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HIGHLIGHTS 15 

• Electrophoretic separations were investigated and employed upon 8 commercial 16 

threads. 17 

• Direct, rapid and inexpensive assay for separation and determination of metabolites. 18 

• Separation and quantification of riboflavin from urine was achieved in less than 2 19 

minutes. 20 

• Thread-based devices exhibited a linear working range 0.1-5 µg/mL and good 21 

correlation with standard method. 22 

ABSTRACT 23 

The application of electrophoresis upon commercial threads is investigated for development 24 

of low-cost diagnostics assays, designed for the matrix separation and quantification of low 25 

abundance metabolites in complex samples – in this work riboflavin in human urine. Zone 26 

electrophoresis was evaluated upon 8 commercially available threads, with several synthetic 27 

threads exhibiting higher electroosmotic flow (EOF) and increased electrophoretic mobility of 28 

the rhodamine 6G, rhodamine B, and fluorescein. Of those tested, a nylon bundle was selected 29 

as the best platform, offering less band dispersion and higher resolution, a high relative EOF, 30 

whilst minimising the contribution of joule heating. A novel 3D printed platform was 31 

designed, based on a modular system, facilitating the electrophoresis process and rapid 32 

assembly, whilst offering the potential for multiplexed analysis or investigation of more 33 

complex systems. Using the thread-based electrophoresis system, riboflavin was determined 34 
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in less than 2 minutes. The device exhibited a linear working range from 0.1 to 15 µg/mL of 35 

riboflavin in urine, and was in good agreement with capillary electrophoresis measurements.  36 

 37 
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1. INTRODUCTION 43 

Recent advances in functional materials, and their application in the field of diagnostics and 44 

sensors, is driving the development of smart ‘wearables’ and interactive textiles. This exciting 45 

area of research has many possible applications, with the integration of sensors in clothing 46 

offering the potential to provide real-time data on the interaction and exposure of the wearer 47 

to his/her environment, plus significant opportunities for personal health monitoring. 48 

Consequently, there is extensive interest in the development of minimally invasive, accurate, 49 

durable, user-friendly, and low cost thread and textile based diagnostic platforms [1–3]. 50 

Thread and textiles have gained considerable attention as potential low cost substrates for 51 

microfluidics and biosensor applications. Hydrophilic threads do not require external forces to 52 

transport aqueous fluids and most threads are flexible and thus can be easily incorporated or 53 

woven into various textile supports. Additionally, threads can be readily disposed of after use, 54 

are readily mass produced, and easily functionalised, coated or extruded in varying formats, 55 

from a wide variety of starting materials, both natural and synthetic [2–13]. Due to this 56 

simplicity and functionality, a variety of applications have been demonstrated using two main 57 

platforms over the last few years. First, and similar to paper-based microfluidics, are the two 58 

dimensional patterned or woven fabric-based microfluidic devices [14–23]. The second group 59 

are based upon single threads, which generally involve much smaller solution volumes, as in 60 

these examples the flow within the strands of the thread is confined to one direction. The use 61 

of this later platform has been applied to bacteria isolation and quantification [24], chemotaxis 62 

studies for cell culture systems [25], immunoassays [26,27], blood typing [28], chemical 63 
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synthesis [29], and the determination of nucleic acids [30,31], proteins [4,7,29,31–34], glucose 64 

[29,35–37], drugs [38], small ions [6,8,32,39] and metals [40]. Several detection techniques 65 

have been used for these various applications, with the most common, albeit the least sensitive, 66 

being simple colorimetric detection. To achieve gains in sensitivity more complex approaches 67 

have also been demonstrated, involving the use of immobilised gold nanoparticles [31,41], 68 

electroanalytical detection [42], electrochemiluminescense [21], and fluorescence [24]. 69 

However, in most applications involving complex samples, e.g. biological samples, such as 70 

blood, sweat or urine, the separation of the target solute(s) from interferences within the 71 

matrix is required [43–47]. 72 

In this paper, the controlled transport of fluids and target solutes using thread-based 73 

electrophoresis was investigated across a diverse set of commercially available threads, from 74 

different materials to different structures. The study aimed to identify the optimum material, 75 

sample loading procedure, and conditions for thread electrophoresis, and apply the technique 76 

in a biological assay. In this regard, the technique was applied to the separation, detection and 77 

quantification of vitamin B2 within urine. Vitamin B2 or riboflavin is on the World Health 78 

Organization's (WHO) List of Essential Medicines [48], since it plays major roles in energy 79 

production; cellular function, growth, and development; metabolism of fats, drugs, and 80 

steroids; and help to maintain normal levels of homocysteine and amino acid in the blood. 81 

 82 

2. EXPERIMENTAL SECTION 83 

2.1. Materials and Reagents 84 
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Tris-(hydroxylmethyl)amino-methane (TRIS), 2-(cyclohexylamino)-ethanesulfonic acid 85 

(CHES), sodium hydroxide, riboflavin, rhodamine 6G, rhodamine B, fluorescein sodium salt, 86 

and acetonitrile, each of analytical reagent grade, were obtained from Sigma-Aldrich (New 87 

South Wales, Australia). Disodium tetraborate decahydrate was purchased from Merck 88 

Millipore (Darmstadt, Germany). Solutions were prepared in water from a Milli-Q Water Plus 89 

system from Millipore (Bedford, MA, USA), with a resistivity of 18.2 MΩ cm.  90 

100 % nylon bundle (diameter (Ø) 803 ± 53 µm, woolly nylon stretch overlocking thread, 91 

QA thread, China), 100 % silk (Ø 573 ± 38 µm, stranded silk, 8.4 yd, Cascade House, Australia), 92 

100 % cotton (Ø 397 ± 19 µm, mercerised twice, 8.7 yd, mouliné stranded, DMC, France), 93 

100% polyester (Ø 282 ± 12 µm, 110 yds/vgs, Gütermann GmbH, Germany), 100% acrylic (Ø 94 

671 ± 58 µm, 4 ply, Marvel Soft Baby, Bella Baby, Turkey), 50% acrylic 50% nylon (Ø 618 ± 95 

39 µm, 4 ply, Bambini, Bella Baby, Turkey), 100% pure Merino wool (Ø 581 ± 55 µm, 45 yards 96 

per skein, Bella Lusso, Italy), waxed dental tape (1455 ± 29 µm wide and 150 µm thick, VITIS®, 97 

Dentaid, Spain), were each evaluated for thread-based microfluidics. Diameters of the wetted 98 

threads were measured across 10 different samples using an objective-type inverted 99 

microscope (Nikon Eclipse TE2000). In order to clean and eliminate impurities, threads were 100 

prewashed in Milli-Q water and sonicated for 10 minutes, in triplicate, and again rinsed with 101 

Milli-Q water. In order to study the properties of the raw material, threads were not 102 

chemically or plasma treated. 103 

Two separate urine samples were prepared, a blank (fresh non-spiked urine sample from a 104 

healthy donor) and spiked sample (blank urine spiked with 8 µg mL-1 riboflavin). Stock 105 
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solutions of riboflavin were prepared in water and the standards for calibration in the 106 

appropriate buffer solution, over the range 0.1 to 15 µg mL-1 (or ppm). All stock, standards and 107 

sample solutions were stored in dark and refrigerated at 4 °C. 108 

 109 

2.2. Platform design 110 

The platform design developed herein provides a versatile modular system for thread-based 111 

microfluidics (Figure 1). The discrete buffer reservoirs provide for an interconnected and 112 

robust thread arrangement which facilitating rapid assembly, whilst offering the potential to 113 

construct complex thread-based microfluidic systems. The base was 12 cm × 8 cm × 1 cm 114 

(width × depth ×height) and was accurately designed to fit both a microscope slide support and 115 

a Dino-Lite handheld digital microscope. The platform itself contained 90 pin-holes and an 116 

empty detection zone in the middle. The movable buffer reservoirs have a hoop to tie in the 117 

thread, a cylinder to introduce the electrode, horizontal rollers to guide the thread to the lower 118 

part of the reservoir, and a basin allowing a maximum of 750 µL of buffer, keeping the thread 119 

hydrated during the analytical process. The thread was then placed in suspension, parallel to 120 

the base, and approximately 1-2 mm higher than the buffer level, avoiding wicking between 121 

the reservoirs and thread from over-hydration. Additionally, electroosmic flow facilitated the 122 

flux of fresh buffer solution minimising solvent evaporation. Cylindrical pins were placed 123 

underneath to fix the reservoir on the base. Figure 1 shows the CAD designs and photographs 124 

for the reservoir, platform, and final set up, with two reservoirs and a single thread under the 125 

fluorescent microscope. Base and buffer reservoirs were designed using SolidWorks CAD 126 
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software (SolidWorks Corp., Dassault Systemes, France). Designs were 3D printed using an 127 

Eden 260VS (Stratasys, MN, USA) with VeroClear build material, and SUP707 water soluble 128 

support. Support material was removed by agitation in 2 % NaOH for 2 hours, followed by 4-129 

6 hours in water. Finally, printed parts were rinsed and subsequently soaked for 1 day in Milli-130 

Q water. 131 

 132 

2.3. Choice of thread 133 

Electrophoresis can be carried out upon a wide range of commercial threads, each providing 134 

unique physical and chemical properties, which translate to differing electrophoretic 135 

behaviour and selectivity. The electrophoretic properties of eight types of thread were 136 

examined: nylon bundle (NYL), silk (SE), cotton (CO), wool (WO), acrylic (AC), 50% 137 

acrylic/50% nylon (AC/NYL), polyester (PES), and waxed dental tape (WT). Threads 138 

investigated were selected based upon their ability to create a liquid pathway, their strength, 139 

flexibility, absorbency, commercial availability, low-cost, malleability, and durability. 140 

Similarly, variation was sought between filament structure and arrangement to form the 141 

thread. Figure 2 shows scanning electronic micrograph (SEM) images of the different threaded 142 

materials used in this study. 143 

 144 

2.4. Thread electrophoresis system operation 145 

All experiments were carried out at constant voltage and in cathodic mode, where the anode 146 

was in the inlet and the cathode was in the outlet buffer reservoir. Voltage was applied using 147 
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an in-house built 4-channel (0-5kV) DC power supply. The system was interfaced to the 148 

computer using a 12-Bit, 10 kS/s multifunction DAQ system (USB-6008 OEM, National 149 

Instruments, Austin, TX, USA) and data acquisition was achieved using software LabView 150 

v11.0. Temperature increases due to Joule heating effects were monitored with a FLIR E40 151 

MSX infrared camera (Notting Hill, VIC, Australia). A USB microscope AM4113T-GFBW 152 

(Dino-Lite Premier, Clarkson, WA, Australia) fitted with a blue light-emitting diode for 153 

excitation and a 510 nm emission filter was used to take fluorescence images and videos. The 154 

microscope objective was fixed at 30X and the thread image focused by adjusting the distance. 155 

ImageJ (National Institutes of Health, http://rsb.info.nih.gov/ij/) was used to analyse the region 156 

of interest (ROI) and then monitor the mean fluorescence intensity value of the ROI versus 157 

time. Note that since background is black, its signal intensity is valued 0. 158 

To prepare the thread for separations, three simple steps were followed. The first, was to set 159 

and tighten the thread with respect to the reservoir. Reservoirs were located and attached to 160 

the base according to the desired thread length. One end of the thread was knotted with the 161 

ring of the first reservoir, passed below its rollers and directed to the second reservoir. 162 

Afterwards, the thread was guided below the rollers of the second reservoir and knotted 163 

around its ring (Figure 1). The second step involved pre-rinsing the thread with the 164 

appropriate buffer. Since the reservoirs are detachable, both reservoirs and attached thread 165 

were submerged into a vial full of buffer and shaken for 1 minute. Since threads were entirely 166 

soaked in buffer, they were completely wetted regardless of the relatively low hydrophilicity 167 

indexes of some of the threads. The third step was to gently shake the reservoirs and thread to 168 
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remove any excess of buffer, and relocate them in the platform. Finally, 500 µL of working 169 

buffer solution was added into each of the reservoir chambers. Before applying voltage, the 170 

system was left for 1 minute in order to achieve equilibration and to avoid any capillary based 171 

flow across the thread during its subsequent application. For electrophoretic separations, two 172 

electrodes were introduced through the reservoir cylinder and connected to the system. 173 

Voltage was then applied and current measurements monitored using LabView. When the 174 

separation was complete, both the reservoirs and thread could be simply detached from the 175 

base, submerged into a water vial for 2 minutes, followed by 2 minutes in fresh buffer and then 176 

applied to a new separation. At the end of the day, reservoirs and thread were cleaned with 177 

water, air-dried, and stored for further usage. 178 

 179 

2.5. Electroosmotic and electrophoretic mobility measurement 180 

There are several methods to measure the electroosmotic flow (EOF) in microfluidic systems 181 

[49,50]. Herein, the Kohlrausch regulating function (KRF) [51] was used, based on the 182 

measurement of changes in current signal from the introduction of a buffer-like solution. The 183 

thread was wetted with a solution of 2.5 mM of Tris/CHES buffer, whereas the reservoir at the 184 

injection end of the thread contained a buffer with slightly higher ionic strength, 2.6 mM. 185 

When an external electric field (E = 200 V/cm) was applied, the solution in the injection 186 

reservoir flowed into the thread and the electric current in the circuit changed when the total 187 

conductivity in the thread changed. When inlet solution covered the entire thread, the electric 188 
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current was constant. EOF mobility (µEOF) was calculated according to the time (t0) that the 189 

buffer was displaced by the one in the injection reservoir and the thread length (LT):  190 

𝜇𝐸𝑂𝐹 =
𝐿𝑇

𝑡0𝐸
 (1) 191 

For accurate current measurements, a very small resistor (10.0 kΩ) was inserted between the 192 

reservoir electrode and ground. Measured voltage across the resistor was converted to current. 193 

5% differences between buffer concentrations was sufficient to detect the current variation.  194 

Charged solutes experience an electrophoretic mobility (μep), based on the charge/size ratio 195 

of the ions. Therefore, the apparent mobility (μap) is obtained from the sum of both μEOF and 196 

μep. To determine the μap, 0.5 µL of sample was dropped at 1 cm along a 6 cm long thread. 197 

Samples of 10 µM rhodamine 6G (Rh6G), 10 µM rhodamine B (RhB), and 3 µM fluorescein 198 

(FL) were prepared separately using a 2.5 mM Tris/CHES buffer solution. When the electric 199 

field was applied, the sample was driven to the cathode and light intensity measured using a 200 

USB Dino-Lite microscope at 5 cm from inlet reservoir. Migration time (tm) was measured 201 

using the maximum peak intensity of the electropherogram. µap was calculated as follows: 202 

𝜇𝑎𝑝 =
𝐿𝐷

𝑡𝑚𝐸
=  𝜇𝐸𝑂𝐹 + 𝜇𝑒𝑝 (2) 203 

where LD is the effective length that sample has travelled. 204 

 205 

2.6. Urine assay in thread electrophoresis 206 

To determine riboflavin in urine, 0.5 µL of untreated urine was directly applied onto the 207 

thread at 1.0 ± 0.1 cm from the inlet reservoir, with a thread of 6 cm total length and using 5 208 

mM Tris/CHES as the separation buffer (pH 8.8, ionic strength 0.80 mM, conductivity 4.16 10-209 
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3 S/m). No current variations and solvent evaporation were observed after 20 minutes of 210 

operation. The sample, without any pretreatment, was directly dropped from an automated 211 

eVol XR digital analytical micro-syringe (Trajan Scientific and Medical, Melbourne, Australia) 212 

onto the thread surface, using a 5 µL total volume syringe (0.2-5 µL dispense volumes). 213 

Accuracy and reproducibility of the syringe is reported as ± 1% (SGE Analytical Science, 214 

Australia). A detection point was fixed at 4.5 ± 0.1 cm from the inlet reservoir. A fluorescence 215 

microscope (Eclipse Ti-U, Nikon, Tokyo, Japan) with an objective 20X was used to focus on 216 

the thread. An electric field of 300 V/cm was applied. Quantitative measurements were 217 

achieved using a photomultiplier tube (Hamamatsu Photonics KK, Hamamatsu, Japan) 218 

connected to the microscope. Data acquisition was made using an Agilent interface (35900E) 219 

connected to a laptop and operated by Agilent ChemStation software (Agilent Technologies, 220 

Waldbronn, Germany). The excitation wavelength was 482 nm and emission detected at 523 221 

nm (Semrock, Rochester, NY, USA). In order to determine the concentration of riboflavin, a 222 

series of standard solutions were prepared from 0.1 to 15 µg/mL in buffer solution. After 5 223 

runs, reservoirs and thread were detached from the base and rinsed as mentioned above. 224 

 225 

2.7. Urine assay in capillary electrophoresis 226 

Capillary electrophoresis (CE) separations were carried out on a Beckman Coulter (Fullerton, 227 

CA, USA) P/ACE MPQ CE System equipped with a laser induced fluorescence detector (LIF) 228 

at 488 nm. The analytical procedure was modified from previous work [52]. Briefly, 229 

experiments were conducted using a bare-fused silica capillary (Polymicro Technologies, AZ, 230 
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USA) of 100 µm I.D. (360 µm O.D.) with a total length of 65.2 cm (effective length to detector, 231 

55 cm). The capillary was maintained at a constant temperature of 25.0 ± 0.1 ºC. Sample and 232 

standards were injected using hydrodynamic pressure of 0.5 psi for 3s. Separation was carried 233 

out at 18kV and normal polarity. Prior to analysis, the capillary was preconditioned as 234 

following: 1 M NaOH (10 min), Milli-Q water (5 min), and buffer (10 min). Between 235 

consecutive injections the capillary was conditioned with buffer (3 min). At the end of each 236 

run, the capillary was post-conditioned with 0.1M NaOH (5 min) and H2O (10 min). The 237 

separation buffer was prepared from a solution of water/acetonitrile (9:1 v/v) containing 10 238 

mM borate (pH 9.6 adjusted with 0.1 M NaOH). 239 

In order to avoid capillary blockage and sample matrix related issues, urine samples (10 mL) 240 

were pre-treated by centrifuging at 8000 rpm for 15 minutes (model Eppendorf 5424, 241 

Hamburg, Germany), and the supernatant filtered using 0.45 µm size porous filters (Millex-242 

HA, Merc Millipore, Darmstadt, Germany). The filtered extract was collected and stored in a 243 

refrigerator prior to analysis. 244 

 245 

3. RESULTS AND DISCUSSION 246 

3.1. Buffer, current and thread considerations 247 

Electrophoretic processes within and upon threads strongly depend on several factors: 248 

surface polarity, chemical composition, microstructure of the thread, porosity and amount of 249 

specific surface area, and swelling properties in water. Hence, the material used and the applied 250 

conditions will determine the electroosmotic flow and apparent mobility along the thread. To 251 
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achieve electrophoresis upon the thread there must be: 1) a homogenous buffer pathway 252 

between electrodes; and 2) the electrical resistivity of the thread must be higher than that of 253 

the buffer. Accomplishing these two requirements, it is also important to consider that when 254 

voltage and ionic concentration is high, joule heating can be significant, providing a 255 

disproportionate increase in current with voltage, and a non-linear Ohm’s law dependency. 256 

This Joule heating can cause solvent evaporation, band broadening and potential thread 257 

degradation. To reduce the Joule effect it is important to select the appropriate buffer. In this 258 

work, Tris and CHES buffers were selected, since both have strong buffering capacity over the 259 

pH range 8-9, but low conductivity and low ion mobility, which limits the extent of joule 260 

heating. Current and temperature were measured at electric fields between 0-500 V/cm, at 261 

concentrations of 1-20 mM of Tris/CHES buffer. Conductivity values ranged from 9.38 10-4 to 262 

1.60 10-2 S/m, ionic strength from 0.16 to 3.26 mM, and buffer capacity from 0.62 to 12.58 mM. 263 

Buffers with higher concentrations, > 5 mM, generated higher Joule heating, as evident from 264 

the observed Ohm’s law dependences and temperatures measurements taken using the IR 265 

camera (see Figure S-1 in ESI†).  266 

Joule heating can also be minimised by reducing the diameter of the thread. However, 267 

extremely small diameters are not practical, principally due to the reduced sample loading 268 

capacity and detection window. The Ohm’s Law dependences for 8 different threads, with 269 

diameters ranging between 250 and 800 µm, were examined for electric fields up to 500 V/cm 270 

(Figure 3a). Linearity was achieved in all cases bar acrylic, which clearly showed a deviation 271 

for E over 400 V/cm. In order to identify resistivity differences between thread types, current 272 
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values were also plotted as a function of the cross sectional area of the threads (Figure 3b). 273 

Here, with the exception of the response seen for the NYL, the overall linearity demonstrates 274 

that the current is principally dependent upon the thread diameter rather than the chemical 275 

composition of the material. Nevertheless, small differences can be observed, for instance WT 276 

and AC/NYL show a reduced dependence and acrylic slightly higher relative relationship. On 277 

one hand, these deviations can potentially reflect variations in wettability due to the differing 278 

surface chemistry of the materials. As in the case of AC, R-CN functional groups are very polar, 279 

increasing electrolyte penetration. By adding a 50% nylon into the structure, R-CONH-R’ 280 

amide groups decrease its polarity slightly and so wettability is reduced. On the other hand, 281 

thread density also needs to be considered. Looser arrangements, such as the AC filaments 282 

(Figure 2-v) can retain larger volumes of electrolyte. In contrast, the planar WT structure, 150 283 

µm thick  (Figure 2-viii), is a considerably tighter thread and therefore holds a lower volume 284 

of electrolyte and therefore less current. Regarding the nylon bundle, big deviations were 285 

observed, with a current decrease of approximately 53% from the linear trend. Calculating the 286 

theoretic diameter from the experimental current values using the regression parameters from 287 

Figure 3b, suggests the nylon bundle contains ~ 24% less liquid than the other materials. 288 

 289 

3.2. Electroosmotic flow and ion mobility 290 

Shown in Figure 3c are the µEOF and μap profiles for three different solutes (Rh6G: positive, 291 

RhB: zwitterionic and FL: negative) observed upon the different threads investigated. These 292 

data and standard deviations are also summarised in Table 1. Values obtained reveals that the 293 
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µEOF for all threads exhibited a significant cathodic EOF to transport all solutes, cations, neutral 294 

components and anions (μEOF > |μep(anion)|), across the detector region. The highest EOF values 295 

were recorded for NYL and WT followed by the acrylic-based thread, PES, and finally the 296 

natural threads (SE, CO and WO). Due to their controlled manufacturing processes, synthetic 297 

threads have regular structures (Figure 2b) and presumably a more homogeneous surface 298 

chemistry. On the contrary, natural threads have irregular filaments shapes, and many intra-299 

fibrillar gaps, providing irregular microfluidic channels. CO has a hollow ribbon like 300 

appearance with cellulose filaments, and wool is composed of protein with crimps in the 301 

outside surface of the filament like a series of serrated scales (Figure 2-iii, iv). As an exception, 302 

SE revealed a higher µEOF, and it possesses a triangular prism-like filament with regular 303 

microfluidic channels (Figure 2-ii). Regarding solute μap, with both CO and WO, solute-surface 304 

interactions were evident, which may be related to both surface chemistry and the more 305 

irregular and porous thread structure. Positively charged solutes in silk presented similar 306 

behaviour, whilst FL reached a mobility of 1.9 ± 0.1 (10−8 m2 V−1 s−1). Silk is mainly composed 307 

of fibroin protein. The low isoelectric point of silk (3.5) and high concentration of glycine (not 308 

sterically constrained) allows tight packing, creating high levels of interaction with positive 309 

solutes and EOF as high as that seen with polyester.  310 

Comparing EOF recorded with each of the synthetic threads, higher values are expected for 311 

those with higher electronegativity or zeta potential, lower swelling properties [53] and 312 

smooth microstructure that ease the liquid flow. Therefore, the PES material with the lowest 313 

ionisation capacity and charge density, due to ester groups (-R-COO-R’-), showed the lowest 314 
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μEOF. Similarly, since NYL (R-CONH-R’-) has lower electronegativity than AC (-R-CN), higher 315 

values were observed for the acrylic thread than the AC/NYL threads, even though AC showed 316 

clearly higher swelling properties. However, the NYL and WT presented the highest values, 317 

and a reasonable explanation for this behaviour must lie with structural differences (Figure 318 

2a). It is possible that the greater  alignment of the filaments in tape, or the greater physical 319 

spaces within the bundle, facilitated bulk solution flow with less physical impediments, and 320 

thus delivered higher mobility values. Regarding µap, strong surface interactions were not seen 321 

with any of the synthetic threads, although some retardation was observed for RhB with 322 

polyester, which had a lower value than negative compounds such as FL. For acrylic, RhG6 323 

and RhB mobilties were slightly lower than expected, whereas AC/NYL showed higher 324 

resolution between the three solutes. Significant apparent mobility differences were also 325 

observed between the NYL and WT. 326 

Overall, synthetic threads (NYL, AC, WT, AC/NYL and PES) showed higher µEOF than 327 

natural ones (SE, CO, and WO), with the acrylic-based thread exhibiting the highest. 328 

However, filament aggregation is also important as bundles and tapes offered less obstructions 329 

and provided increased EOF. Additionally, higher resolution and |µep| was shown for nylon-330 

based thread than others, such as acrylic and polyester. Consequently, the examination of 331 

several types of threads established that the nylon bundle was a suitable material for 332 

electrophoresis and solute separations. Other reasons such as low current, durability, and easy 333 

handling, make nylon bundle the preferred option.  334 

 335 
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3.3. Sample loading 336 

Several loading strategies were studied in order to achieve the best loading efficiency 337 

(smallest sample band width upon the thread). Similar to cross-channels used in microchip 338 

electrophoresis, sample loading can be carried out by using a secondary loading thread across 339 

the main separation thread. Herein, 4 loading strategies were evaluated: 1) a two-step standard 340 

loading and separation; 2) a two-step loading and separation with cross-pinching and pull-341 

back, respectively; 3) a two-step standard loading and pull-back separation using lower 342 

diameter in the loading channel; 4) the direct application of the sample directly onto a single 343 

separation thread. Each of these strategies were optimised separately to the conditions 344 

summarised in Figure 4. Table 2 shows all 4 approaches, images taken during the process, 345 

electropherograms, full peak width at half maximum (FWHM), and the obtained peak area. 346 

The first approach confirmed that capillary action or wicking had a substantial effect. 347 

Wicking along the separation channel was significant during sample loading. Under separation 348 

conditions, this extended sample band provided both poor peak shape for the solute and a 349 

considerable increase in baseline signal. By employing the second approach, pinching and pull-350 

back, the sample wicking effect was greatly reduced, giving a narrower sample band and no 351 

changes in baseline. However, in initial experiments the thread diameter used was relatively 352 

high, resulting in a high sample volume and therefore relatively high values of FWHM and 353 

peak area. In the third approach, a polyester thread with ~ 3 times smaller diameter was used, 354 

reducing sample volume up to 65%, and therefore increasing efficiency significantly. The 355 

cross-loading approaches provide the capability to perform automated assays of the same 356 



 19 

sample without any additional instrumentation, keeping the loading point constant at all 357 

times. It is worth noting that loading and separation can be carried out for any of the synthetic 358 

threads that have been studied. Movie S-1 in ESI† shows a separation of RhB and FL using the 359 

cross-shaped waxed tape. 360 

However, the fourth approach, namely the direct sample application (with automated 361 

pipette) provided similar results to approach 3 above, and although a manual approach, had 362 

the advantage of both simplicity and avoidance of the secondary thread completely, and the 363 

need for an extra voltage supply. 364 

 365 

3.4. Analysis of riboflavin in urine 366 

Riboflavin or vitamin B2 is a natural fluorophore which plays crucial roles in certain 367 

metabolic reactions, such as in enzymatic processes involving flavin coenzymes. Since it 368 

cannot be synthesised within the human body, vitamin B2 depleted diets or poor absorption 369 

can result in significant health problems. Extremely low concentration in biological matrices and 370 

susceptibility to photodegradation makes riboflavin difficult to quantify. Therefore, separation 371 

techniques, such as electrophoresis, as well as selective detection, are essential for the 372 

determination of riboflavin in such samples.  373 

As a proof-of-concept, electrophoresis upon the nylon bundle thread with selective 374 

fluorescence detection was used for the determination of riboflavin in urine. The thread not 375 

only provides the substrate for the separation, but also as a filter/percolation matrix for sample 376 

particles and much of the undesired components material within the urine. Sample can be 377 



 20 

directly assayed, avoiding any extra steps such as micro-extractions, centrifugation, or sample 378 

filtration. By using an automatic micro-pipette, the sample can be accurately loaded, keeping 379 

the same loading point and sample volume without the need to stop the voltage or renew the 380 

buffer solution within the thread. Movie S-2 in ESI† shows the electromigration of riboflavin 381 

along the nylon bundle. A sequence of images can be seen in Figure 5a. Shown in Figure 5b is 382 

an electropherogram depicting repetitive sample loading every 45 seconds. As can be seen, 383 

baseline and peak shape were constant, with peak area constant after 10 consecutive loadings (493 384 

± 28, RSD = 5.7%). It was noted however that extended use would result in a gradual change in 385 

buffer reservoir levels, and thus it is recommended to rinse and replace buffer solution every 5 386 

loadings to maintain repetitive migration times.  387 

The well-known photochemical reactions involved in the degradation of riboflavin can 388 

affect its concentration significantly. Around 30% of the riboflavin in milk is destroyed by 389 

sunlight within 30 minutes [54]. To study the separation capabilities of thread electrophoresis, 390 

a riboflavin solution of 5 µg/mL was analysed after 1 hour exposure to sunlight. The 391 

electropherogram shown in Figure 5c shows the separation of riboflavin from its three 392 

common breakdown products - lumiflavin, lumichrome, and carboxymethylflavin, in 393 

decreasing order of apparent mobility. 394 

For the diagnostic assay of riboflavin in urine, 0.5 μL of each sample was dropped onto the 395 

thread and the signal intensity was monitored using a PMT and Agilent software as per 396 

Experimental Section. As a comparison, these samples were also analysed using a standard 397 

capillary electrophoresis method on a Beckman CE. Electropherograms obtained by both 398 
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techniques are shown in Figure 6. Naturally, higher resolution and efficiency were observed 399 

from the CE, which uses open capillary channels, an 11 fold longer separation length, 10 times 400 

higher voltage, and produces a 20 minute long electropherogram. However, using thread 401 

electrophoresis, a quantitative assay was possible, providing a low cost diagnostic capability. 402 

Calibration curves from 0.1 to 15 µg/mL for the thread-based and capillary electrophoresis are 403 

shown in Figure S-2 in ESI†. As can be seen, the intensity exhibits a linear relationship with 404 

concentration, with a correlation > 0.99 (R2) in both cases. The parameters obtained from the 405 

calibration curve were used to determine the riboflavin concentration in urine. Results for the 406 

blank were 2.02 ± 0.29 and 2.16 ± 0.08, and spike 9.85 ± 0.88 and 10.13 ± 0.26 for thread 407 

electrophoresis and CE, respectively (Figure 7). Values obtained from the simple thread-based 408 

platform with direct sample loading were comparable to the ones obtained by the standard CE 409 

method. Higher standard deviations were seen for the on-thread repeat assays. The major cause 410 

of this was sample introduction. The injection performance of commercial CE instruments 411 

remains somewhat superior than that developed to-date with the thread. However, separation 412 

and quantification was successfully achieved for vitamin B2 in urine using thread 413 

electrophoresis, in under 2 mins, with the simplicity and costs of this thread based platform 414 

orders of magnitude lower than the commercial CE instrument, which for a proof-of-concept 415 

assay of this nature is deemed highly encouraging. 416 

  417 

4. CONCLUSIONS 418 
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Electrophoresis was applied on commercial threads for the implementation of low cost, 419 

semi-automated determination of low abundant target compounds in biological matrixes. 420 

Based on this multifilament substrates, separation was achieved in less than a minute, 421 

presenting significant potential for the development of new biosensor and affordable 422 

diagnostic devices. Threads were tested using a versatile 3D printed platform, providing rapid 423 

simple assembly, while offering great potential for multiplexed analysis. Synthetic threads 424 

showed higher EOF, with acrylic (cyanide based) providing the highest value. However, nylon 425 

bundle was chosen due to its chemical properties, low solute dispersion and high resolution, 426 

whilst also minimising the contribution of Joule heating. As a proof-of-concept study, the 427 

approach was applied to the separation and quantification of riboflavin in human urine. Using 428 

only 6 cm of thread, with less than 100 µA of current generated, and low sample volume 429 

requirements, riboflavin in untreated urine was accurately determined in only 2 minutes. 430 
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FIGURE CAPTION 593 

 594 

Figure 1. CAD drawing, illustration of the sizes (in millimeters), and picture of the a) reservoir 595 

and b) platform features. Thread goes from the front part along the lined space, underneath 596 

the rolls and tied in the ring at the back side. The perpendicular cylinder is used as a support 597 

for the electrode. c) Photograph of the 3D printed fluidic platform for thread-based 598 

microfluidics. The designed based on modular system allows rapid assembly of desired 599 

structure and multiplexed analysis. It fits perfectly onto the microscope stage, and has a 600 

rectangular hole to allow the focus of the objective lens to the thread and target detection. 601 

Buffer chamber is detachable from the platform, facilitating thread cleaning and buffer 602 

replenishment processes.  603 

Figure 2. SEM of the a) threads, b) filaments, and c) cross-section. i) Nylon bundle, ii) silk, iii) 604 

cotton, iv) wool, v) acrylic, vi) 50% acrylic and 50% nylon, vii) polyester, viii) waxed tape. 605 

Figure 3. a) The Ohm’s law dependence of the solution conductivity. Relationship between 606 

current and electric field for polyester (■), cotton (■), waxed tape (■), silk (■), wool (●), 607 

acrylic/nylon (●), nylon bundle (●), acrylic (●) threads. n=3. b) Relationship between current 608 

and thread cross section area for an applied electric field of (●) 100, (■) 200, (♦) 300, and (▲) 609 

400 V/cm. PES: Polyester (light blue); CO: Cotton (dark blue); WT: Waxed tape (purple); SE: 610 

Silk (grey); WO: Wool (blue); AC/NYL: Acrylic/Nylon (orange); AC: Acrylic (green); NYL: 611 

Nylon bundle (red). c) Electroosmotic (■) and apparent mobilities of rhodamine 6G (♦), 612 



 28 

rhodamine B (●), and fluorescein (▲) for the 8 different types of threads. Error bars are based 613 

on the standard deviation of 3 replicates.  614 
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Figure 4. Optimized conditions for the sample loading strategies studied: 1) a two-step standard 615 

loading and separation; 2) a two-step loading and separation with cross-pinching and pull-back, 616 

respectively; 3) a two-step standard loading and pull-back separation using lower diameter in the 617 

loading channel; 4) dropping off the sample directly onto a single separation thread.  618 

Figure 5. a) Electromigration of riboflavin on a single nylon bundle. 0.5 μL of 5 μg/mL of 619 

standard solution of riboflavin was drop off from automatic digital syringe. b) 620 

Electropherogram on thread of 5 consecutive assays of 5 µg/mL of riboflavin solution without 621 

washing steps between sample loadings. Loading was carried out every 45 seconds. c) 622 

Electropherogram on thread of a riboflavin standard of 5 µg/mL after 1 hour exposure of 623 

sunlight. Analytes are numbered in decreasing order of mobility towards the cathode: (1) 624 

riboflavin; (2) lumiflavin; (3) lumichrome; and (4) carboxymethylflavin. 625 

Figure 6. a) Electropherograms from thread electrophoresis and b) CE instrument of untreated 626 

urine (black) and untreated urine spiked with 8 µg/mL of riboflavin (grey). Samples were 627 

centrifuged and filtered before the analysis only for the CE instrument determination. 628 

Figure 7. Determination of riboflavin in thread electrophoresis (black) and CE instrument 629 

(grey). Blank: untreated urine. Spike: untreated urine spiked with 8 µg/mL. Centrifugation and 630 

filtration steps were carried out only when measuring with the CE instrument. Error bars are 631 

based on the standard deviation of 5 replicates.  632 
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Table 1. Electroosmotic flow and apparent mobility of fluorescein, rhodamine B and 633 

rhodamine 6G in threads. 634 

 635 

 636 

Table 2. Sample loading and separation in single and dual-channel thread electrophoresis. See 637 
Figure 4 for setup and voltage conditions. 638 

Loading and separation system Electropherogram FWHM Peak area 

1 
a) Standard cross-loading 
b) Standard separation 

  
- - 

2 
a) Pinching cross-loading 
b) Pull-back separation 

  
0.167 0.1720 

3 
a) Standard cross-loading 
using lower diameter 
b) Pull-back separation 

  
0.109 0.1128 

4 
a) No thread for injection 
b) Standard separation   

0.107 0.1142 

FWHM: Full width at half maximum. 639 

 
Electroosmotic flow 
(10-8 m2 V-1 s-1) 

Apparent mobility (10-8 m2 V-1 s-1) 

 Fluorescein Rhodamine B Rhodamine 6G 

WT 6.34 ± 0.37 2.81 ± 0.19 4.84 ± 0.33 5.79 ± 0.33 

NYL 6.09 ± 0.52 2.57 ± 0.40 3.29 ± 0.24 4.47 ± 0.22 

AC 5.26 ± 0.43 2.77 ± 0.08 2.93 ± 0.24 3.42 ± 0.21 

AC/NYL 4.82 ± 0.31 2.57 ± 0.16 3.18 ± 0.22 3.60 ± 0.19 

PES 3.91 ± 0.32 1.90 ± 0.14 1.50 ± 0.10 2.87 ± 0.24 

SE 3.64 ± 0.41 1.91 ± 0.11 - - 

CO 2.51 ± 0.46 - - - 

WO 2.10 ± 0.31 - - - 


