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Abstract 1 

A novel application of non-parametric system identification algorithm for a surface 2 

ship has been employ on this study with the aim of modelling ships dynamics with 3 

low quantity of data. The algorithm is based on multi-output Gaussian processes and 4 

its ability to model the dynamic system of a ship without losing the relationships 5 

between coupled outputs is explored. Data obtained from the simulation of a 6 

parametric model of a container ship is used for the training and validation of the 7 

multi-output Gaussian processes. The required methodology and metric to 8 

implement Gaussian processes for a 4 degrees of freedom (DoF) ship is also 9 

presented in this paper. Results show that multi-output Gaussian processes can be 10 

accurately applied for non-parametric dynamic system identification in ships with 11 

highly coupled DoF.  12 
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 17 

Introduction 18 

Dynamic modelling of oceanic vehicles including surface ships, semisubmersibles/ 19 

submersible platforms, and unmanned underwater vehicles is an active research 20 

field due to the application importance of these vessels such as goods transport, oil 21 

and gas exploration (Olsgard and Gray, 1995), underwater survey, and fishery. The 22 

common approach to modelling such vehicles is the use of Newtonian-Lagrangian 23 

mathematical models which are usually predefined. However, the presence of 24 

unaccounted dynamics caused by parametric and non-parametric uncertainties in a 25 

predefined model can increase the error between the predicted output and the real 26 

output. The cause of these uncertainties is commonly attributed to ocean currents, 27 

waves, wind, and hydrodynamic interaction with nearby structures. Since oceanic 28 

vehicles operate in dynamically changing environments performance of traditional 29 

controllers such as PID, LQR, and backstepping controllers (Fossen, 2011; 30 

Pettersen and Nijmeijer, 2001) degrade over time of operation as they require an 31 

initial offline design, calibration and are directly dependent on the predefined system 32 

parameters. An optional approach to predefined mathematical modelling is the use 33 

of non-parametric system identification (SI) methods. In this context, the application 34 

of modern machine learning algorithms that are capable of producing evolutionary 35 

adaptability to the environment has been identified as a promising approach for SI  36 

(Ljung, 1999). The present study focuses on its application for the identification of 37 

surface ship dynamics. 38 

There are multiple mathematical models for the representation of ships dynamics. 39 

Some models are 3 DoF models where the surge, sway and yaw are represented  by  40 

linear and nonlinear equations (Abkowitz, 1964; Norrbin, 1971). Other more 41 
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advanced models such as (Son and Nomoto, 1982) used a 4 DoF nonlinear model 42 

for ships including the rolling effect. The dynamic modelling of ship is a prerequisite 43 

for the design of its autopilot, navigation, steering control, and damage identification 44 

systems. The exactitude of the model can lead to the reduction of fuel consumption 45 

(Källström et al., 1979) by the correct tuning of an autopilot, better vehicle stability, 46 

and less stress over the vehicle structure (Fossen, 1994) and the possibility of 47 

advanced algorithms such as automatic ship berthing (Ahmed and Hasegawa, 2013).  48 

Dynamic mathematical models are usually obtained by the application of Newtonian 49 

and Lagrangian mechanics, which lead to a complex system of coupled equations 50 

defined by a series of parameters. The parameters are the representation of added 51 

masses, hydrodynamics damping constants, and constants related directly with 52 

control forces such as propellers and rudders. Over the years, multiple methods 53 

have been developed to determine the hydrodynamic parameters of ships, e.g. 54 

empirical formulas, captive model test, computational fluid dynamics (CFD) 55 

calculation and parameter estimation based in SI. The most recognized and 56 

accepted method is captive model test with planar motion mechanics (Bishop and 57 

Parkinson, 1970). This method requires the use of sophisticate facilities such as 58 

towing tanks, rotating arms and planar motion mechanism to produce the required 59 

ship manoeuvres that allow the parameters to be identified. These manoeuvres can 60 

also be replicated virtually via CFD which can be a more affordable option (Stern et 61 

al., 2011). However, as the accuracy of CFD is highly dependent on the numerical 62 

settings and requires validation, physical experiments are still preferred over 63 

computational solutions. 64 

Parameter estimation based in SI methodologies offer a practical way to identify the 65 

hydrodynamic parameters of a ship model or a complete model. The data source for 66 
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SI can be free-running model tests or full-scales trials of existing ships. SI can be 67 

categorized in two groups, parametric and non-parametric identification. Parametric 68 

identification is based on the use of numerical methods to obtain the hydrodynamics 69 

parameters of proposed mathematical models with unknown parameters. 70 

Alternatively, non-parametric identification is based on the use of single or multiple 71 

kernel functions to create a non-physics related mathematical model which is tuned 72 

by a learning procedure that uses data obtained from the original system. 73 

Methods like Extended Kalman Filter (Åström and Källström, 1976; Brinati and Neto, 74 

1975), Unscented Kalman Filter(Zhou and Blanke, 1987), Estimation-Before-75 

Modelling  (Yoon and Rhee, 2003), and Backstepping (Casado et al., 2007) are the 76 

most popular numerical methods for coefficient estimation. However, these methods 77 

can suffer from linearization and convergence errors. Therefore, more advanced SI 78 

methods from  machine learning, e.g. neural networks (Haddara and Wang, 1999), 79 

and support vector machines (Luo and Zou, 2009) had found their space in 80 

parametric ship SI with the use of specific structures (NN) or specific selection of 81 

kernel functions(SVM), these specific structure allow the techniques to calculate 82 

some coefficients.  The principal disadvantage of parametric system identification is 83 

the need of controlled test with low external perturbations and specific procedures to 84 

reduce the interference and nonlinearities between degrees of freedom. 85 

In contrast to the parametric SI, non-parametric SI has the capacity to learn a 86 

complete model without prior knowledge of the system structure. This learning 87 

procedure leads to a simpler model with fewer parameters. Non-parametric SI brings 88 

the possibility of incorporating online learning giving the ability to improve the 89 

adaptability of the model. The capability to adapt to change is very important for 90 

application of evolutionary control techniques and damage identification. The most 91 
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recognized method of non-parametric identification for ships is recursive neural 92 

network (RNN). RNN differs over standard neural networks in the aspect that the 93 

structure of the network is organized hierarchically applying the same set of weights 94 

recursively over the structure, to produce a scalar prediction on it. (Irsoy and Cardie, 95 

2014). This method has been used with success to identify complex ship designs like 96 

catamarans with the final purpose of offline simulation of ship behaviours (Moreira 97 

and Soares, 2012). Wang et al. (2015) presented a modified version of SVMs to 98 

capture the full coupled system in four degrees of a ship following a similar 99 

methodology to RNNs. The difference between the SVM and the neural network 100 

methods is that the SMV is less prone to overfitting, thus can reach a global optimum 101 

and require less memory. Wang’s proposed a white, grey and black box system, the 102 

black box is the result of the mathematical analysis of the grey black box that leads 103 

them to recognize an applicable kernel. The drawback of neural networks and SVM 104 

machine learning methods is the lack of confident measures, and thus, an error in 105 

the prediction cannot be corrected. 106 

Depending on the budget and availability of infrastructure and time, the parametric or 107 

non-parametric model characterization can be chosen for a given system. In the 108 

case of new designs with low complexity, the parametric identification can be carried 109 

out without inconvenience as scale model can be produced and computational CAD 110 

files are available. However, for old oceanic vehicles that require fitting of new 111 

technology, vehicles that require operation in evolving environments, and vehicles 112 

with complex designs the use of non-parametric methods can be more practical. 113 

Nevertheless, not all possible methods of machine learning had found their way to 114 

dynamic SI of ships. If a neural network is used to generate a non-parametric model 115 

with the inclusion of the variance, the number of hidden units ideally has to be taken 116 
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to infinity, in which case it turns that a neural network with infinite hidden layers is 117 

equivalent to another machine learning method known as Gaussian Processes (Neal, 118 

2012). GPs is a well-established method in fields such as geostatistics, where the 119 

GPs method is renamed ‘kriging’ (Kbiob, 1951). In GPs based SI the model is built 120 

over input-output data and a covariance function is used to characterise the ship 121 

behaviour. The advantage of GPs is their ability to work with small quantities of data 122 

and noisy data, and the predicted results consist of a mean and variance value. The 123 

variance of a future prediction can be used for other purposes as well such as 124 

control and model based fault detection since it contains a measure of confidence. 125 

(Kocijan et al., 2005) and (Ažman and Kocijan, 2011) described the application of 126 

GPs for the identification of nonlinear dynamics system and provided examples over 127 

simple input and single outputs systems. The standard technique of modelling multi-128 

output systems as a combination of single output GPs has the disadvantage of not 129 

modelling the coupling relationships among the outputs of a system as a ship. A ship 130 

is a system with highly related outputs where the absence of the relation between 131 

outputs can carry to error in prediction. 132 

In the present study, non-parametric dynamic SI for ships is proposed with the use of 133 

multi-output GPs, NARX structure and gradient descent optimization. The output 134 

from the algorithm will be a predictive value and a measure of confidence of the 135 

predictive value. Multi-output GPs is a special case of GPs with the capability to 136 

model the nonlinear behaviour and coupling among outputs of a multi-output system. 137 

Ships are ideal candidates for the use of multi-output GPs owing to their dynamic 138 

system with highly coupled outputs, i.e. the ship’s motion in 4 DoF. The present 139 

implementation was made over data obtained from a non-conventional zig-zag test 140 

with variable frequency of a 4 DoF simulated container ship. Multiple sample times 141 
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and data length were tested to find the best metric that can describe a ship. In 142 

addition to the algorithm development, another immediate objective of the study is 143 

the demonstration of the viability of GPs in modelling ships. 144 

Nonlinear Dynamic Ship Model 145 

(Son and Nomoto, 1982) proposed a 4 DoF (surge, sway, yaw and pitch) 146 

mathematical nonlinear model for ships including the contribution from 147 

hydrodynamics added masses. In respect to a body fixed frame (Fig. 1) the 148 

mathematical model can be expressed as: 149 

 

   

   

 

 

x y

y x y y y y

x x y y x x T

z z y y G

m m u m m vr X

m m v m m ur m r m l p Y

I J p m l v m l ur K WGM

I J r m v N x Y







   

     

    

   

 (1) 150 

Fig. 1 here 151 

where the added mass in x-axis and y-axis are represented by xm , ym  and the added 152 

moment of inertia about x-axis and y-axis are represented by xJ and yJ . The centre 153 

of added mass is denoted by the vector  , ,x y z   , while the added mass centre for 154 

xm  and ym  is denoted by the z-coordinates of xl  and yl . The vector [ , , , ]X Y K N155 

expresses the forces over the vehicle and can be defined as: 156 
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 (2) 157 

where: 158 

( )X u   = function dependent on the velocity 
u u

X u u  159 

    = rudder angle 160 

NF   =rudder force 161 

,...vr vv rX X N   =model parameters 162 

As can be seen, the mathematical model is defined by more than 50 parameters 163 

including parameters from the actuation surfaces. An example of the hydrodynamic 164 

parameters and its application can be found in Fossen (1994). 165 

Dynamic Identification with Multi-output GPs 166 
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The design of the algorithm for multi-output SI with GPs is based on the previous 167 

work of Kocijan (2016). The dynamic identification problem can be defined as the 168 

search for relation between a vector formed by delayed samples from the inputs ( )u k  169 

and outputs ( 1)y k  and the future output values. The relationship can be expressed 170 

by the equation: 171 

  ( 1) ( ), ( )k f k v k  y z Θ  (3) 172 

where  ( ),f kz Θ  is a function that maps the sample data vector ( )kz  that contains 173 

the vector [ ( 1), ( 1)]k k u y  to the output space based on the hyperparameters Θ . 174 

( )kv  accounts for the noise and error in the prediction of output ( )ky . In the case of 175 

dynamic SI, the discrete time variable ( )k is presented as an embedded element in 176 

the regression process as it is accounted in the delayed samples.  177 

A requirement for dynamic SI of nonlinear systems is the selection of a nonlinear 178 

model structure as nonlinear autoregressive model with exogenous input (NARX), 179 

nonlinear autoregressive (NAR), nonlinear output-error (NOE), nonlinear finite-180 

impulse response (NFIR), etc. From all the possible structures, the simpler and most 181 

popular structure to implement is NARX as its predictions are based on previous 182 

measurements of the input signals and output signals and require a more simplified 183 

optimization scheme. In the case of a ship, NARX is the most practical configuration 184 

since the measuring points are restricted to the available sensors. Fig. 2 shows the 185 

NARX configuration for Dynamic GPs for a simple case of one-input one-output 186 

system.  187 

Fig. 2 here 188 
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In the case of a single-input single-output  structure NARX for a GPs, the inputs 189 

signals are not considered separately as they are grouped into a single vector of 190 

dimension n  that derives to an output of single dimension. In the case of a four DoF 191 

ship, the system can be defined a function f  who depends of a vector formed by the 192 

respective regressors of each output and the regressors of the command signals of 193 

propeller and rudder such as. 194 

 ( 1: ) ( 1: ) ( 1: ), ,k n RPM k n rudder k nf   y y u u  195 

If a Newton-Lagrange mathematical model had been used, our system will have two-196 

input signals, four-output system signals. (Fig. 3) presents the graphical 197 

representation of the NARX architecture used with multi-output GPs with four vector 198 

of dimension R3.  199 

Fig. 3 Here 200 

Multi-output GPs 201 

The previous sections outline Eq.(1) and Eq.(2) which show the level of coupling 202 

between the Newton-Lagrange equations of a ship. The nonlinearity and coupling 203 

between outputs are better represented by a multi-output GPs. multi-output GPs 204 

presented here is based on the work of Alvarez and Lawrence (2009). multi-output 205 

GPs are founded in the regression of data by the convolution of white noise process 206 

with a smoothing function(Higdon, 2002). This was later introduced by Boyle and 207 

Frean (2004) to the machine learning community by assuming multiple latent 208 

process defined over a space
q . The dependency between two outputs is modelled 209 

with a common latent process and their independency with a latent function who 210 

does not interact with other outputs. If a set of functions   
1

Q

q q
f


x  is considered, 211 
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where Q  is the Output Dimension for a N  number of data points, where each 212 

function is expressed as the convolution between a smoothing kernel   
1

Q

q q
k


x and a 213 

latent function  zu  , 214 

    ( )q qf x k u d



  x - z z z  (4) 215 

This equation can be generalized for more than one latent function   
1

R

r r
u


x  and 216 

include a corruption function (noise) independent to each of the outputs  qw x , to 217 

obtain 218 

 

     

       
1

q q q

R

q qr r q

r

f w

k u d w





 

  

y x x x

y x x z z z x
 (5) 219 

The covariance between two different functions  qy x  and  'sy x  is: 220 

 
   

 

cov , ( ) cov , ( )

cov , ( )

q s q s

q s qs

f f

w w 

       

   

y x y x x x

x x
 (6) 221 

where 222 

 
 

 

1 1

cov , ( ) ( )

( )cov , ( )

R R

q s qr

r p

sp r p

f f k

k u u d d




 





    

      





x x x z

x z z z z z

 (7) 223 

If it is assumed that  ru z  is an independent white noise   2

,cov , ( )r p ur rp z zu u    
   z z , 224 

Equation (7) will become: 225 

   2

1

cov , ( ) ( ) ( )
R

q s ur qr sp

r

f f k k d





         x x x z x z z  (8) 226 
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The mean y  with variance yσ of a predictive distribution at the point  x  given the 227 

hyperparameters Θ  can be defined as 228 

 
1( ) ( )k k  y x ,x x,x y  (9) 229 

and variance 230 

 2 1( , ) ( , ) ( , ) ( , )T

y k k k k


    σ x x x x x x x x  (10) 231 

A complete explanation over the convolution process can be found in (Alvarez and 232 

Lawrence, 2009) and a complete implementation in Alvarez and Lawrence (2014). 233 

Learning Hyperparameters 234 

There are two principal methods for learning the hyperparameters  , Bayesian 235 

model interference and marginal likelihood. Bayesian inference is based on the 236 

assumption that a prior data of the unknown function to be mapped is known. A 237 

posterior distribution over the function is refined by incorporation of observations. 238 

The marginal likelihood method is based on the aspect that some hyperparameters 239 

are going to be more noticeable. Over this base the posterior distribution of 240 

hyperparameters can be described with a unimodal narrow Gaussian distribution. 241 

The learning of GPs hyperparameters   is commonly done by the maximization of 242 

the marginal likelihood. The marginal likelihood can be expressed as: 243 

  
 

11

2
1

2 2

1
,

2

T

N
p e






y K y

y x Θ

K

 (11) 244 

where K is the covariance matrix, N  is the number of input learning data points and 245 

y is a vector of learning output data of the form  1 2; ; Ny y y . To reduce the 246 
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calculation complexity, it is preferred to use the logarithmical marginal likelihood that 247 

is obtained by the application of logarithmic properties to (11). 248 

      11 1
log log 2

2 2 2

T N
   Θ K y K y  (12) 249 

To find a solution for the maximization of log-likelihood multiples methods of 250 

optimization can be applied, like, particle swarm optimization, genetic algorithms, or 251 

gradient descent. For deterministic optimization methods, the computation of 252 

likelihood partial derivatives with respect to each hyperparameter is require. From 253 

(Williams and Rasmussen, 2006, p. 114)  log-likelihood derivatives for each 254 

hyperparameter can be calculated by: 255 

 
 

1 1 11 1

2 2

T

i i i

trace      
      

Θ K K
K y K K

Θ Θ Θ
 (13) 256 

Equation (12) gives us the learning process computational complexity, for each cycle 257 

the inverse of the covariance matrix of K  has to be calculated. This calculation 258 

carries a complexity  
3

O NM  where N  is the number of data points and M  is the 259 

number of outputs of the system. After learning, the complexity of predicting the 260 

value ( 1)k y  is  O NM and to predict the mean value ( 1)k σ  is  
2

O NM .The 261 

higher training complexity  
3

O NM is the major disadvantage of using multi-output 262 

GPs. If the number of data increases the complexity of learning the hyperparameters 263 

increases in a cubic form. Methods such as genetic algorithms, differential equations, 264 

and particle swarm optimization can be applied to avoid the calculation of the 265 

marginal likelihood partial derivatives and thereby reduce the computational time. 266 

Experiment Setup and Results 267 

Experiment setup 268 
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The implementation of Son and Nomoto (1982) mathematical model of a container 269 

ship programmed in the Marine Systems Simulator (Fossen and Perez, 2004) was 270 

used to create the required databases. The container ship particulars can be found 271 

in Table 1. A simulation setup was developed in MATLAB/Simulink to emulate the 272 

behaviour of a container ship (Fig. 4). 1400 seconds were simulated where the 273 

inputs signals are constant shaft speed in RPM and a cosine signal with frequency 274 

change for rudder angle in radians (Fig. 5). The objective of not using a standard test 275 

as zigzag or turning circle is to test the ability of GPs for online learning. A sample 276 

data point was captured for each three steps over the input and outputs. A total of 277 

1868 points were captured over four outputs and 934 point over two input signals. 278 

The data set was divided in two sets of points, the first set of points is used for the 279 

model learning, and the second set of points is used for learning validation. The 280 

Validation data is purposely chosen to be beyond the range of training data to test 281 

the ability of the method to predict beyond the training range. Two neural network 282 

nonlinear system identification models were also prepared. The first system (RNN1) 283 

was a recurrent neural network system and it has a similar architecture to the Multi-284 

output GPs ( 1) ( 1:2) ( 1:2), ,k RPM k rudder kf   
  y u u  for each output. The second NN system 285 

(NN2) use a common NARX identification methodology and used the last four 286 

delayed outputs of the system and the last delayed input commands287 

( 1:4) ( 1:2) 2( 1:2), ,k k kf   
  1y u u  for each output. The neural network systems use a Log-288 

sigmoid transfer function, at different of GPs the training of NN was done by 289 

Levenberg-Marquardt backpropagation. Both neural network systems were trained, 290 

validated, and tested with the same data used for the multi-output GPs. The 291 

complete implementation code can be found at the GitHub Repository (FOOTNOTE 292 

1). 293 
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Table 1 Particulars of Container Ship 294 

Parameter Magnitude 

Length overall 175 m 

Breadth 25.4 m 

Max. Rudder Angle 10 deg. 

Max. shaft velocity 160 Rpm 

Displacement Volume  21222 m
3
 

Rudder Area  33.0376 m
2
 

Propeller diameter 6.533 m 

 295 

Fig. 4 Here 296 

Fig. 5 Here 297 

Training and validation 298 

The software written by Alvarez and Lawrence (2014) was softly modified to accept 299 

the multidimensional input vectors and a script was written to implement the NARX 300 

structure. The convolution of two square exponential Gaussian processes and a 301 

white noise was chosen as kernel. The inputs of the GPs were defined as four inputs 302 

of dimension five of the form: 303 

  1 ( 1:2) ( 1:2), ,

k

k

k RPM k rudder k

k

k

u

v
f

r

p

  

 
 
  
 
 
 

y u u  (14) 304 

where  1ky  is the first regressor of the output vector  , , ,k k k ku v r p . 305 

The selection of the structure of regressors was determined via the examination of 306 

the mathematical model. Each output is affected by the past states of output and 307 

rudder force NF  produced by the interaction of the rudder angle and the propeller 308 

RPM as both signals are required for the calculation of NF . Under this assumption 309 

different structures were tested to verify the responsiveness to each regressor. The 310 

test showed that the container ship system is more responsive to regressors from 311 

the rudder angle and the propeller RPM. 312 
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The captured output vector was the derivative of surge speed, the speed in sway 313 

and the angular speeds of yaw and roll,  , , ,u v r p . As can be seen in eq.(1) and 314 

eq.(2) the surge speed is not highly couple to the other system outputs, in our 315 

simulation capturing the surge speed and posterior simulation was not converging to 316 

the real output, in contrast the surge speed derivative shows coupling with other 317 

system outputs. The input signals and outputs were normalized between -1 and 1 to 318 

give all the inputs and outputs the same weight in the learning process.  319 

For the training, the minimization of the negative logarithmical likelihood was used 320 

along with the scaled conjugate gradient with multiple start points to insure 321 

convergence. Fig. 6  shows the results of GPs training compared to the real system 322 

signals, and the error plots between the predicted and real systems. In all the graphs, 323 

a confidence band 2  is plotted. The error for the surge derivative is less than 0.02 324 

over the training data. 325 

Fig. 6a Here 326 

Fig. 6b Here 327 

Fig. 6c Here 328 

Fig. 6d Here 329 

The validation data consisted of the real output from the training data with the 330 

system delay  ( 1)k   in vector form with the delayed commanded inputs. The 331 

segments of results from the validation with the second set of data are depicted in 332 

Fig. 7, the predicted output and confidence of 2  band is portrayed in comparison to 333 

the original system. The low validation errors show a good system prediction for the 334 

sway speed and yaw speed. It can be notice that the simulation precision is lose by 335 

how far from the training data the step is. The variance in our validation results 336 

increase as the data used for validation drift away from the trained operational region. 337 
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This was done with the objective to test the capability of GPs to predict outside the 338 

trained operational region. 339 

Fig. 7a Here 340 

Fig. 7b Here 341 

Fig. 7c Here 342 

Fig. 7d Here 343 

 344 

Simulation 345 

A third step was implemented in the way of a naive simulation. Methods of control 346 

with non-parametric models require a number of step forward of prediction to be able 347 

to control a system. With the objective of testing the ability to predict a system from 348 

past data, a naive simulation was setup. At each step the output from the simulation 349 

is feedback to the simulation as the past input ( 1)iy k  , the initial position and control 350 

signal of rudder and forward speed where used, the naive simulation covers 351 

training(0-700s) and validation data(701-1400s) acquired from the original simulation. 352 

Table 2 shows the root mean square error (RMSE), the predicted residual error sum 353 

of squares (PRESS) measurements for the simulation stage over the training and 354 

validation data, and the training time and step simulation time for each of the 355 

methodologies. The RMSE and PRESS value for the proposed GPs are smaller than 356 

the other systems. As evident in Fig. 8(a-c) NNARX system with the same 357 

architecture (marked as NarxNN) and data as in the multi output GPs has limitations 358 

in the capability to predict the system behaviour beyond the training range in all DoF. 359 

The more complex RNN system (RNN1) produces relatively good results, except in 360 

predicting the surge. This is evident Fig. 8 (a) where RNN1 results in large deviations 361 
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from the original system, especially after 1000s.The yaw output in Fig. 8 (c) shows a 362 

higher variance as results of higher association to the other outputs of the system 363 

and similitude to other training data this is because of normalization of the outputs in 364 

the training data. The difference in capability of prediction of the system is related to 365 

their internal functions and how they relate the training data. In comparison to NNRX 366 

and RNN, the multi-output GPs show similar performance than RNN outside the 367 

training horizon in all the DoF. This is evident in all the results shown in Fig. 8 with 368 

the close match to the system from the simulation, it can be established that the 369 

Gaussian model can be used for applications as control and failure detection as it 370 

can predict future system states with the added value of a confidence measure.  371 

Table 2 Summary prediction quality measurements 372 

 GPs NarxNN RNN1 

RMSE 0.0091 0.0092 0.044 
PRESS 0.2327 5.47 0.2382 
Training time(s) 779 245 125 
Step simulation time 0.0625 0.032 0.027 

 373 

Fig. 8a Here 374 

Fig. 8b Here 375 

Fig. 8c Here 376 

Fig. 8d Here 377 

Conclusion 378 

The basic methodology for the use of multiple-output Gaussian distribution for the 379 

identification of ships dynamical models is presented in this paper. The methodology 380 

has been validated with the data obtained from a coupled dynamical system of a 381 

container ship. With the proposed Gaussian model, the large number of system 382 

parameters found in a typical ship model can be reduced to a smaller number of 383 

hyperparameters. A standard validation process of machine learning and prediction 384 
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over the complete data set of training and validation were executed to establish the 385 

model quality and robustness of the algorithm. The prediction of the full set of data 386 

based in a start value and feedback from the last prediction step show low error. As 387 

the results indicate, multi-output GPs has the ability to model complex dynamic 388 

system having highly coupled outputs and provide a measure of the confidence 389 

represented by the variance.  390 

The use of other methods such as sparse multi-output GPs and the use of more 391 

powerful prediction techniques as Taylor series or Montecarlo method can take 392 

advantage of the variance to increase the horizon of cover manoeuvres and the 393 

prediction accuracy. Although the results obtained look encouraging, conclusion 394 

about the practical value of the method can only be obtained by comparison with 395 

other GPs methods and validation with real data from a ship or other oceanic vehicle.  396 
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Figures Caption 467 

Fig. 1 Definition of Body fixed coordinated system 468 

Fig. 2 NARX for single input, single output system.  469 

Fig. 3 NARX structure for dynamic SI of nonlinear container ships. 1u is the measure 470 

RPM and 2u  is the rudder angle at time . k .. 471 

Fig. 5 Shaft speed [rpm] and rudder angle signals for simulation of Ship 472 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

21 

 

Fig. 6 Prediction from Multioutput-GPs obtained model with training data (0-700 473 

seconds) compared to mathematical model, a) controlled surge acceleration, b) 474 

induced sway speed, c) controlled yaw speed, and d) induced roll speed 475 

Fig. 7 Prediction from Multioutput-GPs obtained model with validation data (700-476 

1400 seconds) compared to mathematical model, a) controlled surge acceleration, b) 477 

induced sway speed, c) controlled yaw speed, and d) induced roll speed 478 

Fig. 8 Prediction from Multi-output GPs by algorithm of Naive Simulation with full 479 

data from input signals compared to mathematical model, a) controlled surge 480 

acceleration, b) induced sway speed, c) controlled yaw speed, and d) induced roll 481 

speed 482 

Footnotes: 483 

Footnote 1: https://github.com/ArizaWilmerUTAS/Multi-Output-GPs-Identification-484 

SHIP 485 
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Abstract 1 

A novel application of non-parametric system identification algorithm for a surface 2 

ship has been employ on this study with the aim of modelling ships dynamics with 3 

low quantity of data. The algorithm is based on multi-output Gaussian processes and 4 

its ability to model the dynamic system of a ship without losing the relationships 5 

between coupled outputs is explored. Data obtained from the simulation of a 6 

parametric model of a container ship is used for the training and validation of the 7 

multi-output Gaussian processes. The required methodology and metric to 8 

implement Gaussian processes for a 4 degrees of freedom (DoF) ship is also 9 

presented in this paper. Results show that multi-output Gaussian processes can be 10 

accurately applied for non-parametric dynamic system identification in ships with 11 

highly coupled DoF.  12 
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Gaussian processes; Non-Parametric Identification; Oceanic Vehicles 15 

REVISED Manuscript MARKED
Click here to view linked References

http://ees.elsevier.com/oe/viewRCResults.aspx?pdf=1&docID=13003&rev=5&fileID=520346&msid={95D29903-E26B-43B2-A14C-D5F836793B9E}


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

2 

 

 16 
 17 

Introduction 18 

Dynamic modelling of oceanic vehicles including surface ships, semisubmersibles/ 19 

submersible platforms, and unmanned underwater vehicles is an active research 20 

field due to the application importance of these vessels such as goods transport, oil 21 

and gas exploration (Olsgard and Gray, 1995), underwater survey, and fishery. The 22 

common approach to modelling such vehicles is the use of Newtonian-Lagrangian 23 

mathematical models which are usually predefined. However, the presence of 24 

unaccounted dynamics caused by parametric and non-parametric uncertainties in a 25 

predefined model can increase the error between the predicted output and the real 26 

output. The cause of these uncertainties is commonly attributed to ocean currents, 27 

waves, wind, and hydrodynamic interaction with nearby structures. Since oceanic 28 

vehicles operate in dynamically changing environments performance of traditional 29 

controllers such as PID, LQR, and backstepping controllers (Fossen, 2011; 30 

Pettersen and Nijmeijer, 2001) degrade over time of operation as they require an 31 

initial offline design, calibration and are directly dependent on the predefined system 32 

parameters. An optional approach to predefined mathematical modelling is the use 33 

of non-parametric system identification (SI) methods. In this context, the application 34 

of modern machine learning algorithms that are capable of producing evolutionary 35 

adaptability to the environment has been identified as a promising approach for SI  36 

(Ljung, 1999). The present study focuses on its application for the identification of 37 

surface ship dynamics. 38 

There are multiple mathematical models for the representation of ships dynamics. 39 

Some models are 3 DoF models where the surge, sway and yaw are represented  by  40 

linear and nonlinear equations (Abkowitz, 1964; Norrbin, 1971). Other more 41 
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advanced models such as (Son and Nomoto, 1982) used a 4 DoF nonlinear model 42 

for ships including the rolling effect. The dynamic modelling of ship is a prerequisite 43 

for the design of its autopilot, navigation, steering control, and damage identification 44 

systems. The exactitude of the model can lead to the reduction of fuel consumption 45 

(Källström et al., 1979) by the correct tuning of an autopilot, better vehicle stability, 46 

and less stress over the vehicle structure (Fossen, 1994) and the possibility of 47 

advanced algorithms such as automatic ship berthing (Ahmed and Hasegawa, 2013).  48 

Dynamic mathematical models are usually obtained by the application of Newtonian 49 

and Lagrangian mechanics, which lead to a complex system of coupled equations 50 

defined by a series of parameters. The parameters are the representation of added 51 

masses, hydrodynamics damping constants, and constants related directly with 52 

control forces such as propellers and rudders. Over the years, multiple methods 53 

have been developed to determine the hydrodynamic parameters of ships, e.g. 54 

empirical formulas, captive model test, computational fluid dynamics (CFD) 55 

calculation and parameter estimation based in SI. The most recognized and 56 

accepted method is captive model test with planar motion mechanics (Bishop and 57 

Parkinson, 1970). This method requires the use of sophisticate facilities such as 58 

towing tanks, rotating arms and planar motion mechanism to produce the required 59 

ship manoeuvres that allow the parameters to be identified. These manoeuvres can 60 

also be replicated virtually via CFD which can be a more affordable option (Stern et 61 

al., 2011). However, as the accuracy of CFD is highly dependent on the numerical 62 

settings and requires validation, physical experiments are still preferred over 63 

computational solutions. 64 

Parameter estimation based in SI methodologies offer a practical way to identify the 65 

hydrodynamic parameters of a ship model or a complete model. The data source for 66 
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SI can be free-running model tests or full-scales trials of existing ships. SI can be 67 

categorized in two groups, parametric and non-parametric identification. Parametric 68 

identification is based on the use of numerical methods to obtain the hydrodynamics 69 

parameters of proposed mathematical models with unknown parameters. 70 

Alternatively, non-parametric identification is based on the use of single or multiple 71 

kernel functions to create a non-physics related mathematical model which is tuned 72 

by a learning procedure that uses data obtained from the original system. 73 

Methods like Extended Kalman Filter (Åström and Källström, 1976; Brinati and Neto, 74 

1975), Unscented Kalman Filter(Zhou and Blanke, 1987), Estimation-Before-75 

Modelling  (Yoon and Rhee, 2003), and Backstepping (Casado et al., 2007) are the 76 

most popular numerical methods for coefficient estimation. However, these methods 77 

can suffer from linearization and convergence errors. Therefore, more advanced SI 78 

methods from  machine learning, e.g. neural networks (Haddara and Wang, 1999), 79 

and support vector machines (Luo and Zou, 2009) had found their space in 80 

parametric ship SI with the use of specific structures (NN) or specific selection of 81 

kernel functions(SVM), these specific structure allow the techniques to calculate 82 

some coefficients.  The principal disadvantage of parametric system identification is 83 

the need of controlled test with low external perturbations and specific procedures to 84 

reduce the interference and nonlinearities between degrees of freedom. 85 

In contrast to the parametric SI, non-parametric SI has the capacity to learn a 86 

complete model without prior knowledge of the system structure. This learning 87 

procedure leads to a simpler model with fewer parameters. Non-parametric SI brings 88 

the possibility of incorporating online learning giving the ability to improve the 89 

adaptability of the model. The capability to adapt to change is very important for 90 

application of evolutionary control techniques and damage identification. The most 91 
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recognized method of non-parametric identification for ships is recursive neural 92 

network (RNN). RNN differs over standard neural networks in the aspect that the 93 

structure of the network is organized hierarchically applying the same set of weights 94 

recursively over the structure, to produce a scalar prediction on it. (Irsoy and Cardie, 95 

2014). This method has been used with success to identify complex ship designs like 96 

catamarans with the final purpose of offline simulation of ship behaviours (Moreira 97 

and Soares, 2012). Wang et al. (2015) presented a modified version of SVMs to 98 

capture the full coupled system in four degrees of a ship following a similar 99 

methodology to RNNs. The difference between the SVM and the neural network 100 

methods is that the SMV is less prone to overfitting, thus can reach a global optimum 101 

and require less memory. Wang’s proposed a white, grey and black box system, the 102 

black box is the result of the mathematical analysis of the grey black box that leads 103 

them to recognize an applicable kernel. The drawback of neural networks and SVM 104 

machine learning methods is the lack of confident measures, and thus, an error in 105 

the prediction cannot be corrected. 106 

Depending on the budget and availability of infrastructure and time, the parametric or 107 

non-parametric model characterization can be chosen for a given system. In the 108 

case of new designs with low complexity, the parametric identification can be carried 109 

out without inconvenience as scale model can be produced and computational CAD 110 

files are available. However, for old oceanic vehicles that require fitting of new 111 

technology, vehicles that require operation in evolving environments, and vehicles 112 

with complex designs the use of non-parametric methods can be more practical. 113 

Nevertheless, not all possible methods of machine learning had found their way to 114 

dynamic SI of ships. If a neural network is used to generate a non-parametric model 115 

with the inclusion of the variance, the number of hidden units ideally has to be taken 116 
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to infinity, in which case it turns that a neural network with infinite hidden layers is 117 

equivalent to another machine learning method known as Gaussian Processes (Neal, 118 

2012). GPs is a well-established method in fields such as geostatistics, where the 119 

GPs method is renamed ‘kriging’ (Kbiob, 1951). In GPs based SI the model is built 120 

over input-output data and a covariance function is used to characterise the ship 121 

behaviour. The advantage of GPs is their ability to work with small quantities of data 122 

and noisy data, and the predicted results consist of a mean and variance value. The 123 

variance of a future prediction can be used for other purposes as well such as 124 

control and model based fault detection since it contains a measure of confidence. 125 

(Kocijan et al., 2005) and (Ažman and Kocijan, 2011) described the application of 126 

GPs for the identification of nonlinear dynamics system and provided examples over 127 

simple input and single outputs systems. The standard technique of modelling multi-128 

output systems as a combination of single output GPs has the disadvantage of not 129 

modelling the coupling relationships among the outputs of a system as a ship. A ship 130 

is a system with highly related outputs where the absence of the relation between 131 

outputs can carry to error in prediction. 132 

In the present study, non-parametric dynamic SI for ships is proposed with the use of 133 

multi-output GPs, NARX structure and gradient descent optimization. The output 134 

from the algorithm will be a predictive value and a measure of confidence of the 135 

predictive value. Multi-output GPs is a special case of GPs with the capability to 136 

model the nonlinear behaviour and coupling among outputs of a multi-output system. 137 

Ships are ideal candidates for the use of multi-output GPs owing to their dynamic 138 

system with highly coupled outputs, i.e. the ship’s motion in 4 DoF. The present 139 

implementation was made over data obtained from a non-conventional zig-zag test 140 

with variable frequency of a 4 DoF simulated container ship. Multiple sample times 141 
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and data length were tested to find the best metric that can describe a ship. In 142 

addition to the algorithm development, another immediate objective of the study is 143 

the demonstration of the viability of GPs in modelling ships. 144 

Nonlinear Dynamic Ship Model 145 

(Son and Nomoto, 1982) proposed a 4 DoF (surge, sway, yaw and pitch) 146 

mathematical nonlinear model for ships including the contribution from 147 

hydrodynamics added masses. In respect to a body fixed frame (Fig. 1) the 148 

mathematical model can be expressed as: 149 

 

   

   

 

 

x y

y x y y y y

x x y y x x T

z z y y G

m m u m m vr X

m m v m m ur m r m l p Y

I J p m l v m l ur K WGM

I J r m v N x Y







   

     

    

   

 (1) 150 

Fig. 1 here 151 

where the added mass in x-axis and y-axis are represented by xm , ym  and the added 152 

moment of inertia about x-axis and y-axis are represented by xJ and yJ . The centre 153 

of added mass is denoted by the vector  , ,x y z   , while the added mass centre for 154 

xm  and ym  is denoted by the z-coordinates of xl  and yl . The vector [ , , , ]X Y K N155 

expresses the forces over the vehicle and can be defined as: 156 
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 (2) 157 

where: 158 

( )X u   = function dependent on the velocity 
u u

X u u  159 

    = rudder angle 160 

NF   =rudder force 161 

,...vr vv rX X N   =model parameters 162 

As can be seen, the mathematical model is defined by more than 50 parameters 163 

including parameters from the actuation surfaces. An example of the hydrodynamic 164 

parameters and its application can be found in Fossen (1994). 165 

Dynamic Identification with Multi-output GPs 166 
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The design of the algorithm for multi-output SI with GPs is based on the previous 167 

work of Kocijan (2016). The dynamic identification problem can be defined as the 168 

search for relation between a vector formed by delayed samples from the inputs ( )u k  169 

and outputs ( 1)y k  and the future output values. The relationship can be expressed 170 

by the equation: 171 

  ( 1) ( ), ( )k f k v k  y z Θ  (3) 172 

where  ( ),f kz Θ  is a function that maps the sample data vector ( )kz  that contains 173 

the vector [ ( 1), ( 1)]k k u y  to the output space based on the hyperparameters Θ . 174 

( )kv  accounts for the noise and error in the prediction of output ( )ky . In the case of 175 

dynamic SI, the discrete time variable ( )k is presented as an embedded element in 176 

the regression process as it is accounted in the delayed samples.  177 

A requirement for dynamic SI of nonlinear systems is the selection of a nonlinear 178 

model structure as nonlinear autoregressive model with exogenous input (NARX), 179 

nonlinear autoregressive (NAR), nonlinear output-error (NOE), nonlinear finite-180 

impulse response (NFIR), etc. From all the possible structures, the simpler and most 181 

popular structure to implement is NARX as its predictions are based on previous 182 

measurements of the input signals and output signals and require a more simplified 183 

optimization scheme. In the case of a ship, NARX is the most practical configuration 184 

since the measuring points are restricted to the available sensors. Fig. 2 shows the 185 

NARX configuration for Dynamic GPs for a simple case of one-input one-output 186 

system.  187 

Fig. 2 here 188 
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In the case of a single-input single-output  structure NARX for a GPs, the inputs 189 

signals are not considered separately as they are grouped into a single vector of 190 

dimension n  that derives to an output of single dimension. In the case of a four DoF 191 

ship, the system can be defined a function f  who depends of a vector formed by the 192 

respective regressors of each output and the regressors of the command signals of 193 

propeller and rudder such as. 194 

 ( 1: ) ( 1: ) ( 1: ), ,k n RPM k n rudder k nf   y y u u  195 

If a Newton-Lagrange mathematical model had been used, our system will have two-196 

input signals, four-output system signals. (Fig. 3) presents the graphical 197 

representation of the NARX architecture used with multi-output GPs with four vector 198 

of dimension R3.  199 

Fig. 3 Here 200 

Multi-output GPs 201 

The previous sections outline Eq.(1) and Eq.(2) which show the level of coupling 202 

between the Newton-Lagrange equations of a ship. The nonlinearity and coupling 203 

between outputs are better represented by a multi-output GPs. multi-output GPs 204 

presented here is based on the work of Alvarez and Lawrence (2009). multi-output 205 

GPs are founded in the regression of data by the convolution of white noise process 206 

with a smoothing function(Higdon, 2002). This was later introduced by Boyle and 207 

Frean (2004) to the machine learning community by assuming multiple latent 208 

process defined over a space
q . The dependency between two outputs is modelled 209 

with a common latent process and their independency with a latent function who 210 

does not interact with other outputs. If a set of functions   
1

Q

q q
f


x  is considered, 211 
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where Q  is the Output Dimension for a N  number of data points, where each 212 

function is expressed as the convolution between a smoothing kernel   
1

Q

q q
k


x and a 213 

latent function  zu  , 214 

    ( )q qf x k u d



  x - z z z  (4) 215 

This equation can be generalized for more than one latent function   
1

R

r r
u


x  and 216 

include a corruption function (noise) independent to each of the outputs  qw x , to 217 

obtain 218 

 

     

       
1

q q q

R

q qr r q

r

f w

k u d w





 

  

y x x x

y x x z z z x
 (5) 219 

The covariance between two different functions  qy x  and  'sy x  is: 220 

 
   

 

cov , ( ) cov , ( )

cov , ( )

q s q s

q s qs

f f

w w 

       

   

y x y x x x

x x
 (6) 221 

where 222 

 
 

 

1 1

cov , ( ) ( )

( )cov , ( )

R R

q s qr

r p

sp r p

f f k

k u u d d




 





    

      





x x x z

x z z z z z

 (7) 223 

If it is assumed that  ru z  is an independent white noise   2

,cov , ( )r p ur rp z zu u    
   z z , 224 

Equation (7) will become: 225 

   2

1

cov , ( ) ( ) ( )
R

q s ur qr sp

r

f f k k d





         x x x z x z z  (8) 226 
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The mean y  with variance yσ of a predictive distribution at the point  x  given the 227 

hyperparameters Θ  can be defined as 228 

 
1( ) ( )k k  y x ,x x,x y  (9) 229 

and variance 230 

 2 1( , ) ( , ) ( , ) ( , )T

y k k k k


    σ x x x x x x x x  (10) 231 

A complete explanation over the convolution process can be found in (Alvarez and 232 

Lawrence, 2009) and a complete implementation in Alvarez and Lawrence (2014). 233 

Learning Hyperparameters 234 

There are two principal methods for learning the hyperparameters  , Bayesian 235 

model interference and marginal likelihood. Bayesian inference is based on the 236 

assumption that a prior data of the unknown function to be mapped is known. A 237 

posterior distribution over the function is refined by incorporation of observations. 238 

The marginal likelihood method is based on the aspect that some hyperparameters 239 

are going to be more noticeable. Over this base the posterior distribution of 240 

hyperparameters can be described with a unimodal narrow Gaussian distribution. 241 

The learning of GPs hyperparameters   is commonly done by the maximization of 242 

the marginal likelihood. The marginal likelihood can be expressed as: 243 

  
 

11

2
1

2 2

1
,

2

T

N
p e






y K y

y x Θ

K

 (11) 244 

where K is the covariance matrix, N  is the number of input learning data points and 245 

y is a vector of learning output data of the form  1 2; ; Ny y y . To reduce the 246 
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calculation complexity, it is preferred to use the logarithmical marginal likelihood that 247 

is obtained by the application of logarithmic properties to (11). 248 

      11 1
log log 2

2 2 2

T N
   Θ K y K y  (12) 249 

To find a solution for the maximization of log-likelihood multiples methods of 250 

optimization can be applied, like, particle swarm optimization, genetic algorithms, or 251 

gradient descent. For deterministic optimization methods, the computation of 252 

likelihood partial derivatives with respect to each hyperparameter is require. From 253 

(Williams and Rasmussen, 2006, p. 114)  log-likelihood derivatives for each 254 

hyperparameter can be calculated by: 255 

 
 

1 1 11 1

2 2

T

i i i

trace      
      

Θ K K
K y K K

Θ Θ Θ
 (13) 256 

Equation (12) gives us the learning process computational complexity, for each cycle 257 

the inverse of the covariance matrix of K  has to be calculated. This calculation 258 

carries a complexity  
3

O NM  where N  is the number of data points and M  is the 259 

number of outputs of the system. After learning, the complexity of predicting the 260 

value ( 1)k y  is  O NM and to predict the mean value ( 1)k σ  is  
2

O NM .The 261 

higher training complexity  
3

O NM is the major disadvantage of using multi-output 262 

GPs. If the number of data increases the complexity of learning the hyperparameters 263 

increases in a cubic form. Methods such as genetic algorithms, differential equations, 264 

and particle swarm optimization can be applied to avoid the calculation of the 265 

marginal likelihood partial derivatives and thereby reduce the computational time. 266 

Experiment Setup and Results 267 

Experiment setup 268 
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The implementation of Son and Nomoto (1982) mathematical model of a container 269 

ship programmed in the Marine Systems Simulator (Fossen and Perez, 2004) was 270 

used to create the required databases. The container ship particulars can be found 271 

in Table 1. A simulation setup was developed in MATLAB/Simulink to emulate the 272 

behaviour of a container ship (Fig. 4). 1400 seconds were simulated where the 273 

inputs signals are constant shaft speed in RPM and a cosine signal with frequency 274 

change for rudder angle in radians (Fig. 5). The objective of not using a standard test 275 

as zigzag or turning circle is to test the ability of GPs for online learning. A sample 276 

data point was captured for each three steps over the input and outputs. A total of 277 

1868 points were captured over four outputs and 934 point over two input signals. 278 

The data set was divided in two sets of points, the first set of points is used for the 279 

model learning, and the second set of points is used for learning validation. The 280 

Validation data is purposely chosen to be beyond the range of training data to test 281 

the ability of the method to predict beyond the training range. Two neural network 282 

nonlinear system identification models were also prepared. The first system (RNN1) 283 

was a recurrent neural network system and it has a similar architecture to the Multi-284 

output GPs ( 1) ( 1:2) ( 1:2), ,k RPM k rudder kf   
  y u u  for each output. The second NN system 285 

(NN2) use a common NARX identification methodology and used the last four 286 

delayed outputs of the system and the last delayed input commands287 

( 1:4) ( 1:2) 2( 1:2), ,k k kf   
  1y u u  for each output. The neural network systems use a Log-288 

sigmoid transfer function, at different of GPs the training of NN was done by 289 

Levenberg-Marquardt backpropagation. Both neural network systems were trained, 290 

validated, and tested with the same data used for the multi-output GPs. The 291 

complete implementation code can be found at the GitHub Repository (FOOTNOTE 292 

1). 293 
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Table 1 Particulars of Container Ship 294 

Parameter Magnitude 

Length overall 175 m 

Breadth 25.4 m 

Max. Rudder Angle 10 deg. 

Max. shaft velocity 160 Rpm 

Displacement Volume  21222 m
3
 

Rudder Area  33.0376 m
2
 

Propeller diameter 6.533 m 

 295 

Fig. 4 Here 296 

Fig. 5 Here 297 

Training and validation 298 

The software written by Alvarez and Lawrence (2014) was softly modified to accept 299 

the multidimensional input vectors and a script was written to implement the NARX 300 

structure. The convolution of two square exponential Gaussian processes and a 301 

white noise was chosen as kernel. The inputs of the GPs were defined as four inputs 302 

of dimension five of the form: 303 

  1 ( 1:2) ( 1:2), ,

k

k

k RPM k rudder k

k

k

u

v
f

r

p

  

 
 
  
 
 
 

y u u  (14) 304 

where  1ky  is the first regressor of the output vector  , , ,k k k ku v r p . 305 

The selection of the structure of regressors was determined via the examination of 306 

the mathematical model. Each output is affected by the past states of output and 307 

rudder force NF  produced by the interaction of the rudder angle and the propeller 308 

RPM as both signals are required for the calculation of NF . Under this assumption 309 

different structures were tested to verify the responsiveness to each regressor. The 310 

test showed that the container ship system is more responsive to regressors from 311 

the rudder angle and the propeller RPM. 312 
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The captured output vector was the derivative of surge speed, the speed in sway 313 

and the angular speeds of yaw and roll,  , , ,u v r p . As can be seen in eq.(1) and 314 

eq.(2) the surge speed is not highly couple to the other system outputs, in our 315 

simulation capturing the surge speed and posterior simulation was not converging to 316 

the real output, in contrast the surge speed derivative shows coupling with other 317 

system outputs. The input signals and outputs were normalized between -1 and 1 to 318 

give all the inputs and outputs the same weight in the learning process.  319 

For the training, the minimization of the negative logarithmical likelihood was used 320 

along with the scaled conjugate gradient with multiple start points to insure 321 

convergence. Fig. 6  shows the results of GPs training compared to the real system 322 

signals, and the error plots between the predicted and real systems. In all the graphs, 323 

a confidence band 2  is plotted. The error for the surge derivative is less than 0.02 324 

over the training data. 325 

Fig. 6a Here 326 

Fig. 6b Here 327 

Fig. 6c Here 328 

Fig. 6d Here 329 

The validation data consisted of the real output from the training data with the 330 

system delay  ( 1)k   in vector form with the delayed commanded inputs. The 331 

segments of results from the validation with the second set of data are depicted in 332 

Fig. 7, the predicted output and confidence of 2  band is portrayed in comparison to 333 

the original system. The low validation errors show a good system prediction for the 334 

sway speed and yaw speed. It can be notice that the simulation precision is lose by 335 

how far from the training data the step is. The variance in our validation results 336 

increase as the data used for validation drift away from the trained operational region. 337 
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This was done with the objective to test the capability of GPs to predict outside the 338 

trained operational region. 339 

Fig. 7a Here 340 

Fig. 7b Here 341 

Fig. 7c Here 342 

Fig. 7d Here 343 

 344 

Simulation 345 

A third step was implemented in the way of a naive simulation. Methods of control 346 

with non-parametric models require a number of step forward of prediction to be able 347 

to control a system. With the objective of testing the ability to predict a system from 348 

past data, a naive simulation was setup. At each step the output from the simulation 349 

is feedback to the simulation as the past input ( 1)iy k  , the initial position and control 350 

signal of rudder and forward speed where used, the naive simulation covers 351 

training(0-700s) and validation data(701-1400s) acquired from the original simulation. 352 

Table 2 shows the root mean square error (RMSE), the predicted residual error sum 353 

of squares (PRESS) measurements for the simulation stage over the training and 354 

validation data, and the training time and step simulation time for each of the 355 

methodologies. The RMSE and PRESS value for the proposed GPs are smaller than 356 

the other systems. As evident in Fig. 8(a-c) NNARX system with the same 357 

architecture (marked as NarxNN) and data as in the multi output GPs has limitations 358 

in the capability to predict the system behaviour beyond the training range in all DoF. 359 

The more complex RNN system (RNN1) produces relatively good results, except in 360 

predicting the surge. This is evident Fig. 8 (a) where RNN1 results in large deviations 361 
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from the original system, especially after 1000s.The yaw output in Fig. 8 (c) shows a 362 

higher variance as results of higher association to the other outputs of the system 363 

and similitude to other training data this is because of normalization of the outputs in 364 

the training data. The difference in capability of prediction of the system is related to 365 

their internal functions and how they relate the training data. In comparison to NNRX 366 

and RNN, the multi-output GPs show similar performance than RNN outside the 367 

training horizon in all the DoF. This is evident in all the results shown in Fig. 8 with 368 

the close match to the system from the simulation, it can be established that the 369 

Gaussian model can be used for applications as control and failure detection as it 370 

can predict future system states with the added value of a confidence measure.  371 

Table 2 Summary prediction quality measurements 372 

 GPs NarxNN RNN1 

RMSE 0.0091 0.0092 0.044 
PRESS 0.2327 5.47 0.2382 
Training time(s) 779 245 125 
Step simulation time 0.0625 0.032 0.027 

 373 

Fig. 8a Here 374 

Fig. 8b Here 375 

Fig. 8c Here 376 

Fig. 8d Here 377 

Conclusion 378 

The basic methodology for the use of multiple-output Gaussian distribution for the 379 

identification of ships dynamical models is presented in this paper. The methodology 380 

has been validated with the data obtained from a coupled dynamical system of a 381 

container ship. With the proposed Gaussian model, the large number of system 382 

parameters found in a typical ship model can be reduced to a smaller number of 383 

hyperparameters. A standard validation process of machine learning and prediction 384 
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over the complete data set of training and validation were executed to establish the 385 

model quality and robustness of the algorithm. The prediction of the full set of data 386 

based in a start value and feedback from the last prediction step show low error. As 387 

the results indicate, multi-output GPs has the ability to model complex dynamic 388 

system having highly coupled outputs and provide a measure of the confidence 389 

represented by the variance.  390 

The use of other methods such as sparse multi-output GPs and the use of more 391 

powerful prediction techniques as Taylor series or Montecarlo method can take 392 

advantage of the variance to increase the horizon of cover manoeuvres and the 393 

prediction accuracy. Although the results obtained look encouraging, conclusion 394 

about the practical value of the method can only be obtained by comparison with 395 

other GPs methods and validation with real data from a ship or other oceanic vehicle.  396 
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Figures Caption 467 

Fig. 1 Definition of Body fixed coordinated system 468 

Fig. 2 NARX for single input, single output system.  469 

Fig. 3 NARX structure for dynamic SI of nonlinear container ships. 1u is the measure 470 

RPM and 2u  is the rudder angle at time . k .. 471 

Fig. 5 Shaft speed [rpm] and rudder angle signals for simulation of Ship 472 
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Fig. 6 Prediction from Multioutput-GPs obtained model with training data (0-700 473 

seconds) compared to mathematical model, a) controlled surge acceleration, b) 474 

induced sway speed, c) controlled yaw speed, and d) induced roll speed 475 

Fig. 7 Prediction from Multioutput-GPs obtained model with validation data (700-476 

1400 seconds) compared to mathematical model, a) controlled surge acceleration, b) 477 

induced sway speed, c) controlled yaw speed, and d) induced roll speed 478 

Fig. 8 Prediction from Multi-output GPs by algorithm of Naive Simulation with full 479 

data from input signals compared to mathematical model, a) controlled surge 480 

acceleration, b) induced sway speed, c) controlled yaw speed, and d) induced roll 481 

speed 482 

Footnotes: 483 

Footnote 1: https://github.com/ArizaWilmerUTAS/Multi-Output-GPs-Identification-484 
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