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ABSTRACT 

 

Artificial intelligence (AI) has emerged as a major frontier in computer science research. 

Although AI has broad application across many medical fields, it will have particular 

utility in ophthalmology and will dramatically change the diagnostic and treatment 

pathways for many eye conditions such as corneal ectasias, glaucoma, age-related 

macular degeneration and diabetic retinopathy. However, given that AI has primarily 

been driven as a computer science, its concepts and terminology are unfamiliar to many 

medical professionals. Important key terms such as machine learning and deep learning 

are often misunderstood and incorrectly used interchangeably. This article presents an 

overview of AI and new developments relevant to ophthalmology.  

 

Keywords: artificial intelligence, deep learning, machine learning, ophthalmology, 

diabetic retinopathy  
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INTRODUCTION 

 

Artificial intelligence (AI) is a branch of computer science that involves creating 

machines with the aim to replicate human intelligence 1. These machines can complete 

useful tasks, which include recognising speech, identifying images and problem solving 

2–4. A current limitation of AI is that separate individual programs need to be created for 

each individual task, referred to as weak or narrow AI.  

Definitions in this field of computer science can often be blurred and used 

interchangeably. For the purposes of this review, AI will refer to the overarching 

concept of intelligent machines that can take on human attributes, including problem 

solving. Machine learning and deep learning are AI processes that will be defined 

below. 

In the past, a computer had to be pre-programed with a set of instructions or 

algorithms for it to complete a task. This often created the illusion of an intelligent 

machine. However, the machine was not truly intelligent as it was simply following 

instructions. Adaptations in these machines were limited to those that were anticipated 

and accounted for in the pre-programming. Additionally, as the machine was 

programmed by humans, it was limited in its capacity by the technological 

understanding of those who programmed it. Machines can reach their capabilities and 

learn much more effectively to complete a task when they go through the process 

called machine learning. 

Machine learning, first coined by Arthur Samuel in 1959 5, is an AI process in which a 

machine writes its own programming and learns to complete a task on its own. The first 

step in this process is assigning a task to complete, e.g. a binary task of separating 

fundus photographs into diabetic retinopathy (DR) and non-DR. To complete this task, 

the machine will require a large number of fundus photographs to learn from (training 

dataset) as well as a separate database for validation (validation dataset). In this case, 

experts will need to complete the time-consuming task of accurately labelling each 

image with the correct grouping of DR or non-DR. Once this is complete, a basic 

learning structure for algorithms is chosen, such as a support vector machine or neural 
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network (common structure chosen and discussed in more detail later), which is often 

dictated by testing on smaller amounts of data or from information from previous 

studies. The machine is then fed with the training data and it develops its own answers. 

The machine then checks its answers against the correct ones. If its answers have a 

high error rate, the machine re-evaluates its algorithms and adjusts its internal 

adjustable parameters (weights), often learning one feature from the image at a time. 

In a typical system, there may be hundreds of millions of these adjustable weights 6. 

The machine is then fed the same training data again and produces a new set of 

answers. This process occurs indefinitely until the results plateau or the desired output 

is reached. The final sensitivity, specificity and accuracy scores can be cross-checked 

with the validation dataset for assessments on external validity. 

The previous scenario involved a supervised machine-learning model, a scenario in 

which the machine learns from data that already has the correct answers. Supervised 

learning is often useful for classification purposes (can be categorical values such as 

“disease” or “no disease”, or continuous variables such as height or weight)7. 

Unsupervised machine learning often involves looking at data that have no answers and 

where the underlying goal is to model the structure or distribution of the data to learn 

more about it. This is useful for looking for associations 7.  

Machine learning can be further subdivided. Deep learning is a subset of machine 

learning that uses an artificial neural network (ANN) structure. ANNs were inspired by 

the biological neural network. An ANN involves feeding stimulus inputs into multiple 

layers of neurons that have been created through a machine-learning process (see 

Figure 1). Each individual layer in an ANN learns different features with different 

weightings for different stimuli. This allows the machine to adapt to complete complex 

tasks. It is the multiple layers which gives the ANN the name deep learning 1. The other 

main similarity some ANNs have to biological neurons comes from the usage of the 

heaviside function, which produces an all or nothing response similar to nerve firing. For 

example, when the input to each layer combined with the weighting is negative, the 

heaviside function converts that to a 0 and the neuron does not pass information on. 
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However, if the result is positive, the heaviside function converts that to a 1 and the 

neuron passes that information on. 

 

 

 

Figure 1: Graphical representation of the structure of an artificial neural network 

(ANN) 

 

Note: Input in this case is a fundus photograph with each feature for interpretation 

being a stimulus in the input layer. Stimuli is passed through the hidden layers which 

have learned features and weightings. This results in the output being recognised as 

DR. DR - Diabetic Retinopathy 

 

Opportunities to apply AI in medicine abound, to the extent that some doctors fear 

replacement by computers. To date, advances have been made predominantly in weak 

AI, so AI will be unlikely to replace most medical specialists for the foreseeable future. 

However, the capacity of deep learning to learn features from large volumes of data, 
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and to self-correct to improve its accuracy, will make it a useful tool for assisting 

physicians with their clinical practice 8. In addition, combining  the strengths of human 

clinicians with the strengths of deep learning systems should reduce errors in 

diagnostics and therapeutics that are inherent in our current system 9,10. Finally, the 

predictive capabilities of AI will have additional applications in medicine, particularly in 

the fields of health risk alerts and health outcome predictions 11. 

Going forward, AI will be integrated into more and more of our medical technology. 

Currently AI tools are being utilised in fields such as cancer, neurology and cardiology 

8,12,13. Continuing on from this, we expect that significant headway will be made under 

medical imaging, given deep learning‟s particular proclivity for image processing. 

Currently, images particularly suited for deep learning are single images such as 

photographs of skin lesions or x-rays. As our technology and algorithms improve, we 

will be able to integrate AI assessments into complex multi-image datasets such as 

magnetic resonance imaging and computed tomography scans. This review directly 

explores the current state of AI in ophthalmology. 

 

METHOD OF LITERATURE SEARCH 

 

A literature search was conducted in May 2018. Two databases were used during the 

literature search: MEDLINE and Scopus. Each individual condition was searched 

separately with the keywords artificial intelligence. Search terms used were: 

● “Artificial intelligence” AND “ophthalmology” 

● “Artificial intelligence” AND “keratoconus” 

● “Artificial intelligence” AND “glaucoma” 

● “Artificial intelligence” AND “diabetic retinopathy” 

● “Artificial intelligence” AND “macular degeneration” 

● “Artificial intelligence” AND “cataract” 

● “Artificial intelligence” AND “retinopathy of prematurity” 

As literature on each subject was expected to be limited, no additional limitations were 

placed on the keyword searches. Full articles or abstracts that were written in English 
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were included. Articles published in peer-reviewed journals were selected for inclusion 

into this review if they were relevant to the aim of this article and advanced our 

understanding of artificial intelligence in ophthalmology. Publications found in the 

references that were relevant to our subject were also selected. 

 

COMBATING CORNEAL CONDITIONS 

 

Keratoconus is a bilateral, irreversible condition characterised by a progressive thinning, 

protrusion and scarring of the cornea 14. Many individuals initially present with only 

unilateral features that progress to be bilateral over time, except in very rare cases 15. 

In the advanced stages of the disease, refractive correction becomes very difficult. At 

this point, corneal transplantation is often recommended to improve vision 16. 

Treatments such as intra-corneal ring implantation and corneal collagen cross-linking 

are effective alternatives to the transplant, with studies showing long-term stabilisation 

with follow-up of up to 10 years 17–19. However, as these treatments work by preventing 

progression, early detection of corneal ectatic disease is paramount. 

In addition to improving the outcomes of those with keratoconus, research into early 

detection of keratoconus provides invaluable information for treating other corneal 

ectasias. This is of special interest to refractive surgeons who employ laser in situ 

keratomileusis (LASIK) as iatrogenic corneal ectasia post-LASIK is among the most 

serious complications 20,21. As the complication is irreversible and compromises the 

individual‟s visual prognosis, researchers have devoted much time and energy  in 

developing effective diagnostic tools to identify those with sub-clinical features of 

corneal ectasia 22,23. 

However, identifying subclinical corneal ectasia remains immensely challenging. 

Topography and tomography provide a wealth of complex data to the ophthalmologist 

for each cornea. Despite this, it is very difficult for an ophthalmologist to differentiate 

between normal and subclinical keratoconus in most of the parameters analysed 24. A 

decision is often down to each individual ophthalmologist‟s subjective interpretation of 

patterns or empiric cut-off values, which vary from machine to machine. This method is 
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time-consuming and unreliable. Recently, there has been research detailing how AI 

could provide an alternative solution to recognising those patients most at risk 23. 

Initially, research into corneal ectasia was focussed on a system that could detect overt 

corneal changes such as keratoconus from normal corneas, as well as other changes 

such as astigmatism and photorefractive keratectomy using data obtained from Orbscan 

IIz. In earlier studies, results from the Orbscan IIz were considered to be optimal to 

data from alternative devices as posterior topography data in addition to the standard 

anterior information were provided 25. Souza et al. used Orbscan IIz data and tested 

multiple different forms of machine learning classifiers (MLC) (support vector machine, 

multiple layer perceptron classifiers and radial basis function neural network); all were 

proficient in detecting the aforementioned corneal abnormalities, with no significant 

difference found between their performances (Area Under the Curve of the Receiver 

Operating Characteristic [AUROC]: 0.98-0.99; sensitivity 0.98-1.00; specificity: 0.98-

1.00) 25. Importantly, the AUROC of the MLCs were significantly larger than those 

obtained when evaluating each attribute individually for detecting corneal diseases. 

Smadja et al. (2013)  and Hidalgo et al. (2016) both found their different MLCs to be 

highly sensitive and specific in their ability to distinguishing keratoconus from normal 

eyes (Smadja et al.: 0.993 sensitivity, 0.995 specificity; Hidalgo et al.: 0.991 sensitivity, 

0.985 specificity, 0.998 AUROC)23,24. Ultimately, these MLCs are similar in differentiating 

capabilities to the specifically designed non-AI indexes such as the KISA% index 26, the 

Klyce/Maeda Keratoconus Index 27, and the Cone Location and Magnitude Index 28. 

Following Smadja et al.‟s study in 2013, Scheimpflug tomography data were used in 

preference over data obtained from the Orbscan IIz. Data for the following comparisons 

were obtained from Scheimpflug tomography-based devices that obtained 3-

dimensional models of the anterior segment using a non-contact method 23,24,29–32. 

Scheimpflug tomography data were considered superior to the Orbscan IIz as anterior 

and posterior surface topography were derived from true elevation measurements 

rather than deriving the posterior elevation map mathematically; the derived 

measurement is thought to overestimate the elevation of the posterior curvature 33.  
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Once machine learning had proven its capacity to successfully differentiate overt 

corneal conditions, research turned to designing AI that could help detect sub-clinical 

features of corneal ectasia. To do this, researchers compared the topographical and 

tomographical data obtained from the „normal‟ eye in those with unilateral features of 

keratoconus (subclinical keratoconus) to individuals with no corneal disease. Arbelaez et 

al. and Smadja et al. both demonstrated the capacity of AI to recognise features of 

subclinical corneal ectasia in eyes 23,32. Arbelaez et al. conducted  a large study to try to 

use a MLC to differentiate subclinical keratoconus from normal eyes. A MLC was trained 

on 3502 eyes (877 keratoconus eyes; 426 sub-clinical keratoconus eyes; 940 abnormal 

eyes; 1259 normal eyes). The machine was 0.973 accurate, 0.920 sensitive and 0.977 

specific in detecting subclinical keratoconus 32. Smadja et al.‟s prototype, which was 

trained on a total of 372 eyes (197 patients) split across three groups (177 - normal 

eyes, 47 - subclinical keratoconus eyes, 148 - keratoconus eyes), had 0.936 sensitivity 

and 0.972 specificity in detecting subclinical keratoconus using the large tree-

discriminating program and 0.90 sensitivity and 0.86 specificity after pruning 23. 

However, it is difficult to make conclusions about each program‟s utility when the 

researchers did not test and validate their program on new data samples. In addition, 

the subclinical keratoconus groups in both studies contained participants who had 

keratoconus-like ectasia characteristics that could be considered early rather than 

subclinical keratoconus, which may possibly make the results appear more accurate 

than they actually are 23,24,32. 

Following on from this, Hidalgo et al. created the keratoconus assistant, which was 

designed to be installed alongside Pentacam software to perform live assessment of 

measured data 24,31. This program was created by training a MLC on 860 eyes (194 

normal; 28 astigmatism; 117 after refractive surgery; 67 subclinical keratoconus; 454 

keratoconus). At the end of the training stage, their MLC had 0.922 AUROC, 0.791 

sensitivity and 0.979 specificity at differentiating subclinical keratoconus and normal 

eyes 24. The lower sensitivity found in this study is attributed to the stricter classification 

of sub-clinical keratoconus (participants with any symptomatic features were excluded 

from the subclinical keratoconus group). Following their initial study, Hidalgo et al. did a 
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subsequent validation study where they compared their keratoconus assistant with 

seven other indices from the literature as well as independent assessment by trained 

clinical clinicians at the Rothschild foundation (RF) and Antwerp University Hospital 

(UZA) 31. The keratoconus assistant was found to agree well with the RF and UZA 

classifications; however, it provided a large number of false positives classifying 23/44 

UZA and 31/61 of Rothschild normal subjects as suspect for subclinical keratoconus. It 

was suggested by Hidalgo et al. that the sample size of the training set, especially for 

the suspect group, be increased in the next version of the program to reduce the rate 

of false-positives 31. 

Additional studies have been conducted to improve the accuracy of the described AI. To 

improve the accuracy of detecting sub-clinical corneal ectasia by analysing bilateral 

data, Kovacs et al. used a multilayer perceptron classifier to analyse 60 eyes of a 

keratoconus group and compared them to 15 normal fellow eyes of patients with 

unilateral features of keratoconus 30. In this study, within-patient corneal asymmetry 

(bilateral index of height decentration) was associated with a significant improvement in 

the classifier‟s performance when compared to unilateral data - specifically when the 

MLC was trained using the index of height decentration. This suggests that decreased 

between-eye similarity should be considered a warning sign for the presence of ecstatic 

disease and this feature could be incorporated into future decision algorithms to detect 

early keratoconus 30.  

To further enhancing corneal detection, Ambrosio et al. suggested using a Tomographic 

and biomechanical index (TBI) that combined Scheimpflug-based corneal tomography 

(Pentacam HR) and biomechanical analysis (Corvis ST examinations)29. They 

retrospectively studied 850 eyes (one random eye from 480 normal patients, one 

random eye from 204 patients; 72 eyes affected with unilateral keratoconus; 72 eyes 

sub-clinical fellow eyes from the previous group; 22 eyes excluded) with keratoconus 29. 

With an optimisation cut-off value set to 0.29, they had a 0.904 sensitivity with a 0.04 

false positive rate for detecting subclinical corneal ectasia using the TBI (0.96 

specificity; AUROC 0.985). Ambrosio et al. also revisited AI approaches testing forward 
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stepwise inclusion, support vector machine and random forest, with the latter found to 

be the most accurate method for developing the TBI. 

 

GAUGING GLAUCOMA 

 

Primary open-angle glaucoma (POAG) is a chronic progressive optic neuropathy that is 

associated with characteristic visual field degeneration and elevations in intraocular 

pressure (IOP) 34. Without early diagnosis and treatment, POAG can lead to irreversible 

vision loss 34. Therefore, screening and monitoring for POAG is of paramount 

importance.  

Raised IOP is a major risk factor for POAG. Screening in an otherwise asymptomatic 

population usually involves IOP assessments at vision checks. However, certain patients 

develop POAG and continue to progress despite low IOP. Therefore, higher risk patients 

can also be screened using serial stereoscopic optic disc photographs, (SODP) standard 

automated perimetry (SAP) or OCT imaging. Once diagnosed, POAG is monitored with 

regular clinical examinations as well as SODP, SAP, IOP, and OCT monitoring 35. Ideally, 

AI would utilise screening and monitoring datasets to develop cost-effective decision 

support systems that are as or more sensitive and specific than current techniques.  

In 2013, Yousefi et al. was one of the first to publish an AI study looking at POAG 

progression in 180 patients (73 stable eyes, 107 glaucoma progressed) using a number 

of different MLCs and independent features 35. They found that retinal nerve fibre layer 

(RNFL) features alone provided enough information for MLCs to differentiate stable 

versus progressing POAG at an early-moderate stage of disease. They also found that 

SAP did not improve the accuracy or performance of MLCs in detecting POAG 

progression when added to RNFL data, and that MLC performance was significantly 

worse than the results from RNFL alone compared to when SAP was used alone. 

Random forest tree and lazy K star were the most sensitive MLCs (Random forest tree - 

sensitivity 0.82, specificity 0.74, AUROC 0.87; Lazy K star - sensitivity 0.80, specificity 

0.73, AUROC 0.88) 35. 
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Two years later, Oh et al. developed and validated an ANN model to differentiate POAG 

from POAG suspect without a visual field test. 257 participants were used to construct 

the ANN model, and the remaining 129 participants were used to assess the ability to 

predict POAG 36. Their ANN model with nine factors in non-categorised form was the 

most discriminative model (validation: sensitivity 0.783, specificity 0.859, AUROC 

0.890). Factors useful in differentiation were sex, age, menopause, duration of 

hypertension, spherical equivalent refractive error, IOP, vertical cup-to-disc ratio and 

superotemporal and inferotemporal cup defects. This study demonstrated the potential 

capabilities of ANNs in POAG diagnosis and presented potential useful data-points to 

consider in future studies. However, the results of this study were limited in their real-

life applications as data points were time consuming to obtain, with some requiring 

ophthalmology review, making the implementation of such a program potentially 

inefficient. 

Chen et al. then created a convolutional neural network (CNN) using two different 

datasets (ORIGA set 99 training images, 551 validation; SCES set used all 1676 images 

for validation as it was trained using the 650 ORIGA images), which aimed to detect 

POAG based on the fundoscopic images of the optic disc 37. They reported AUROC 

values of 0.831 and 0.887 on ORIGA and SCES datasets, respectively. They reported 

these values as much better than current state-of-the-art programs for similar 

purposes. This paper did not publish other information pertinent to ophthalmology and 

focused on the computer science aspects of these results. 

Since then, there have been numerous other attempts to distinguish POAG from 

normal, using a variety of different techniques. Three studies looked at identifying 

POAG on fundus images using CNN 38–40. Kim et al. and Raghavendra et al. both 

focused on purely recognising glaucoma versus normal fundus images. Kim et al. 

trained their MLC on 540 POAG and 540 normal fundus images. The focus of this study 

was to determine whether there was any additional benefit to maintaining the high-

resolution images and red, green, blue colour scheme when learning from the images. 

Kim et al. reported accuracy as high as 87.9% when the original centre-cropped image 

of the optic disc was used rather than cropped down-sized images (with accuracies as 
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low as 65.2%). This is roughly equivalent to the accuracy of human experts (quoted at 

around 80%), suggesting promise for this method 40. Raghavendra et al. trained their 

MLC on 589 normal and 837 glaucoma images and obtained a score of 0.98 for 

sensitivity, specificity and accuracy 39. They recognised that although higher resolution 

images may allow for recognition of smaller differences, it would significantly increase 

computational time. The results of this technique need to be validated externally with 

the demographic details of the dataset. Finally, Ting et al. aimed to identify glaucoma, 

but this was done within a more complex MLC that aimed to also identify DR and age-

related macular degeneration (AMD). Overall, Ting et al.‟s MLC was trained on a total of 

494 661 fundus photographs; 125 189 of these were referrable POAG 38. These fundus 

photographs were taken from a multi-ethnic population, which may increase the 

external validity. The AUROC of the MLC was 0.942 for POAG, with a sensitivity of 

0.964, and specificity of 0.872. Compared to human clinician accuracy scores, these 

results show promise for potential clinical decision support software, especially 

considering the practicality of the ability to recognise multiple different common 

diseases for referral. 

Other avenues for POAG detection are being explored. This includes data from OCT and 

SAP investigations as well as hybrid machine learning using multiple MLCs with a CNN 

41–44. The results of these studies are useful in potentially improving the results of the 

CNN with fundus photographs in a potential hybrid approach. 

 

ASSESSMENT OF AGE-RELATED MACULAR DEGENERATION 

 

Age-related macular degeneration (AMD) is a leading cause of irreversible visual loss in 

the aging population 45. Accurate assessment of AMD is vital so clinicians can tailor 

management plans specific to each patient‟s needs. This could be improved by 

implementing AI as a support in decision making. 

Significant progress has been made in screening. Kermany et al. developed a diagnostic 

tool for screening patients with common treatable blinding retinal diseases, including 

diabetic macular oedema (DME) and AMD. His group included 108312 images (from 
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4686 patients) to train the MLC and a separate 1000 images (from 633 patients) to 

validate its capabilities 46. The MLC stratified the conditions according to need for the 

patient to be seen, with conditions like choroidal neovascularisation and DME classified 

as „urgent referrals‟, and drusen as part of dry AMD classified as a „routine referral‟. The 

MLC achieved a sensitivity of 0.978, a specificity of 0.974 and a AUROC of 0.999 in its 

task of retinal disease classification. When compared to human experts, the MLC had a 

statistically similar performance 46. Lee et al. also developed an AMD screening system 

to differentiate between normal and AMD OCT images 47. They trained their MLC on 48 

312 normal and 52 690 AMD images. Their MLC had a peak sensitivity and specificity of 

0.926 and 0.937, respectively, and an AUROC of 0.9746. As discussed earlier in the 

context of glaucoma, Ting et al. aimed to differentiate DR, POAG and AMD. This study 

used 72,610 images of referrable AMD to train the MLC and 35948 images of referrable 

AMD to validate it 38. Their MLC had an AUROC of 0.931, a sensitivity of 0.932 and a 

specificity of 0.887 for detecting AMD. To avoid over-fitting, some studies have also 

looked at smaller sample sizes. Treder et al. used OCT imaging (1112 images) to create 

a MLC that differentiates a healthy macula with one showing exudative AMD, with a 

sensitivity of 1.00 and a specificity of 0.92 48. All of these studies used a variation of a 

CNN, which is good at classifying images as the input is assessed at the pixel level 38,46–

48. Ultimately, as the MLCs perform at a level similar to professional graders, it appears 

that an MLC created using a CNN could be a useful system for screening for AMD. 

In addition to screening, some studies have focussed on grading AMD and predicting 

visual acuity from OCT images. This will help clinicians formulate a visual prognosis and 

support them in their decision making. Aslam et al. and Schmidt-Erfurth et al. 

developed MLCs that were able to estimate visual acuity 49,50. Aslam et al. trained their 

MLC on data from 847 OCT scans (182 separate scans were used for parameter 

optimisation and an additional 182 were used for validation)50 whereas Schmidt-Erfurth 

et al. trained their MLC on the data from 2456 OCT scans (from 614 eyes)49. Both 

studies enrolled patients who were receiving ranibizumab or aflibercept monthly or pro 

re nata. Schmidt-Erfurth et al. aimed to predict best-corrected visual acuity at one year 

from baseline. Their model was able to do that, with a root mean square error of 12.9 
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letters 49. Aslam et al. managed to achieve a predictive MLC that had a root mean 

squared error of 8.21 letters (95% confidence interval of prediction within 16.4 letters) 

50. These results should be considered within the context of the lower intersession 

reliability of visual acuity measurement in AMD 50.  

Grading and assessment of AMD is being split up into 2-, 3- and 4-class categories. 

Burlina et al. trained their AMD grading system on 5664 colour funds images and found 

accuracies of 0.794, 0.815, and 0.934 compared to 0.758, 0.850 and 0.952 for 

physician grading 51. These results are consistent with another study by Burlina et al., 

which aimed to solve a 2-class AMD classification problem for the purposes of triage 

and referral 52. They trained their programs with different MLCs with over 130,000 

colour fundus images from 4613 patients. They found the deep CNN to be the most 

accurate, with an accuracy range of 0.884 to 0.916. These results are similar to those 

of physicians, but with different mistakes. These grading systems have the potential to 

function as a decision support system for clinicians to make imaging assessment more 

efficient. 

Finally, AI is being studied as a support to therapy decision-making in AMD, specifically 

in determining whether anti-vascular endothelial growth factor (anti-VEGF) treatment is 

required. This has been done by training MLCs using OCT imaging and analysing 

different features of the scan, particularly retinal fluid 53–56. Prahs et al. looked at AI to 

support therapy decisions for intravitreal injection. They found that their deep CNN was 

able to correctly predict the need for anti-VEGF therapy in 95% of the cases -  similar to 

an average human grader in Chakravarthy et al.‟s study 54,55. Schlegl et al. also 

designed a MLC (using 1200 OCT images), with a mean accuracy of 0.94 and an 

AUROC of 0.92 56. Though in its preliminary stages, predictive treatment technology 

would be a useful addition to clinical practice.  

 

DIAGNOSING DIABETIC RETINOPATHY  

 

Diabetic retinopathy (DR) is a leading cause of visual impairment worldwide 57, and its 

incidence will increase as the population ages and as the prevalence of obesity 
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increases. Implementing AI into DR screening and surveillance services may assist in 

increasing efficiency in DR management. Many studies have looked at AI programs that 

can detect and even triage fundoscopic images with DR. In these studies, MLCs have 

already proven their capacity to recognise and classify DR from normal images 58–60. 

This has culminated in a few significant AI MLCs being created that demonstrate 

classification results similar to trained graders and ophthalmologists 3,38,61. These 

studies all used large datasets to create the MLCs. Gulshan et al. used 118 419 images 

for training - 53 759 normal images and 64 660 DR images (separated into DR 

categories mild, moderate, severe, proliferative; additional categories within the same 

dataset but separate to the other classification was referable DME and referable DR) 3. 

Ting et al. used 494 661 retinal images for training, with 76 370 DR images and the rest 

spread across glaucoma, AMD and normal 38. Finally, Gargeya et al. used 75 137 fundus 

images to train an AI model to differentiate between diabetic and healthy fundi 61. 

Gulshan et al.‟s MLC had an AUROC of 0.990-0.991 for detecting referable DR on 

validation (sensitivity and specificity for referable DR over the two validation datasets 

were 0.870-0.903 and 0.981-0.985, respectively)3. Ting et al.‟s MLC achieved an AUROC 

of 0.936 for referable DR on validation (sensitivity and specificity of referable DR were 

0.905 and 0.916) 38 whereas Gargeya et al.‟s MLC achieved AUROC of 0.97 at detecting 

referable DR on validation (sensitivity and specificity for referable DR was 0.94 and 

0.98, respectively) 61. Limitations of these studies included the inability to recognise 

individual signs in classifying severity and possible restricted recognition of DME without 

OCT input. Further research regarding sign detection is currently underway 62. Despite 

these issues, the results suggest that it may be feasible that these or future MLCs could 

be utilised as screening and computer-aided diagnostic tools in clinics. Future research 

should focus on studying these MLCs in clinical settings.  

 

OTHER AI OPHTHALMOLOGY RESEARCH  

 

Early research has been conducted using AI in other areas of ophthalmology. One study 

utilised confocal imaging to classify corneal images 63. Another looked at contact lenses 
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for non-invasively detecting Staphylococcus aureus 64. Other studies have looked at 

ophthalmological conditions including cataracts 65–68 and retinopathy of prematurity 69 

whilst some research is focused on improving AI technology for future use, e.g. 

improving AI recognition of the optic nerve head 70, or improving the false positive or 

negative rates from imbalanced datasets 71. Interestingly, some studies are using the 

ophthalmic datasets for utilisation across other aspects of health 72. Ultimately AI is 

being researched for its benefits across a wide variety of applications in Ophthalmology 

and beyond.  

 

FUTURE CHALLENGES 

 

Challenges exist for AI research in ophthalmology. An AI program is limited by the 

quality of the dataset used to train and validate it. It can be challenging to predict the 

number of training images required in a dataset; it is natural to assume that the more 

images the better. However, excessive datasets make the training process less efficient 

and possibly overfit the MLC to the training dataset. Additionally, the dataset should 

provide images from a wide demographic for greater external validity. It must be kept 

in mind that algorithms may not be broadly applicable; machines of different brands 

may have slight differences that may alter the accuracy of the assessments. 

Furthermore, to reduce dataset size and algorithm complexity, it may be useful to 

restrict the number of classifications within a program to those that have significant 

prognostic relevance 73. 

AI is a complex field of research. This is because it inherently involves two otherwise 

separate branches of science: medical and computer science. Research published in one 

branch of science is focussed on addressing the needs of that particular readership. 

This means that the other discipline may be missing out on potentially useful data and 

conclusions which is a major inefficiency. It is important that future research set a 

standard for reporting so that there is reduced heterogeneity between studies. 

Commercialisation of AI will also pose future issues. AI MLCs will likely be sold with and 

for implementation with certain medical technologies. It will be important to anticipate 
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conflicts of interest, which may be similar to precautions that exist when dealing with 

medical companies with a financial interest 74. Additionally, if AI does improve medical 

care, it will be important to pass those improvements on to those populations who 

cannot afford them. The responsibility for advocating this will likely fall to healthcare 

professionals due to competing financial interests of medical companies. 

 

CONCLUSION 

 

AI will be a disruptive technology. It is essential that the potential applications of this 

new technology are studied and reviewed so that patient care is optimised. In the 

future, AI programs may be integrated as computer-aided diagnostic and management 

tools. Triage systems may be useful outside ophthalmology in a primary care setting 

when deciding on need for referral. This may be particularly useful in rural setting 

where there may be limited availability and access to necessary services. Within 

ophthalmology, it may be useful to increase efficiency of assessment so that more time 

could be available for patient interaction. It is important to consider that AI programs 

also could be harmful. There is a potential risk for overdiagnosis if unnecessary 

screening occurs. Furthermore, it could be problematic if the diagnostic software is 

released directly to patients as the potential opportunities and risk of AI could be 

magnified 75. 
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Table 1: Important research studies applying artificial intelligence to ophthalmic 

conditions  

  

Disease AI Utility AUROC Reported 
Values 

Reference 

Corneal Ectasia Differentiate normal, 
astigmatic, photorefractive 
keratectomy and keratoconus 
corneas 

0.98-0.99 Sen: 0.98-1.00 
Spe: 0.98-1.00 

Souza et al.25  

Differentiate normal, 
keratoconus and sub-clinical 
corneal ectasia 

keratoconus 
vs normal 
0.998;  
 
subclinical vs 
normal 
0.922  

keratoconus vs 
normal 
Sen: 0.991 
Spe: 0.998 
 
subclinical vs 
normal 
Sen: 0.791 
Spe: 0.979 

Hidalgo et al.24  

Differentiate normal,  
keratoconus and sub-clinical 
corneal ectasia 

Not reported keratoconus vs 
normal 
Sen: 0.99 
Spe: 0.99 
 
subclinical vs 
normal 
Sen: 0.90 
Spe: 0.86 

Smadja et al.23 

Differentiate normal,  
keratoconus and sub-clinical 
corneal ectasia 

Not reported keratoconus vs 
normal 
Acc: 0.982 
Sen: 0.950 
Spe: 0.993 
 
subclinical vs 
normal 
Acc: 0.973 
Sen: 0.920 
Spe: 0.977 

Arbelaez et al.32 

Differentiate normal,  
keratoconus and sub-clinical 
corneal ectasia using bilateral 
data) 

keratoconus 
versus 
normal  0.99 
 
subclinical 
versus 
normal 

keratoconus vs 
normal 
Sen: 1.00 
Spe: 0.95 
 
subclinical vs 
normal 

Kovacs et al.30 
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0.96   Sen: 0.90 

Spe: 0.90 

Differentiate normal,  
keratoconus and sub-clinical 
corneal ectasia using 
tomographic biomechanical 
index) 

Detecting 
ectasia vs 
normal 0.996 
 

Detecting 
ectasia vs 
normal  
Sen: 1.00 
Spe: 1.00 
 
subclinical vs 
normal 
Sen: 0.904 
Spe:0.960 
 

Ambrosio et al.29 

POAG Assessing POAG progression 
using retinal nerve fibre layer 

0.88 Sen: 0.80 
Spe: 0.73 

Yousefi et al.35 

Differentiate POAG from POAG 
suspect using patient 
characteristic data 

0.890 Sen: 0.783 
Spe: 0.859 

Oh et al. 36 

Differentiate normal and POAG 
fundoscopic images of the optic 
disc 

0.831 and 
0.887 

Not reported Chen et al.37 

Differentiate normal and POAG 
fundoscopic images of the optic 
disc using a small training 
dataset 

Not reported Acc: 0.879 Kim et al.40 

Differentiate normal and POAG  
fundoscopic images of the optic 
disc 

Not reported Acc: 0.98 
Sen: 0.98 
Spe: 0.98 

Raghavendra et 
al.39 

Differentiate POAG, AMD, DR 
and normal funduscopic images 

0.942  Sen: 0.964 
Spe: 0.872 

Ting et al.38 

AMD Differentiate between normal 
and AMD OCT macular images 

0.975 Sen: 0.926 
Spe: 0.937 

Lee et al.47 

Differentiate normal and AMD 
OCT macular images 

Not reported Sen: 1.00 
Spe: 0.92 

Treder et al.48 

Estimate visual acuity in AMD 
from OCT macular images 

Not reported Root mean 
square error of  
8.21 letters 

Aslam et al.50 

Predict visual acuity in one year 
from baseline OCT macular 
images  

Not reported Root mean 
square error of  
12.9 letters 

Schmidt-Erfurth 
et al.49 

Grading and assessment of Not reported Acc:  Burlina et al.51 
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AMD - 2, 3 and 4 classes 4 class 0.794 

3 class 0.815  
2 class 0.934 

Grading and assessment of 
AMD - 2 classes 

0.94-0.96 Acc: 0.884-
0.916 

Burlina et al.52 

Predict the need for anti-VEGF 
from OCT macular images 

Not reported Acc: 0.95 Prahs et al.54 

Detect fluid and need for anti-
VEGF from OCT macular 
images 

Not reported Acc: 0.91 
Sen: 0.92 
Spe: 0.91 

Chakravarthy et 
al.55 

Differentiate POAG, AMD, DR 
and normal funduscopic images 

0.931  Sen: 0.932 
Spe: 0.887 

Ting et al.38 

Diabetic 
retinopathy (DR) 

Screening MLC that separated 
referrable and non-referrable 
DR 

0.990-0.991 Sen: 0.870-
0.903 
Spe: 0.981-
0.985 

Gulshan et al.3 

Differentiate between normal 
and DR fundoscopic images 

0.97 Sen: 0.94 
Spe: 0.98 

Gargeya et al.61 

Differentiate POAG, AMD, DR 
and normal funduscopic images 

0.936  Sen: 0.905 
Spe: 0.916 

Ting et al. 38 

AMD or Diabetic 
macular oedema 

Screening for common 
treatable blinding retinal 
disease; diabetic macular 
oedema or AMD 

0.999 Sen: 0.978 
Spe: 0.974 

Kermany et al.46 

AI - Artificial Intelligence; AUROC - Area under the curve of the receiver operator 

characteristic; Acc - Accuracy; Sen - Sensitivity; Spe - Specificity; Vs: versus POAG - 

Primary open-angle glaucoma; AMD - Age-related macular degeneration; OCT - Optical 

coherence tomography; VEGF - vascular endothelial growth factor; DR - Diabetic 

retinopathy 
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