF (0.930), TriMF (0.928), and Gauss2mf (0.927).

DsigMF also got the best result in CV with the ROC value of more than 0.953.

Fig. 9 ROC curves for the resulted maps of each fold
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5 Discussion and conclusion

The semi-arid and arid areas of Iran have experienced critical water challenges in the past

years. At the same time, the demand for water is increasing due to population growth and

more intensive agriculture activities. Therefore, land subsidence occurs in most of the

basins of the country because of high ground water extraction (Karimzadeh 2015). Land

Fig. 10 ROC curves for the resulted maps of each MF
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subsidence is a severe problem in the plains of northwestern Iran. The study area is

particularly susceptible to land subsidence with potentially severe consequences, and the

Marand plain is one of six critical plains in the East Azerbaijan Province (MWREP 2014).

It may take several years from the onset of land subsidence until visible damages occur at

the surface of a plain (Lee et al. 2012). Land subsidence can have a variety of reasons and

sometimes a combination of several triggering factors. However, in this study area,

massive exploitation of groundwater resources is regarded as the main reason for a severe

decline in groundwater levels in the last three decades (Fakhri et al. 2015). In the present

study, GIS techniques along with an adaptive neuro-fuzzy inference system (ANFIS) were

used for a land subsidence susceptibility assessment in the Marand plain using six different

MFs and three folds of dataset. The study consisted of three main steps: the design and

structuring of the ANFIS model, the susceptibility mapping, and a validation step for

different MFs and folds used. In the first step, an ANFIS model was constructed in

MATLAB software environment, and six different MFs were selected to be used in the

model. In the second step, seven environmental criteria were identified, including distance

to excavated water wells, DEM, land use/cover, distance to fault, depth of groundwater,

distance to stream, and slope. These data layers were used as the model inputs. These

relative causal criteria played an important role in generating the final land subsidence

susceptibility map products. All of the resulting land subsidence susceptibility maps show

that the central and western parts of the plain are more susceptible to ground subsidence.

Still, as presented in Table 2, there are some differences. The TriMF map revealed the

largest area of land highly susceptible to subsidence (3.5%). Gauss2MF yielded the

smallest areas with 1.6%. The performance assessment of the ANFIS model revealed

Gauss2MF and GbellMF to have the highest performances with 0.98 and 0.96 for R2

values, and 0.170 and 0.175 for RMSE values in different folds. But this is not to say that

Gauss2MF and GbellMF always achieve the best model results. The performance of MFs

depends on several parameters, such as the distribution of training and test data, and their

performance may differ in other studies with different data. The ROC method was used to

validate the six different MFs along with three folds, whereby all yielded high to very high

values, but the DsigMF showed the best result in CV. Therefore, we presented two

evaluation methods: first, we used RMSE and R2 with different folds of test data, and,

second, we applied each fold of validation data to evaluate the results within the ROC

curves, and DsigMF showed the best performance for the land subsidence susceptibility

assessment in overall. To sum up, as ANFIS is a very technical method and sensitive to

design decisions in all of the required steps, including the selection of the MFs, it is

essential to choose the right parameters. At the same time, the model is less sensitive to

differences in expert opinions. That is why this model is more reliable than the models that

are based on expert knowledge. The limitation of this model is that researchers cannot

directly obtain the absolute importance/weight of each individual factor.
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