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Abstract

Feature selection is considered to be one of the most critical methods for choosing appropri-

ate features from a larger set of items. This task requires two basic steps: ranking and filter-

ing. Of these, the former necessitates the ranking of all features, while the latter involves

filtering out all irrelevant features based on some threshold value. In this regard, several fea-

ture selection methods with well-documented capabilities and limitations have already been

proposed. Similarly, feature ranking is also nontrivial, as it requires the designation of an

optimal cutoff value so as to properly select important features from a list of candidate fea-

tures. However, the availability of a comprehensive feature ranking and a filtering approach,

which alleviates the existing limitations and provides an efficient mechanism for achieving

optimal results, is a major problem. Keeping in view these facts, we present an efficient and

comprehensive univariate ensemble-based feature selection (uEFS) methodology to select

informative features from an input dataset. For the uEFS methodology, we first propose a

unified features scoring (UFS) algorithm to generate a final ranked list of features following a

comprehensive evaluation of a feature set. For defining cutoff points to remove irrelevant

features, we subsequently present a threshold value selection (TVS) algorithm to select

a subset of features that are deemed important for the classifier construction. The uEFS

methodology is evaluated using standard benchmark datasets. The extensive experimental

results show that our proposed uEFS methodology provides competitive accuracy and

achieved (1) on average around a 7% increase in f-measure, and (2) on average around a

5% increase in predictive accuracy as compared with state-of-the-art methods.

Introduction

In the domain of data mining and machine learning, one of the most critical problems is the

task of feature selection (FS), which pertains to the complexity of the appropriate choosing

of features from a larger set of such [1]. FS performs a key role in the (so-called) process of
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“knowledge discovery” [2]. Traditionally, this task is performed manually by a human expert,

thereby making it more expensive and time-consuming as compared with the use of an auto-

matic FS, which has become necessary for the fast-paced digital world of today [3]. FS tech-

niques are generally split into the three categories: of filter, wrapper, and hybrid, wherein each

technique has capabilities and limitations [3–5]. Popular evaluation methods used for these

techniques are information-theoretic measures, correlational measures, consistency measures,
distance-based measures, and classification/predictive accuracy. A good FS algorithm can effec-

tively filter out unimportant features [6]. Thus, in this regard, a significant amount of research

has focused on proposing improved FS algorithms [7–11]; consequently, most of these algo-

rithms use one or more of the aforementioned methods for performing FS. However, to date,

there remains a lack of a comprehensive framework, which can select features from a given fea-

ture set. In order to design such a comprehensive FS methodology, the following two major

technical issues must be solved:

1. How to rank the features without the use of any learning algorithm; high computational

costs; and the presence of individual statistical biases of state-of-the-art, feature-ranking

methods must be considered. In this case, the filter-based, feature-ranking approach is

more suitable than the other two approaches (i.e., wrapper and hybrid). Filter-based meth-

ods evaluate a feature’s relevance in order to assess its usefulness without using any learning

algorithm [1, 4]. Filter-based, feature-ranking methods are further split into two subcatego-

ries: univariate and multivariate. Univariate filter methods are simple and have high perfor-

mance characteristics as compared with the other approaches [12]. However, even though

the univariate filter-based methods are considered to be much faster and less computation-

ally expensive than wrapper methods [4, 13], in reality, each method has its capabilities as

well as its limitations. For example, information gain (IG) is a widely acceptable measure

for ranking the features [14]; however, IG is biased towards choosing features with a

large number of values [15]. Similarly, the chi-squared statistic determines the association

between a feature and its target class, but is sensitive to sample size [15]. In addition, gain

ratio and symmetrical uncertainty enhances the IG; however, both are biased towards fea-

tures with fewer values [16]. Therefore, the designing an efficient feature-ranking approach

and the overcoming of the aforementioned limitations compose our first goal.

2. Additionally, how to find a minimum threshold value for retaining important features irre-

spective of the characteristics of the dataset must be determined. In this case, for defining

cutoff points for removing irrelevant features, a separated validation set and artificially gen-

erated features approaches are used [8]; however, it is not clear how to find the threshold

for the features’ ranking [17, 18]. Research has shown that finding an optimal cutoff value

to select important features from different datasets can be problematic [17] and existing

methodologies [15, 18] required educated guesses to specify a minimum threshold value for

retaining important features. Therefore, designing an empirical method to specify a mini-

mum threshold value for retaining important features and overcoming the aforementioned

limitations is our second target.

Keeping in view these two facts, we have proposed an efficient and comprehensive FS meth-

odology, called univariate ensemble-based FS (uEFS), which includes two innovative algo-

rithms, unified features scoring (UFS) and threshold value selection (TVS) and which allows

for us to select informative features from a given dataset. This study is the extension as well as a

detailed review of some of our previous work [19], which proposed a consensus methodology

for appropriate FS in order to generate a useful feature subset for the FS task. The UFS algo-

rithm generates a final ranked list of features after a comprehensive evaluation of a feature set

uEFS: An ensemble-based feature selection methodology
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without (1) using any learning algorithm, (2) high computational costs, and (3) the existence of

any individual statistical biases of state-of-the-art, feature-ranking methods. The current ver-

sion of the UFS has been plugged into a recently developed tool named the data-driven knowl-

edge acquisition tool (DDKAT) [19] to assist the domain expert in selecting important features

for the data preprocessing task. The DDKAT supports an end-to-end knowledge engineering

process for generating production rules from a dataset [19]. The current version of the UFS

code and its documentation are freely available and can be downloaded from the GitHub open

source platform [20, 21]. Similarly, the TVS provides an empirical algorithm to specify a mini-

mum threshold value for retaining important features irrespective of the characteristics of the

dataset. It selects a subset of features that are deemed important for the classifier construction.

The motivation behind the uEFS is to design and develop an efficient FS methodology for

evaluating a feature subset through different angles and to produce a useful reduced feature

set. In order to accomplish this aim, this study was undertaken with the following objectives:

(1) to design a comprehensive and flexible feature-ranking algorithm to compute the ranks

without (a) using any learning algorithm; (b) high computational costs; and (c) any individual

statistical biases of state-of-the-art, feature-ranking methods and (2) to identify an appropriate

cutoff value for the threshold to select a subset of features irrespective of the characteristics of

the dataset with reasonable predictive accuracy.

The key contributions of this research are as follows:

1. The presentation of a flexible approach, called UFS for incorporating state-of-the-art uni-

variate filter measures for feature-ranking

2. The proposal of an efficient approach, called TVS, for selecting a cutoff value for the thresh-

old in order to select a subset of features

3. The demonstration of a proof-of-concept for the aforementioned techniques, after per-

forming extensive experimentation which achieved (1) on average a 7% increase in the f-

measure as compared with the baseline approach, and (2) on average a 5% increase in pre-

dictive accuracy as compared with state-of-the-art methods.

Related works

This section briefly describes various existing studies related to the FS methodologies to filter

out the irrelevant features. This study focused on presenting a comprehensive and flexible FS

methodology based on an ensemble of univariate filter measures for the classifier construction.

The following includes some relevant FS studies, which contain research surveys and ensem-

ble-based approaches for ranking of features as well as identifying a cutoff value for the thresh-

old in the domain of FS. Lastly, the overall perspectives of literature reviewed are presented.

A review of applied FS methods for microarray datasets was performed by Bolón et al. [22].

Microarray data classification is a difficult task due to its high dimension and small sample

sizes. Therefore, FS is considered the de facto standard in this area [22]. Belanche and Gonza-

lez [7] studied the performance of different existing FS algorithms. A scoring measure was

also=introduced to score the output of FS methods, which was assumed as an optimal solution.

To automate the FS, Liu and Yu [23] proposed a framework, which provided an important

infrastructure to integrate different FS methods based on their common traits. Chen et al. [24]

performed a survey on FS algorithms for an intrusion detection system. Experiments were per-

formed for different FS methods i.e., filter, wrapper, and hybrid. Since the present study was

not focused on comprehensible classifiers, it did not study the effects of FS algorithms on the

comprehensibility of a classifier. In addition to this, no unifying methodology was proposed

uEFS: An ensemble-based feature selection methodology
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that was capable of categorizing existing FS methods based on their common characteristics or

their effects on classifiers.

Regarding ensemble-based, feature ranking studies, Rokach et al. [9] and Jong et al. [10]

examined the available ensemble-based, feature-ranking approaches to show the improvement

in steadiness of FS. Similarly, Slavkov et al. [11] investigated numerous aggregation approaches

of feature ranking and observed that aggregating feature rankings produced better results as

compared with using the single feature-ranking method. In addition, Prati [8] also obtained bet-

ter results using an ensemble feature-ranking approach. In the literature, a hybrid approach by

combining the filter and wrapper methods was also presented that is able to eliminate unwanted

features by employing a ranking technique [25]. A similar concept to an EFS approach has also

been mentioned previously [2, 26]. For ensemble feature ranking, two aggregate functions called

arithmetic mean and arithmetic median, respectively, were used to rank features [27]. Authors

obtained the ranking by arranging the features from the lowest to the highest. Investigators

assigned rank 1 to a feature with the lowest feature index and rank M to a feature with the high-

est feature index [27]. Similarly, other researchers aggregated several feature rankings to dem-

onstrate the robustness of ensemble feature ranking that surges with the ensemble size [10].

Onan and Korukoğlu [12] presented an ensemble-based FS approach, wherein different ranking

lists obtained from various FS methods were aggregated. They used a genetic algorithm to pro-

duce an aggregate-ranked list, which is a relatively more expensive technique than a weighted

aggregate technique. The authors performed experiments of binary class problems, and it was

not clear how the proposed method would deal with more complex datasets. Popular filter

methods used for the ensemble-based FS approach include IG, gain ratio, chi-squared, symmet-

ric uncertainty, one rule (OneR), and ReliefF. Most of the FS methodologies use three or more

of the aforementioned methods for performing FS [1, 8, 15, 18, 27, 28].

With respect to identifying an appropriate cutoff value for the threshold, Sadeghi and

Beigy [29] proposed a heterogeneous ensemble-based methodology for feature ranking. These

authors used the genetic algorithm to determine the threshold value; however, a θ value is

required to start the process. Moreover, the user is given an additional task of defining the

notion of relevancy and redundancy of a feature. Osanaiye et al. [18] combined the output of

various filter methods; however, a fixed threshold value i.e. one-third of a feature set, is defined

a priori, irrespective of the characteristics of the dataset. Sarkar et al. [15] proposed a technique

that aggregates the consensus properties of IG, chi-squared, and symmetric uncertainty FS

methods to develop an optimal solution; however, this technique is not comprehensive enough

to provide a final subset of features. Hence, a domain expert would still need to make an edu-

cated guess regarding the final subset. For defining cutoff points to remove irrelevant features,

a separated validation set and artificially generated features approaches can be used [8], though

it is not clear how to find the threshold for the features’ ranking [17, 18]. Finding an optimal

cutoff value to use in selecting important features from different datasets is problematic [17].

Taking into consideration the aforementioned discussion, a significant amount of research

[7–12, 15, 18, 24, 29] has focused on proposing improved FS methodologies; however, not so

much consideration has been paid regarding selecting features from a given feature set in a

comprehensive manner. These methodologies either used relatively more expensive tech-

niques to select features or required an educated guess to specify a minimum threshold value

for retaining important features.

Materials and methods

This section first explains the process of uEFS methodology. Second, the UFS algorithm

is explained through algorithms. Third, the TVS algorithm is presented and, lastly, the

uEFS: An ensemble-based feature selection methodology
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statistical measures, used for evaluating the performance of the proposed uEFS methodol-

ogy, are explained.

Univariate ensemble-based features selection methodology

In the FS process, normally, two steps are required [17]. In the first step, features are typically

ranked, whereas, in the second step, a cutoff point is defined to select important features and

to filter out the irrelevant features for building more robust machine learning models. In this

regard, the proposed UFS algorithm [19] covers the first step of FS, while the TVS algorithm

covers the second step.

Fig 1 shows the functional details of the proposed uEFS methodology, which consists of

three major components of UFS, TVS, and select features. The UFS component evaluates the

feature-set in a comprehensive manner and generates a final ranked list of features. For exam-

ple, feature f2 has the highest priority, then feature f4, and so on, as shown in Fig 1. Similarly,

the TVS component defines a cutoff point for selecting important features. Finally, the select
features component filters out the irrelevant features from the final-ranked list of features

based on a cutoff point and selects a subset of features that are deemed as important for the

classifier construction. For example, f2, f4, f1, . . ., fn−45 is the list of features that were selected

by the proposed uEFS methodology, as shown in Fig 1.

Unified features scoring

UFS is an innovative feature ranking algorithm that tries to unify various filter-based methods

[19] for the purpose of obtaining the final-ranked list of features. In this algorithm, univariate

filter measures are employed to assess the usefulness of a selected feature subset in a multidi-

mensional manner. These measures are better suited to high-dimensional datasets and provide

better generalization [4, 13]. The UFS algorithm uses the ensemble FS (EFS) approach, which

has been examined recently by some researchers [2, 26]. The EFS, an concept of ensemble

learning, obtains a ranked list of features by incorporating the outcomes of different feature-

ranking techniques [1, 27]. Generally, the intention of the EFS approach is to give an improved

estimation to the most favorable subset of features for improving classification performance

[2, 27, 30, 31]. As mentioned elsewhere [27], fewer studies have focused on the EFS approach

Fig 1. uEFS methodology.

https://doi.org/10.1371/journal.pone.0202705.g001
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to enrich the FS itself. Although ensemble-based methodologies have additional computational

costs, these costs are affordable due to offering an advisable framework [32]. As discussed pre-

viously [27], there are three types of filter approaches: ranking, subset evaluation, and a new FS
framework that decouples the redundancy analysis from relevance analysis. The UFS uses a

ranking approach, as it is considered an attractive approach due to its simplicity, scalability,

and good empirical success [27, 33]. Feature ranking measures the relevancy of the features

(i.e., independent attributes) by their correlations to the class (i.e., dependent attribute) and

ranks independent attributes according to their degrees of relevance [1]. These values may

reveal different relative scales. To neutralize the effect of different relative scales, the UFS

rescales the values to the same range (i.e., between 0 and 1) to make it scale-insensitive. For

rescaling, the UFS allocates rank 1 to a feature with the highest feature index, as opposed to

research that has been done previously [27], which assigned rank 0 to a feature having the top-

most feature index. Following that, the UFS orders all scaled ranks in an ascending order and

then aggregates them, as it is considered to be an effective technique [8]. The ordered-based,

ranking-aggregation method combines the base rankings and considers only the ranks for

ordering the attributes [8]. Finally, the UFS computes a mean value to compute weights and

priorities of each feature.

UFS is described through Algorithm 1, which takes a dataset (i.e., D) as input and computes

the ranks (scores) of the features after passing through key steps of the algorithm. UFS depends

on n univariate filter-based measures, where the key rationale for n filter measures is to evalu-

ate a feature through different considerations.

Algorithm 1: UFS (D)
Input: D: Input data set (data)
Output: FR− Features Ranks
1 noOfAttrs  numAttributes(data) // compute the number of
attributes;

2 /� Consider n attribute evaluation measures, also called univari-
ate filter measures (AttrEv1, AttrEv2, AttrEv3,. . ., and AttrEvn) �/;

3 /� Compute the ranks using each selected measure �/;
4 CR1[]  computeRanks(data, AttrEv1) //where CR represents computed
ranks;

5 CR2[]  computeRanks(data, AttrEv2);
6 CR3[]  computeRanks(data, AttrEv3);
7 CRn[]  computeRanks(data, AttrEvn);
8 /� Compute the scaled ranks of each computed ranks using Algorithm
2 �/;

9 scaledRanks1[]  scaleRanks(CR1) // invoke Algorithm 2;
10 scaledRanks2[]  scaleRanks(CR2) // invoke Algorithm 2;
11 scaledRanks3[]  scaleRanks(CR3) // invoke Algorithm 2;
12 scaledRanksn[]  scaleRanks(CRn) // invoke Algorithm 2;
13 /� Compute the combined sum of all computed ranks �/;
14 combinedranksSum  0;
15 combinedRanks[];
16 for 8 noOfAttrs 2 D do
17 /� For each attribute, compute the combined rank by adding all

computed scaled ranks �/;

18 combinedRanksi  
Xn

j¼1

scaledRanksji //where n represents the number of

filter measures;
19 combinedranksSum = combinedranksSum + combinedRanksi;
20 end
21 /� Rank the list in ascending order �/;
22 sortedRanks[]  sort(combinedRanks);

uEFS: An ensemble-based feature selection methodology
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23 /� Compute the score, weight, and priority of each attribute �/;
24 for 8 noOfAttrs 2 D do
25 attrScoresi  combinedRanksi/n //where n represents number of fil-

ter measures;
26 attrWeightsi  combinedRanksi/combinedranksSum;
27 attrPrioritiesi  attributesScoresi � attributesWeightsi;
28 /� Assign an index (Rank ID) on ascending order to each attri-

bute based on its priority value �/;
29 FR[]  assignRank(attrPrioritiesi);
30 end
31 return FR: features ranks

Algorithm 2: Scaling the Computed Ranks (CR)
Input: CR: Input computed ranks (ranks)
Output: SR− Scaled Ranks
1 smallest  ranks0;
2 largest  ranks0;
3 for 8 noOfAttrs 2 CR do
4 if ranki > largest then
5 largest  ranki;
6 else
7 if ranki < smallest then
8 smallest  ranki
9 end
10 end
11 end
12 min  smallest;
13 max  largest;
14 SR[]  (ranks − min)/(max − min);
15 return SR: scaled ranks

In Algorithm 1, the first step is to compute the number of features from a given dataset.

Then, in the second step, each feature in a dataset can be ranked using n number of univariate

filter-based measures, as shown in Line 4 to Line 7 of Algorithm 1. After that, Algorithm 2

was used to scale (normalize) all computed ranks using the first filter measure. This step was

repeated for the remaining (n − 1) measures as well as shown in Line 9 to Line 12. After the

evaluation and scaling process, ranks aggregations were performed, as shown in Line 18 of

Algorithm 1. Later, the comprehensive score as well as the weightage of each feature were

computed, as shown in Line 25 and Line 26 of Algorithm 1. Finally, based on the contribution

(i.e., individual measure score and relative weightage), a priority value of each feature was

computed. This priority value of a feature was further utilized for ranking and feature subset

selection.

For the proof-of-concept, five univariate filter-based measures—namely, IG, gain ratio,

symmetric uncertainty, chi-squared, and significance [1, 8, 19, 27, 28]—were used to explain

the process of the proposed unified features scoring algorithm. The reasons for selecting these

five measures are described elsewhere [19]. Using these five filter measures, the process of the

UFS is depicted in Fig 2. This process is also explained through an example.

Threshold value selection

The process of FS starts once features are ranked. In order to select a subset of features, the

TVS algorithm is introduced, which provides an empirical approach of specifying a minimum

threshold value. Those attributes that score less than the minimum threshold value can be dis-

carded for building more robust machine learning models. The proposed algorithm is imple-

mented in Java language using WEKA API.

uEFS: An ensemble-based feature selection methodology
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TVS is explained through Algorithm 3. This algorithm takes n datasets (i.e., D) and m classi-

fiers (i.e., C) as input and sequentially passes them through mandatory steps of the algorithm

to find the cutoff value from a predictive accuracy graph.

Algorithm 3: TVS (D, C)
Input: D − (d1, d2,. . .,dn) // set of n datasets with varying
complexities

C − (c1, c2,. . .,cm) // set of m machine learning classifiers
Output: V − cutoff value
1 initialization;
2 for di  in D do
3 di  computeFeatureRank(di) // rank each feature;
4 di  sortByRankASC(di) // sort features by rank in ASC;
5 end
6 P  100;
7 for di  in D do
8 while P � 5 do
9 k  sizeOf(di) � (p/100) // compute partition size;
10 Acc  newSet() // initialize empty set;
11 for ci  in C do;
12 Pacc  predictiveAccuracy(ci, topKFeatures(di, k));
13 Acc.add(Pacc) // add accuracy to set;
14 end
15 AVGacc  computeAVG(Acc) // compute average accuracy;
16 G  Plot(AVGacc, k) // plot the average point;
17 P  P − 5 // decrease the partition size by 5;
18 end
19 end
20 V  getCutoffValue(G);

In Algorithm 3, first consider the n number of benchmark datasets having varying com-

plexities. After that, compute the feature ranks using a ranker search mechanism and then

sort them in an ascending order, as shown in Line 3 and Line 4 of Algorithm 3. Then, partition

each dataset into different chunks (filtered datasets) from 100% to 5% features retained. Once

filtered datasets are created, then consider m number of classifiers from various classifiers cate-

gories/families having varying characteristics (where m� n) and feed each filtered dataset to

these classifiers as shown in Line 6 and Line 11 of Algorithm 3. Following this, record predic-

tive accuracies of these classifiers to each chunk of dataset partitioning using 10-fold cross vali-

dation approach (Line 12). Later, compute the average predictive accuracy of all classifiers as

Fig 2. UFS algorithm [19].

https://doi.org/10.1371/journal.pone.0202705.g002
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well as datasets against each chunk of dataset partitioning (Line 15). Finally, plot all computed

average predictive accuracies against each chunk of dataset partitioning (Line 16) and identify

the cutoff value from the plotted graph (Line 20).

For the proof-of-concept, eight datasets of varying complexities were used to explain the

process of the proposed threshold selection algorithm. The process of threshold value selection

is depicted in Fig 3.

As depicted in Fig 3, each dataset (Cylinder-bands, Diabetes, Letter, Sonar, Waveform,

Vehicle, Glass, Arrhythmia) was fed to the IG filter measure for computing attributes’ ranks.

Then, all measured ranks of attributes of each dataset were sorted in ascending order. After-

wards, each dataset was partitioned into different chunks (filtered datasets) from 100% to 5%

features retained, e.g., in case of an 80% chunk, the dataset retains nearly 80% of the highly

ranked features, while 20% of the features, which are below the rank, are discarded. Each fil-

tered dataset was fed to five well-known classifiers from various classifier categories/families

having varying characteristics [e.g., naive Bayes from the Bayes category, J48 from the Trees
category, k-nearest neighbors (kNN) from the Lazy category, JRip from the Rules category,

and support vector machine (SVM) from the Functions category] and, using a 10-fold cross-
validation approach [8], predictive accuracies of these classifiers were recorded to each

chunk of dataset partitioning, as illustrated in Table 1. Finally, an average predictive accuracy

of all classifiers as well as the datasets against each chunk of dataset partitioning were com-

puted. The main intuition of this process is to identify an appropriate chunk value that pro-

vides reasonable predictive accuracy and considerably reduces the dataset as well. Through

empirical evaluation, it was found that a 45% chunk provided a reasonable threshold value of

feature subset selection (Fig 4).

State-of-the-art feature selection methods for comparing the performance of the pro-

posed univariate ensemble-based feature selection methodology. In this study, both sin-

gle-FS methods—namely, IG, gain ratio, symmetric uncertainty, chi-squared, significance,

OneR, Relief, ReliefF, and decision rule-based FS (DRB-FS) —and ensemble-based FS

methods such as gain-ratio—chi-squared (GR-χ2), the Borda method, and ensemble-based

multifilter FS (EMFFS) method were used as state-of-the-art FS methods for comparing the

performance of the proposed uEFS methodology [1, 8, 15, 18, 19, 27, 28]. Each of the FS meth-

ods is defined as follows:

IG is an information theoretic as well as a symmetric measure and is one of the popular

measures for FS. It is calculated based on a feature’s contribution in enhancing information

Fig 3. TVS algorithm.

https://doi.org/10.1371/journal.pone.0202705.g003
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Table 1. Predictive accuracy (in %age) of classifiers using benchmark datasets.

%age of Features Retained Naive Bayes J48 kNN JRip SVM Naive Bayes J48 kNN JRip SVM Naive Bayes J48 kNN JRip SVM

Cylinder-Bands Diabetes Letter

100 72.22 57.78 74.44 65.19 81.67 76.3 73.83 70.18 76.04 77.34 97.3 99.49 99.88 99.3 97.17

95 72.41 57.78 74.81 67.41 82.04 76.56 73.96 65.76 73.57 77.47 96.99 99.35 99.83 99.23 97.08

90 72.41 57.78 75 66.85 82.04 76.56 73.96 65.76 73.57 77.47 96.78 99.06 99.64 99.01 96.93

85 72.41 57.78 75.93 66.3 82.59 76.17 73.57 65.76 73.96 76.69 96.62 99.06 99.55 99.03 96.93

80 72.59 57.78 76.11 66.3 82.96 76.17 73.57 65.76 73.96 76.69 96.61 98.91 99.44 98.89 96.95

75 71.67 57.78 76.48 66.85 82.22 76.17 73.57 65.76 73.96 76.69 96.61 98.91 99.44 98.89 96.95

70 71.3 57.78 76.11 68.15 80.37 74.87 72.4 67.45 71.88 74.48 96.89 98.64 99.04 98.45 96.94

65 71.85 56.67 77.04 67.78 79.81 74.87 72.4 67.45 71.88 74.48 96.36 98.3 98.7 98 95.94

60 72.04 56.67 77.04 70.19 80 74.87 72.53 66.93 72.4 74.48 96.38 97.88 97.99 97.89 95.94

55 69.81 56.67 77.04 64.26 80.19 74.87 72.53 66.93 72.4 74.48 94.75 97.59 97.16 97.37 95.94

50 70 56.67 76.3 66.85 80.74 74.87 72.53 66.93 72.4 74.48 94.75 97.59 97.16 97.37 95.94

45 70 56.67 77.41 65.19 79.81 75.13 72.53 67.84 72.79 75.39 95.94 96.89 96.1 96.68 95.94

40 70.19 56.67 78.89 65.93 80 75.13 72.53 67.84 72.79 75.39 95.94 95.93 94.96 96 95.94

35 69.44 56.67 81.48 61.85 76.48 74.61 72.53 67.84 72.4 75.26 95.94 95.94 95.87 95.95 95.94

30 69.63 56.67 80.93 56.3 76.48 74.61 72.53 67.84 72.4 75.26 95.94 95.94 95.92 95.94 95.94

25 70.19 56.67 80 57.41 78.7 74.61 72.53 67.84 72.4 75.26 95.94 95.94 95.92 95.94 95.94

20 70.19 56.67 80 61.11 78.7 67.19 67.84 67.32 67.19 65.1 95.94 95.94 95.99 95.94 95.94

15 70 56.67 80.56 60 77.96 67.19 67.84 67.32 67.19 65.1 95.94 95.94 95.94 95.94 95.94

10 74.63 57.78 74.26 60.37 77.96 65.1 65.1 65.1 65.1 65.1 95.94 95.94 95.94 95.94 95.94

5 61.48 57.78 54.81 57.78 76.85 65.1 65.1 65.1 65.1 65.1 95.94 95.94 95.94 95.94 95.94

Sonar Waveform Vehicle

100 67.79 71.15 86.54 73.08 75.96 80 75.08 73.62 79.2 86.68 44.8 72.46 69.86 68.56 74.35

95 68.27 70.19 85.1 73.56 78.37 80.04 75.28 73.4 79.88 86.58 44.68 73.17 69.27 64.66 72.34

90 68.75 70.67 85.1 75 77.88 79.98 75.5 74.08 79.54 86.78 44.33 73.17 69.39 67.26 71.28

85 68.27 74.04 86.06 74.04 77.88 80 75.86 74.64 79.7 86.76 45.27 73.17 70.57 65.84 71.51

80 71.15 76.44 85.58 72.12 79.81 79.98 76.16 74.72 80.38 86.76 44.44 71.75 72.46 69.15 71.75

75 71.63 76.44 84.62 73.56 79.33 79.96 76.22 75.32 79.7 86.7 43.85 71.63 73.29 67.73 71.28

70 71.15 74.04 83.65 71.15 75 79.96 75.98 75.22 79.1 86.74 45.04 71.28 72.34 68.68 70.57

65 71.15 74.04 82.69 74.04 77.4 80 76.02 76.28 79.26 86.92 44.56 69.86 71.63 66.9 70.21

60 68.75 71.15 82.69 77.88 75.48 80.08 76.36 77.38 79.48 86.9 44.8 70.21 72.81 67.02 69.5

55 65.38 72.12 79.81 76.44 73.08 80.1 76.3 77.5 79.62 86.8 46.45 70.69 71.75 65.13 68.32

50 65.38 71.63 84.13 74.52 74.04 80.06 76.36 78.08 80.02 86.86 46.45 70.69 71.75 65.13 68.32

45 67.31 72.12 81.25 75 73.56 80.36 76.96 78.7 80.06 86.8 48.23 71.99 71.04 67.73 67.73

40 67.79 75.96 79.33 72.6 72.6 80.2 77.06 77.82 79.16 86 48.58 71.75 70.57 67.85 66.67

35 64.9 76.92 78.37 71.63 75 80.16 74.78 75.56 78 84.12 50.24 70.21 67.85 67.38 54.96

30 64.42 71.15 80.29 73.08 72.12 80.12 74.74 73.22 77.2 83.24 46.81 61.7 63.83 60.64 50.47

25 62.98 70.67 73.56 69.23 73.56 75.24 72.92 69.62 74.42 79.86 44.92 61.58 61.58 57.68 47.52

20 63.46 71.63 69.23 71.15 74.52 66.3 64.62 58.28 66.82 70.52 43.85 57.33 53.31 54.49 46.57

15 58.65 69.23 64.9 66.83 69.23 59.14 57.58 51.32 57.42 61.22 41.49 50.12 49.29 42.08 42.55

10 56.73 62.02 57.69 57.69 58.17 51.78 50.42 42.28 48.54 51.78 40.07 43.62 40.9 32.62 30.85

5 55.29 50.48 53.85 54.33 56.73 39.02 38.56 34.44 36.06 38.38 25.65 25.65 25.65 25.65 25.65

(Continued)
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about the target class label. An equation for IG is given as follows [14]:

IGðAÞ ¼ InfoðDÞ � InfoAðDÞ ð1Þ

where IG(A) is the IG of an independent feature or attribute A, Info(D) is the entropy of the

entire dataset, and InfoA(D) is the conditional entropy of attribute A over D.

Table 1. (Continued)

%age of Features Retained Naive Bayes J48 kNN JRip SVM Naive Bayes J48 kNN JRip SVM Naive Bayes J48 kNN JRip SVM

Glass Arrhythmia

100 48.6 66.82 70.56 68.69 56.07 62.39 64.38 52.88 70.8 70.13

95 50.47 67.29 77.1 66.36 51.87 63.05 65.27 52.65 69.69 70.35

90 50.47 67.29 77.1 66.36 51.87 61.95 63.5 51.77 68.58 69.91

85 47.66 70.09 77.1 62.15 51.87 60.84 61.95 51.33 70.13 70.35

80 47.66 70.09 77.1 62.15 51.87 60.4 64.38 51.77 69.91 71.02

75 46.26 72.9 73.36 60.28 51.87 59.51 64.82 51.11 68.81 70.8

70 46.26 72.9 73.36 60.28 51.87 61.28 63.27 50.22 69.47 72.12

65 47.66 71.5 72.9 62.62 51.4 61.95 61.95 49.34 68.81 71.46

60 47.66 71.5 72.9 62.62 51.4 59.96 61.95 50.22 67.26 70.13

55 50.93 74.3 74.77 64.49 51.4 59.73 63.27 50.22 70.58 68.14

50 50.93 74.3 74.77 64.49 51.4 59.73 63.27 49.56 65.49 69.47

45 50.93 74.3 74.77 64.49 51.4 60.62 63.72 49.78 69.47 68.58

40 46.73 66.36 72.9 67.76 46.73 61.5 62.61 48.23 68.36 69.25

35 46.73 66.36 72.9 67.76 46.73 62.17 64.38 47.79 68.14 68.36

30 43.46 63.55 57.01 60.28 35.51 59.07 61.5 45.35 65.93 63.94

25 43.46 63.55 57.01 60.28 35.51 59.29 61.95 44.03 65.93 63.27

20 35.98 54.67 47.2 52.8 35.51 61.5 61.95 46.24 66.15 63.27

15 35.98 54.67 47.2 52.8 35.51 63.05 61.5 52.65 65.04 61.73

10 35.51 35.51 35.51 35.51 35.51 63.05 54.2 52.21 65.04 61.5

5 35.51 35.51 35.51 35.51 35.51 60.18 49.34 47.12 61.5 61.5

https://doi.org/10.1371/journal.pone.0202705.t001

Fig 4. An average predictive accuracy graph using the 10-fold cross-validation technique for threshold value identification.

https://doi.org/10.1371/journal.pone.0202705.g004
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Gain ratio is considered to be one of the disparity measures that provides normalized score

to enhance the IG result. This measure utilizes the split information value that is given as fol-

lows [14]:

SplitInfoAðDÞ ¼ �
Xv

j¼1

jDjj

jDj
� log

2

jDjj

jDj
ð2Þ

where SplitInfo represents the structure of v partitions. Finally, gain ratio is defined as follows

[14]:

GainRatioðAÞ ¼ IGðAÞ = SplitInfoðAÞ ð3Þ

Chi-squared is a statistic measure that computes the association between the attribute A and

its class or category Ci. It helps to measure the independence of an attribute from its class. It is

defined as follows [14]:

CHIðA;CiÞ ¼
N � ðF1F4 � F2F3Þ

2

ðF1 þ F3Þ � ðF2 þ F4Þ � ðF1 þ F2Þ � ðF3 þ F4Þ
ð4Þ

CHImaxðAÞ ¼ maxiðCHIðA;CiÞÞ ð5Þ

where F1, F1, F3, and F4 represent the frequencies of occurrence of both A and Ci, A without

Ci, Ci without A, and neither Ci nor A, respectively, while N represents the total number of

attributes. A zero value of CHI indicates that both Ci and A are independent.

Symmetric uncertainty is an information theoretic measure to assess the rating of con-

structed solutions. It is a symmetric measure and is expressed by the following equation [34]:

SUðA;BÞ ¼
2 � IGðAjBÞ
HðAÞ þHðBÞ

ð6Þ

where IG(A|B) represents the IG computed by an independent attribute A and the class-attri-

bute B. While H(A) and H(B) represent the entropies of the attributes A and B.

Significance is a real-valued, two-way function used to assess the worth of an attribute with

respect to a class attribute [35]. The significance of an attribute Ai is denoted by σ(Ai), which is

computed by the following equation:

sðAiÞ ¼
AEðAiÞ þ CEðAiÞ

2
ð7Þ

where AE(Ai) represents the cumulative effect of all possible attribute-to-class associations of

an attribute Ai, which are computed as follows:

AEðAiÞ ¼ 1=k
X

r¼1;2;...;k

Wi
r

 !

� 1:0 ð8Þ

where k represents the different values of the attribute Ai.
Similarly, CE(Ai) captures the effect of change of an attribute value by the changing of a

class decision and represents the association between the attribute Ai and various class deci-

sions, which is computed as follows:

CEþ ðAiÞ ¼ ð1=mÞ �
X

j¼1;2;...;m

Ai
j

 !

� 1:0 ð9Þ
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where m represents the number of classes and + (Ai) depicts the class-to-attribute association

of the attribute Ai.
OneR is the rule-based method to generate a set of rules, which test one particular attribute.

The details of this method can be found elsewhere [36].

Relief [37] and ReliefF [38] are distance-based methods to estimate the weightage of a fea-

ture. The original Relief method deals with discrete and continuous attributes; it does not sup-

port attempts to deal with incomplete data and is limited to application in two-class problems.

ReliefF is an extension of the Relief method that covers the limitations of the Relief method.

The details of these methods can be found elsewhere [37, 38].

DRB-FS is a statistical measure to eliminate all irrelevant and redundant features. It allows

one to integrate domain-specific definitions of feature relevance, which are based on high,

medium, and low correlations that are measured using Pearson’s correlation coefficient, which

is computed as follows [29, 39]:

rXY ¼
P
ðxi � �xÞðyi � �yÞ
ðn � 1ÞSXSY

ð10Þ

where �x and �y represent the sample means and SX and SY are the sample standard deviations

for the features X and Y, respectively. Here, n represents the sample size.

GR-χ2 is an ensemble ranking method that simply adds together the computed ranks of the

gain ratio and chi-squared methods [29].

The Borda method is a position-based, ensemble-scoring mechanism that aggregates rank-

ing results of features from multiple FS techniques [15]. The final rank of a feature is computed

as follows:

scorefinal ¼
Xn

i¼1

scoreposði;jÞ ð11Þ

where n represents the total number of FS techniques and pos(i, j) is the jth position of a feature

ranked by the ith FS technique.

EMFFS is an ensemble FS method that combines the output of four filter methods—

namely, IG, gain ratio, chi-squared, and ReliefF—in order to obtain an optimum selection

[18].

Statistical measures for evaluating the performance of the proposed univariate ensem-

ble-based feature selection methodology. In this study, precision, recall, f-measure, and the

percentage of correct classification were used as evaluation criteria for FS accuracy [8, 12, 15,

18, 29, 40]; second for processing speed; and third as part of a 10-fold cross-validation tech-

nique for computing predictive accuracy to evaluate the performance of machine learning

methods or schemes [8, 12, 18, 41–43].

In order to compute the statistical measures (i.e., precision, recall, f-measure, and the per-

centage of correct classification), the following four measures were required:

• True positives (TP) represents the correctly predicted positive values (actual class = yes, pre-

dicted class = yes)

• True negatives (TN) represents the correctly predicted negative values (actual class = no, pre-

dicted class = no)

• False positives (FP) represents a contradiction between the actual and predicted classes

(actual class = no, predicted class = yes)
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• False negatives (FN) represents a different contradiction between the actual and predicted

classes (actual class = yes, predicted class = no)

Joshi [44] defined these measures as follows:

“Accuracy is a ratio of correctly predicted observations to the total observations,” which is

computed as follows:

Accuracy ¼
TPþ TN

TPþ FPþ FN þ TN
ð12Þ

“Precision is the ratio of correctly predicted positive observations to the total predicted posi-

tive observations,” which is computed as follows:

Precision ¼
TP

TPþ FP
ð13Þ

“Recall is the ratio of correctly predicted positive observations to all observations in the

actual class—yes,” which is computed as follows:

Recall ¼
TP

TPþ FN
ð14Þ

“F-measure is the weighted average of Precision and Recall,” which is computed as follows:

F � measure ¼
2 � ðRecall � PrecisionÞ
ðRecallþ PrecisionÞ

ð15Þ

Experimental results of the threshold value selection algorithm

This section demonstrates the results of the proposed TVS algorithm. The purpose is to inter-

pret as well as comment on the results obtained from the experiments.

Table 1 presents the predictive accuracies of eight datasets (i.e., Cylinder-bands, Diabetes,
Letter, Sonar, Waveform, Vehicle, Glass, and Arrhythmia) against five classifiers (naive Bayes,
J48, kNN, JRip, and SVM) with varying threshold values from 100 to 5. In this table, predictive

accuracies are recorded as percentages, which were determined by the 10-fold cross-validation
technique, whereas, each threshold value represents the percentage of features retained. After

recording the predictive accuracies, the average predictive accuracy of all classifiers as well

as datasets against each threshold value was computed, which is shown in Fig 4. This figure

depicts the summarized effects of different threshold values on the predictive accuracy of the

datasets noted in Table 1.

Furthermore, predictive accuracies using training examples of the aforementioned eight

datasets were also recorded against the same five classifiers with varying threshold values from

100 to 5. After recording the predictive accuracies, again, an average predictive accuracy of

all classifiers as well as datasets against each threshold value was computed, which is shown in

Fig 5.

It can be observed from Figs 4 and 5 that the average predictive accuracy remained consis-

tent from the 100% feature set retained (i.e., no FS) to 45% features retained. After reducing

the dataset from 45% retained features to 5% retained features, the predictive accuracy started

to decline as well. Therefore, a threshold value of 45 was selected and the top 55% features

were chosen. This chunked value (i.e. 45%) was utilized in experimentation for evaluating the

uEFS methodology, which provided the best results. This value can also be used to cut off the

irrelevant data in future datasets, as this value is also comparable to values obtained in other

studies, for example 40% [12, 29] and 50% [45].
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Evaluation of the univariate ensemble-based feature selection

methodology

The evaluation phase of any methodology has a key role in investigating the worth of any pro-

posed method. This section covers the experimental setup as well as execution to evaluate the

proposed uEFS methodology with state-of-the-art FS methods. The purpose was to check the

impact of the proposed methodology on FS suitability in terms of features’ ranking according

to the precision, recall, f-measure, and predictive accuracy performance measure factors.

Experimental setup

For holistic understanding, two studies were performed to evaluate the uEFS methodology

by involving nontext and text benchmark datasets. In each study, the methodology was com-

pared with the state-of-the-art FS methods using precision, recall, f-measure, and predictive

accuracy performance measure factors. The motivation behind comparing the results achieved

with the text and nontext datasets was to check the scalability of the proposed uEFS methodol-

ogy from small- to high-dimensional data, where dimension represents the number of attri-

butes or features.

For the first study, eight nontext benchmark datasets of varying complexity (i.e., small to

medium size and binary to multiclass problems), were chosen, including Cylinder-bands, Dia-
betes, Letter, Sonar, Waveform, Vehicle, Glass, and Arrhythmia, as shown in the Table 2. These

datasets were collected from the openML repository available at http://www.openml.org/.

For the second study, the following four text datasets of varying complexity were selected:

MiniNewsGroups (http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html),

Course-Cotrain (http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-51/www/co-training/

data/course-cotrain-data.tar.gz), Trec05p-1 (https://plg.uwaterloo.ca/gvcormac/treccorpus/),

and SpamAssassin (http://csmining.org/index.php/spam-assassin-datasets.html). These data-

sets are in text form and, to apply the feature-ranking algorithms on these datasets, there is a

need to preprocess the text data into a structured form. In order to perform text preprocessing,

the following tasks were completed:

Fig 5. An average predictive accuracy graph using training datasets for threshold value identification.

https://doi.org/10.1371/journal.pone.0202705.g005
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1. Remove Hypertext Markup Language tags from web documents, sender as well as receiver

information from e-mail documents, URLs, etc.

2. Eliminate pictures and email attachments from the documents

3. Tokenize the documents

4. Remove the noninformative terms like stopwords from the contents

5. Perform the term stemming task

6. Eliminate the low-length terms whose length is less than or equal to 2

7. Finally, generate the feature vectors representing document instances by computing the

Term Frequency—Inverse Document Frequency weights.

Table 3 shows the characteristics of the structured form of the text datasets. These datasets

also have varying complexity (i.e., small to medium size and binary to multiclass problems).

To select a suitable classifier for assessing the proposed uEFS methodology, initially, five

well-known classifiers were used: naive Bayes, J48, kNN, JRip, and SVM [8, 12, 15, 18, 29, 40,

45, 46]. Using each classifier, predictive accuracy was measured with a varying percentage of

features retained values from 100 to 5, as illustrated in Fig 6. The pictorial results show that,

of the five classifiers, SVM and kNN tended to perform best with regard to the above-men-

tioned datasets. Fig 6 shows the four datasets—namely Cylinder-bands, Diabetes, Waveform,

and Arrhythmia—on which SVM performed better. Likewise, Fig 6 shows the three datasets

(Letter, Sonar, and Glass) on which kNN performed best. In recent years, the SVM classifier

has been considered as a dominant tool for dealing with classification problems in a wide

range of applications [45] and is largely preferred over other classification methods [46].

Keeping in view with the Fig 6 results and state-of-the-art classifier considerations, finally,

the SVM classifier was used to assess the proposed uEFS methodology, as it tends to outper-

form the F-measures and predictive accuracies for the benchmark datasets [29, 45]. Further,

Table 2. Selected nontext datasets’ characteristics.

Nontext Dataset No. of Instances No. of Attributes No. of Distinct Classes

Cylinder-bands 540 40 2

Diabetes 768 9 2

Letter 20,000 17 2

Sonar 208 61 2

Waveform 5,000 41 3

Vehicle 846 19 4

Glass 214 10 6

Arrhythmia 452 280 13

https://doi.org/10.1371/journal.pone.0202705.t002

Table 3. Selected text datasets’ characteristics.

Text Dataset No. of Features No. of Documents No. of Distinct Classes

MiniNewsGroups 27,419 1,600 4

Course-Cotrain 13,919 1,051 2

Trec05p-1 12,578 62,499 2

SpamAssassin 9,351 3,000 2

https://doi.org/10.1371/journal.pone.0202705.t003
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the SMOreg function (SVM with sequential minimum optimization) of the SVM classifier

was used, which is an improved version of the SVM [47]. Table 4 shows the parameters of the

selected classifier.

For comparison purposes, a standard open-source implementation of this classifier was uti-

lized as provided by the Waikato Environment for Knowledge Analysis (WEKA) available at

http://weka.sourceforge.net/doc.dev/. Using open-source implementation, a method in Java

language was written, which computes precision, recall, f-measure, and predictive accuracy of

this classifier using the 10-fold cross-validation technique.

Finally, to compare the computational cost, the performance speed of the proposed meth-

odology as well as state-of-the-art methods were measured on a system having the following

specifications:

• Processor: Intel (R) Core (TM) i5-2500 CPU @ 3.30 GHz

• Installed memory (RAM): 16.0 GB

• System type: 64-bit operating system

Experimental execution

For the first study, a comparison was made between the proposed uEFS methodology and

the aforementioned five univariate filter measures, which were used for the proof-of-concept.

Fig 6. Predictive accuracies of classifiers against benchmark datasets with varying percentages of retained features.

https://doi.org/10.1371/journal.pone.0202705.g006

Table 4. Selected classifier parameters.

Classifier Function Kernel Type Epsilon Tolerance Exponent Random Seed

SVM SMO Polynomial 1.0E-12 0.001 1 1

https://doi.org/10.1371/journal.pone.0202705.t004
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Fig 7 depicts the difference of the f-measure of the proposed uEFS methodology with each FS

measure, which is used in the uEFS methodology. It can be deduced from the results, shown in

Fig 7, that the proposed methodology provides competitive results as compared with state-of-

the-art FS measures.

For comparison purposes, computed precision and recalls were also used, as recorded in

Tables 5 and 6. The results of these two tables also reveal that the proposed methodology pro-

vides better results. The proposed uEFS methodology yields significant precision and recall on

all nontext datasets except Glass against all existing feature selection measures. On recall com-

parison, the closest competitors to the uEFS methodology were IG, gain ratio, and symmetrical

uncertainty measures, which achieved a similar recall of 0.869 with the Waveform dataset.

Regarding the other datasets, the existing measures achieved a much lower recall as compared

with the uEFS. Similarly, with respect to the precision comparison, the chi-squared and sym-

metrical uncertainty remained the closest competitors to the uEFS for the Glass dataset. For

the rest of the datasets, the uEFS outperformed the existing FS measures with a significant

difference.

A comparison was also made between the predictive accuracies of the uEFS methodology

and the five aforementioned univariate filter measures. Table 7 illustrates the comparison of

Fig 7. Comparisons of F-measure with existing FS measures.

https://doi.org/10.1371/journal.pone.0202705.g007

Table 5. Comparisons of average classifier precision with existing FS measures.

Nontext Dataset Feature Selection Measures Proposed Methodology

IGa GRb CSc SUd Se uEFS

Cylinder-bands 0.805 0.801 0.797 0.803 0.801 0.811

Diabetes 0.753 0.753 0.753 0.753 0.738 0.754

Letter 0.920 0.962 0.920 0.962 0.920 0.970

Sonar 0.789 0.791 0.789 0.791 0.789 0.803

Waveform 0.869 0.869 0.868 0.869 0.868 0.870

Vehicle 0.586 0.604 0.642 0.605 0.534 0.642

Glass 0.477 0.484 0.551 0.551 0.451 0.550

Arrhythmia 0.640 0.647 0.639 0.640 0.639 0.659

a IG: information gain,
b GR: gain ratio,
c CS: chi-squared,
d SU: symmetrical uncertainty,
e S: significance

https://doi.org/10.1371/journal.pone.0202705.t005
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the predictive accuracy of the uEFS methodology with the five FS measures that are used in the

uEFS methodology. It can be observed from the Table 7 results that the proposed methodology

provides competitive results as compared with existing FS measures. Similarly, it can also be

seen from the results shown in Fig 7 and Tables 5, 6, and 7, respectively, that, in terms of f-

measure, precision, recall, and predictive accuracy, the proposed methodology did not per-

form better than existing FS measures on the Glass dataset due to having a small size of data,

multiple classes, and imbalanced class characteristics.

The result of one-sample t-test and paired-samples t-test is also illustrated in Table 7. The

purpose of performing this test was to determine whether the values obtained from the pro-

posed uEFS methodology were significantly different from the values obtained from existing

Table 6. Comparisons of average classifier recall with existing FS measures.

Nontext Dataset Feature Selection Measures Proposed Methodology

IGa GRb CSc SUd Se uEFS

Cylinder-bands 0.806 0.802 0.798 0.804 0.802 0.811

Diabetes 0.759 0.759 0.759 0.759 0.758 0.760

Letter 0.959 0.961 0.959 0.961 0.959 0.970

Sonar 0.788 0.789 0.788 0.789 0.788 0.803

Waveform 0.869 0.869 0.868 0.869 0.868 0.869

Vehicle 0.617 0.632 0.655 0.631 0.540 0.658

Glass 0.579 0.584 0.589 0.589 0.481 0.584

Arrhythmia 0.719 0.723 0.717 0.719 0.719 0.728

a IG: information gain,
b GR: gain ratio,
c CS: chi-squared,
d SU: symmetrical uncertainty,
e S: significance

https://doi.org/10.1371/journal.pone.0202705.t006

Table 7. Comparisons of predictive accuracy (in %age) of the uEFS with existing FS measures.

Nontext Dataset Feature Selection Measures Proposed Methodology One-Sample T-Test Paired-Samples T-Test

IGa GRb CSc SUd Se uEFS p {Sig. (two-tailed)} p {Sig. (two-tailed)}

Cylinder-bands 80.56 80.19 79.81 80.37 80.19 81.11 0.002 0.029

Diabetes 75.91 75.91 75.91 75.91 75.89 76.04 0.000

Letter 95.94 96.08 95.94 96.08 95.94 96.97 0.000

Sonar 78.85 78.86 78.85 78.86 78.85 80.29 0.000

Waveform 86.88 86.88 86.86 86.88 86.86 86.9 0.005

Vehicle 61.7 63.24 65.48 63.12 54.02 65.84 0.093

Glass 57.94 58.41 58.88 58.88 48.13 58.41 0.400

Arrhythmia 71.9 72.35 71.68 71.9 71.9 72.79 0.002

a IG: information gain,
b GR: gain ratio,
c CS: chi-squared,
d SU: symmetrical uncertainty,
e S: significance

https://doi.org/10.1371/journal.pone.0202705.t007
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FS measures. For performing this test against each dataset, FS measures’ values were consid-

ered as sample data and the uEFS value was designated as a test value, which is a known or

hypothesized population mean. For example, in the case of the Cylinder-bands dataset, 81.11

(value generated by the uEFS) was considered to be a test value, while 80.56, 80.19, 79.81,

80.37, and 80.19 (values generated by IG, gain ratio, chi-squared, symmetrical uncertainty, and

significance) were used as sample data. The null hypothesis (H0) and (two-tailed) alternative

hypotheses (H1) of this test are:

• H0: 81.11 = �x (“the mean predictive accuracy of the sample �x is equal to 81.11”)

• H1: 81.11 6¼ �x (“the mean predictive accuracy of the sample �x is not equal to 81.11”)

In this case, the mean FS measures score for the Cylinder-bands dataset (M = 80.22,

SD = 0.28) was lower than the normal uEFS score of 81.11, with a statistically significant mean

difference of 0.89 (95% confidence interval: 0.54–1.23, t(4) = −7.141, p = .002). Since p< .05,

we rejected H0 due to mean predictive accuracy of sample �x is equal to 81.11 and concluded

that the mean predictive accuracy of the sample is significantly different from the existing

methodologies’ results. It can be observed from Table 7 that most of the significance (i.e. p) val-

ues are less than 0.05 (i.e. p< .05), which shows that the proposed uEFS methodology results

are statistically significantly different from the results of existing methodologies.

Similarly, the paired-samples t-test was also performed, to analyze the significance of the

proposed methodology. Table 8 reports the paired-samples t-test results. It can be observed

also from Table 8 that both of the significance (i.e. p) values (one-tailed and two-tailed) are less

than 0.05 (i.e. p< .05), which shows that the proposed uEFS methodology results are statisti-

cally significantly different from existing methodologies result.

For evaluating the computation cost of the proposed FS methodology, the performance

speed was also computed, as shown in Table 9. The results indicate that, on average, the pro-

posed methodology takes 0.37 seconds more time than the state-of-the-art filter measures.

The proposed FS methodology was also compared with traditional well-known FS methods

(i.e., OneR and ReliefF), as illustrated in Table 10. The results of Table 10 show that the pro-

posed methodology provides competitive results as compared with existing FS methods.

Finally, for the first study, a comparison of the proposed uEFS methodology with the two

state-of-the-art ensemble methods, namely Borda and EMFFS [15, 18], was performed. A

methodological comparison of these two methods with the proposed uEFS methodology is

illustrated in Table 11. For the proof-of-concept as well as the aforementioned comparisons,

five filter measures were used; however, to compare the proposed uEFS methodology with

these two state-of-the-art ensemble methods, three [15] and four [18] filter measures defined

in each state-of-the-art ensemble method, were used, respectively, as mentioned in Table 11.

Table 8. Paired-samples t-test results.

State-of-the-art Filter-based Measures’ Mean Proposed uEFS Methodology

Mean 75.970 77.294

Variance 164.664 144.659

Pearson Correlation 0.996

Hypothesized Mean Difference 0

df 7

t Stat -2.739

P(T¡ = t) one-tailed 0.014

P(T¡ = t) two-tailed 0.029

https://doi.org/10.1371/journal.pone.0202705.t008
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After applying the ensemble-based Borda and EMFFS methods, the predictive accuracy and

F-measures of the proposed uEFS methodology, using three and four filter measures, respec-

tively, were computed, as shown in Tables 12 and 13. The results of Tables 12 and 13 reveal

that the proposed methodology provides better results as compared with the two state-of-

the-art ensemble methods [15, 18]. It can be observed from the results shown in Tables 12

and 13 that, in terms of predictive accuracy and f-measure, the performance of the proposed

methodology is the same as the state-of-the-art ensemble methods regarding the Letter dataset,

while the proposed methodology did not perform better than the EMFFS method for the

Arrhythmia dataset due to having a small size of data, multiple classes, and imbalanced class

characteristics.

For the second study, a comparison of the proposed uEFS methodology with state-of-the-art

FS methodologies was performed. The proposed methodology outperforms most of the exist-

ing algorithms and individual FS measures in terms of f-measure as well as predictive accuracy.

Table 9. Comparisons of time measure (in seconds) with existing FS measures.

Nontext Dataset Feature Selection Measures Proposed Methodology ATSMf TDg ATDh

IGa GRb CSc SUd Se uEFS (sec) (sec) (sec)

Cylinder-bands 4.12 3.28 3.82 3.79 3.59 4.53 3.72 0.81 0.37

Diabetes 0.14 0.11 0.12 0.12 0.12 0.17 0.12 0.05

Letter 4.60 4.12 4.63 4.28 4.60 4.77 4.45 0.32

Sonar 0.06 0.05 0.08 0.06 0.06 0.14 0.06 0.08

Waveform 1.11 1.12 1.12 1.09 1.12 2.09 1.11 0.98

Vehicle 0.33 0.28 0.30 0.28 0.30 0.39 0.3 0.09

Glass 0.36 0.36 0.33 0.34 0.33 0.34 0.34 0

Arrhythmia 2.67 2.68 2.54 2.70 2.64 3.31 2.65 0.66

a IG: information gain,
b GR: gain ratio,
c CS: chi-squared,
d SU: symmetrical uncertainty,
e S: significance,
f ATSM: average time of state-of-the-art measures,
g TD: time difference,
h ATD: average time difference

https://doi.org/10.1371/journal.pone.0202705.t009

Table 10. Comparisons of predictive accuracy (in %age) with existing FS methods.

Nontext Dataset Feature Selection Methods Proposed Methodology

OneR ReliefF uEFS

Cylinder-bands 79.63 80.37 81.11

Diabetes 75.39 75.52 76.04

Letter 97.14 96.91 96.97

Sonar 77.88 75.96 80.29

Waveform 86.76 86.90 86.90

Vehicle 64.89 63.83 65.84

Glass 49.07 57.01 58.41

Arrhythmia 71.02 71.46 72.79

https://doi.org/10.1371/journal.pone.0202705.t010
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Table 11. Comparisons of state-of-the-art ensemble methodologies with the proposed uEFS methodology.

State-of-the-art ensemble methodology—I State-of-the-art ensemble methodology—II

Borda method [15] uEFS methodology EMFFS method [18] uEFS methodology

1. Consider three filter measures (IG,

symmetric uncertainty, chi-squared)

1. Consider three filter measures (IG,

symmetric uncertainty, chi-squared)

1. Consider four filter measures (IG,

gain ratio, chi-squared, ReliefF)

1. Consider four filter measures (IG, gain

ratio, chi-squared, ReliefF)

2. Compute the ranks using each

filter measure

2. Compute the ranks using each filter

measure

2. Compute the ranks using each filter

measure

2. Compute the ranks using each filter

measure

3. Sort the computed ranks in an

ascending order

3. Compute the scaled ranks of each

computed ranks

3. Sort the computed ranks in an

ascending order

3. Compute the scaled ranks of each of the

computed ranks

4. Assign a score to each feature in a

list based on its position

4. Compute the combined sum of all

computed ranks

4. Select the top one-third split of each

filter measure’s output

4. Compute the combined sum of all

computed ranks

5. Compute the sum of all the

positional scores from all the lists

5. For each feature, compute the

combined rank by adding all computed

scaled ranks

5. Define the feature count threshold 5. For each feature, compute the

combined rank by adding all computed

scaled ranks

6. Sort the computed sum in an

ascending order to generate the final

ranked feature set

6. Sort the list in an ascending order after

computing the score, weight, and priority

of each feature

6. Compute the feature occurrence

rate among the filter measures

6. Sort the list in an ascending order after

computing the score, weight, and priority

of each feature

7. If the feature count is less than the

threshold, drop the feature; otherwise,

select the feature

7. Determine the threshold value using

the proposed TVS method

8. Apply the threshold value to drop the

irrelevant features and to select the final

ranked feature set

https://doi.org/10.1371/journal.pone.0202705.t011

Table 12. Comparisons of predictive accuracy and F-measure with the Borda method [15].

Nontext Dataset Predictive Accuracy (%) F-measure

Borda method [15] uEFS (three filter measures) Borda method [15] uEFS (three filter measures)

Cylinder-bands 57.78 80.37 0.423 0.802

Diabetes 65.10 75.91 0.513 0.749

Letter 95.94 95.94 0.939 0.939

Sonar 66.83 78.85 0.667 0.789

Waveform 31.80 86.88 0.311 0.869

Vehicle 59.22 63.12 0.58 0.596

Glass 40.19 58.88 0.316 0.545

Arrhythmia 64.60 71.90 0.564 0.657

https://doi.org/10.1371/journal.pone.0202705.t012

Table 13. Comparisons of predictive accuracy and F-measure with the EMFFS method [18].

Nontext Dataset Predictive Accuracy (%) F-measure

EMFFS method [18] uEFS (four filter measures) EMFFS method [18] uEFS (four filter measures)

Cylinder-bands 80.74 81.48 0.805 0.813

Diabetes 75.52 75.91 0.739 0.749

Letter 95.94 95.94 0.939 0.939

Sonar 78.37 80.29 0.784 0.803

Waveform 86.48 86.90 0.864 0.869

Vehicle 41.73 63.12 0.392 0.596

Glass 54.67 58.88 0.491 0.545

Arrhythmia 73.23 71.68 0.672 0.658

https://doi.org/10.1371/journal.pone.0202705.t013
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It can be observed from Figs 8 and 9 that the average f-measure and predictive accuracy

results of the proposed uEFS methodology on multiple text datasets are higher than existing

techniques.

On the other hand, the individual numeric values of precision against each dataset are

shown in Table 14. For the SpamAssassin benchmark dataset, the uEFS outperformed the

Fig 8. Comparisons of F-measure with existing FS measures [29, 37, 39, 48].

https://doi.org/10.1371/journal.pone.0202705.g008

Fig 9. Comparisons of predictive accuracy with existing FS measures [29, 37, 39, 48].

https://doi.org/10.1371/journal.pone.0202705.g009
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existing algorithms with a precision of 0.858. Similarly, the uEFS achieved an average of 0.669

precision for the Course-Cotrain data which is close enough to the Relief algorithm with a dif-

ference of 0.004, which achieved the highest precision against the existing algorithms. On the

other hand, while comparing the average classifier recall, shown in Table 15, it was noticed

that the proposed uEFS methodology outperforms all of the existing algorithms with a recall of

0.850 and 0.864 for the Trec05p-1 and SpamAssassin benchmarks, respectively.

It can also be observed from the results, shown in Tables 14 and 15 that, in terms of preci-

sion and recall, the proposed methodology did not perform better than the DRB-FS measure

for some datasets due to considering only those measures in terms of proof-of-concept pur-

poses, which measure only relevancy and ignore the feature redundancy factor. As the

DRB-FS measure eliminates all irrelevant as well as redundant features and is also based on

predefined domain-specific definitions of feature relevance [29, 39], there is a chance that the

DRB-FS can produce better results as compared with the proposed methodology. However, in

terms of f-measure, which is the weighted average of precision and recall, overall, the proposed

methodology performs better than the DRB-FS measure as shown in Fig 8.

The uEFS methodology was evaluated rigorously with respect to text and nontext bench-

mark datasets having small- to high-dimensional data size and provides competitive results

as compared with state-of-the-art FS methods, which indicates that our proposed ensemble

approach is more robust across text and nontext datasets. The above-mentioned results also

provide evidence that the uEFS methodology is stable towards producing a similar and most

likely higher degree of predictive accuracy and f-measure value across a wide variety of datasets.

Conclusions and future directions

FS is an active area of research for the data mining and text mining research community. In

this study, we introduce an efficient and comprehensive uEFS methodology to select informa-

tive features from a given dataset. For the uEFS methodology, we first proposed an innovative

UFS algorithm to generate a final-ranked list of features without the use of any learning algo-

rithm, high computational cost, and any individual statistical biases of state-of-the-art feature-

ranking methods. For defining a cutoff point to remove irrelevant features, we then proposed

Table 14. Comparisons of average classifier precision with existing FS methods [29, 37, 39, 48].

Text Dataset Feature Selection Algorithms Proposed Methodology

IG Relief DRB-FS GR-χ2 uEFS

Course-Cotrain 0.668 0.673 0.609 0.648 0.669

Trec05p-1 0.836 0.375 0.839 0.423 0.721

MiniNewsGroups 0.730 0.708 0.811 0.272 0.764

SpamAssassin 0.708 0.710 0.857 0.701 0.858

https://doi.org/10.1371/journal.pone.0202705.t014

Table 15. Comparisons of average classifier recall with existing FS methods [29, 37, 39, 48].

Text Dataset Feature Selection Algorithms Proposed Methodology

IG Relief DRB-FS GR-χ2 uEFS

Course-Cotrain 0.717 0.711 0.780 0.776 0.768

Trec05p-1 0.731 0.410 0.764 0.451 0.850

MiniNewsGroups 0.669 0.636 0.759 0.327 0.686

SpamAssassin 0.766 0.778 0.863 0.727 0.864

https://doi.org/10.1371/journal.pone.0202705.t015
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a TVS algorithm. An extensive experiment was performed to evaluate the uEFS methodology

using standard benchmark datasets; the results show that the uEFS methodology provides

competitive accuracy as compared with state-of-the-art methods. The proposed uEFS method-

ology contributes to FS, which is a key step in decision support systems. It can be utilized in

real-world applications such as DDKAT [19] to assist the domain expert in selecting informa-

tive features for generating production rules from a dataset, or extracting relative information

from open data for constructing reliable domain knowledge. The current version of the UFS

code and its documentation are freely available and can be downloaded from the GitHub

open-source platform [20, 21].

Currently, the proposed methodology incorporates state-of-the-art univariate filter mea-

sures to consider the relevance aspect of feature ranking and ignores the features’ redundancy

aspect. In the future, we will extend our methodology for incorporating multivariate measures

to consider the redundancy aspect of feature subset selection. Similarly, the proposed method-

ology does not evaluate the suitability of a measure or its precision. In order to consider that

factor, we will also investigate the application of fuzzy logic for determining the cutoff thresh-

old value in the future. Lastly, the proposed methodology was applied to text and nontext

benchmark datasets to evaluate the model performance. In the future, we will experiment with

our proposed uEFS methodology on other application domains such as microarray datasets to

check the goodness on all applications. Above all, we also intend to integrate our proposed

methodology into another research project, called Intelligent Medical Platform (IMP) available

at http://imprc.cafe24.com/.

Acknowledgments

This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the

ITRC (Information Technology Research Center) support program (IITP-2017-0-01629)

supervised by the IITP (Institute for Information & Communications Technology Promotion).

This work was supported by the Institute for Information & Communications Technology

Promotion (IITP) grant funded by the Korean government (MSIT) (No.2017-0-00655).

We would like to thank Mrs. Kerrin McKeown for reviewing and editing the English in the

manuscript. They would also like to express their sincere thanks to Muhammad Asif Razzaq

for his valuable input to this manuscript.

Author Contributions

Conceptualization: Maqbool Ali.

Data curation: Maqbool Ali.

Formal analysis: Maqbool Ali, Syed Imran Ali.

Funding acquisition: Sungyoung Lee, Byeong Ho Kang.

Investigation: Maqbool Ali.

Methodology: Maqbool Ali.

Project administration: Maqbool Ali, Dohyeong Kim, Taeho Hur, Jaehun Bang, Sungyoung

Lee, Byeong Ho Kang, Maqbool Hussain.

Resources: Maqbool Ali, Dohyeong Kim, Taeho Hur, Jaehun Bang.

Software: Maqbool Ali.

Supervision: Sungyoung Lee, Byeong Ho Kang.

uEFS: An ensemble-based feature selection methodology

PLOS ONE | https://doi.org/10.1371/journal.pone.0202705 August 28, 2018 25 / 28

http://imprc.cafe24.com/
https://doi.org/10.1371/journal.pone.0202705


Writing – original draft: Maqbool Ali, Syed Imran Ali.

Writing – review & editing: Maqbool Ali, Syed Imran Ali, Maqbool Hussain.

References
1. Altidor W, Khoshgoftaar TM, Van Hulse J, Napolitano A. Ensemble feature ranking methods for data

intensive computing applications. In: Handbook of data intensive computing. Springer; 2011. p. 349–

376.

2. Saeys Y, Abeel T, Van de Peer Y. Robust feature selection using ensemble feature selection tech-

niques. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases.

Springer; 2008. p. 313–325.

3. Whiteson S, Stone P, Stanley KO, Miikkulainen R, Kohl N. Automatic feature selection in neuroevolu-

tion. In: Proceedings of the 7th annual conference on Genetic and evolutionary computation. ACM;

2005. p. 1225–1232.

4. Stoean R, Gorunescu F. A survey on feature ranking by means of evolutionary computation. Annals of

the University of Craiova-Mathematics and Computer Science Series. 2013; 40(1):100–105.

5. Dhote Y, Agrawal S, Deen AJ. A survey on feature selection techniques for internet traffic classification.

In: Computational Intelligence and Communication Networks (CICN), 2015 International Conference

on. IEEE; 2015. p. 1375–1380.

6. Wang G, Song Q, Sun H, Zhang X, Xu B, Zhou Y. A feature subset selection algorithm automatic rec-

ommendation method. Journal of Artificial Intelligence Research. 2013;. https://doi.org/10.1613/jair.

3831
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