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We review the evolutionary ecology and genetics of telomeres in taxa that
cannot elevate their body temperature to a preferred level through metab-
olism but do so by basking or seeking out a warm environment. This
group of organisms contains all living things on earth, apart from birds
and mammals. One reason for our interest in this synthetic group is the argu-
ment that high, stable body temperature increases the risk of malignant
tumours if long, telomerase-restored telomeres make cells ‘live forever’. If
this holds true, ectotherms should have significantly lower cancer frequen-
cies. We discuss to what degree there is support for this ‘anti-cancer’
hypothesis in the current literature. Importantly, we suggest that ectothermic
taxa, with variation in somatic telomerase expression across tissue and taxa,
may hold the key to understanding ongoing selection and evolution of telo-
merase dynamics in the wild. We further review endotherm-specific effects
of growth on telomeres, effects of autotomy (‘tail dropping’) on telomere
attrition, and costs of maintaining sexual displays measured in telomere
attrition. Finally, we cover plant ectotherm telomeres and life histories in a
separate ‘mini review’.

This article is part of the theme issue ‘Understanding diversity in
telomere dynamics’.

1. Introduction

In a lecture on ‘Endothermy versus Ectothermy’ at University of Washington
(2005), the distinguished physiologist and former ‘Evolution” Editor Prof. Ray
Huey divided the organismic world into two categories, birds and mammals
(endotherms), and ‘the rest!” (ectotherms). This paper is on telomeres and telomer-
ase biology of ‘the rest’ [1,2]. This breadth should constrain how much could be
said per taxon in a short review; however, there is a real dearth of research on
the evolutionary ecology, genetics and physiology of ectotherm telomeres.

The non-coding DNA telomere sequences that are shielded by a protein com-
plex are gradually lost with cellular age (and often chronological age) in many
organisms [3] but are partly restored by telomerase [4], the reverse transcriptase
coupled to an RNA template replacing the telomeric sequence (figure 1;
TTAGGG/CCCTAA in all vertebrates [6]). Rarely, homologous recombination
and copy switching also has a telomere lengthening effect (alternative lengthen-
ing of telomeres, ALT; [7]) but ultimately all loss of the telomere sequence at
replication cannot be compensated for. At a critical stage of telomere shortening,
the cell enters replicative senescence [6].

Most research on telomere length, its regulation by telomerase and telomer-
ase somatic expression (and repression) has been performed on endotherms
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Figure 1. Chromosomal locations of the (TTAGGG)n repeated sequences in male (a) and female (b) Lacerta agilis. The arrowhead indicates the hybridization signals
of the (TTAGGG)n sequence on the W chromosome. Scale bars represent 10 m. (c) Full karyotype of L. agilis with telomeres as in (a) and (b) (Micrographs from

Srikulnath et al. [5]). (Online version in colour.)

(mostly humans, e.g. reviews in [8-10] and references
therein). In endotherms, as opposed to ectotherms, telomer-
ase repression in somatic tissue, and telomere length
distributions, have been suggested to be an evolutionary
response to the risk of tumour development because of
endotherms’ higher metabolic rate and cellular replication.
However, incidence of cancer (and its detection frequency)
in nature remains poorly understood across organisms [11],
including endotherms potentially with the exception of
humans. It is clear, however, that cancer occurs throughout
vertebrate and invertebrate taxa, both in the wild and in
captivity ([12-16] but see [17] for potential exception
in long-lived decapods). Specifically, there are considerable
data from captive populations showing neoplasia in amphi-
bians [18] and reptiles [19,20], and captive reptiles have
been argued to have an incidence of neoplasia comparable
with that of mammals and birds [16,21]. In fact, a study by
Madsen et al. [20] demonstrates that reptiles in French zoo
parks even have significantly higher cancer frequency than
mammals. Similarly, cancer is widespread in fish, although
malignant neoplasms with or without metastasis are reported
‘less commonly than in mammals’ [15]. Indeed, some amphi-
bians (e.g. Xenopus) and fish (e.g. Danio/Bracydanio rerio,
zebrafish) are used as models in cancer research specifically
because they show high cancer frequency, regeneration,
effects of regenerative tissue on cancer growth (negative),
and because their tumours resemble human tumours both

histologically and at a genetic level of expression [15].
While plants have orthologous tumour suppressors and
oncogenes, mutations in these genes usually do not become
cancerous and cell walls prevent metastasis [22]. The subject
of cancer in ectotherms is clearly too large to cover in this
review, and the data are still relatively meagre. However,
we note that the risk of cancer has been claimed to be as
high for ectotherms as for endotherms, suggesting that the
postulated links between cancer, telomerase repression and
endothermy/ectothermy are less straightforward than per-
haps previously thought. In summary, ectotherms may
come to play a key role in explaining ongoing evolution of
telomerase repression in somatic tissue because—unlike
most endotherms—they are likely to have variation in
somatic telomerase expression, and associated telomere
dynamics, that can be linked to corresponding variation in
viability and fitness and be measured in real life.

How do we best understand the evolutionary ecology
of telomere dynamics and telomerase suppression in
ectotherms? Across Metazoa, there is wide variation in telo-
mere dynamics with links to, for example, endothermy,
ectothermy, regenerative ability of tissue and variation in tel-
omerase production across tissue and taxa [9]. Thus, there
appears to be an increasing acceptance and awareness that
there is no single, universal pattern of telomere erosion and
that our understanding has been restricted by studying pri-
marily laboratory mammal models and humans with little
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or no telomerase production in somatic tissue. Even within
taxonomic groups, such as ‘Reptiles’ (which admittedly is a
synthetic, polyphyletic group that lumps taxa of highly
diverse origin), telomere attrition patterns appear to be
diverse. Alligators (Crocodilia), for example, show a decline
in telomere length with age (closely related to birds; [23]),
whereas much more complex patterns seem to be found in
snakes and lizards [24,25], with increases and decreases of
telomere length in relation to different telomerase production
through life. Thus, in order to better understand ongoing
selection and evolution of telomeres and telomere-regulating
processes we need to incorporate work in the wild on non-
model organisms that lend themselves better to research
direct links between telomere traits and components of
viability and fitness (table 1; box 1).

An important aspect of many research projects in evol-
utionary biology is the estimation of coefficients of selection
acting on traits, which is the covariation between relative fit-
ness (most often measured as lifetime reproductive success,
LRS) and individual trait measures [77]. Selection coefficients
multiplied by the narrow-sense heritability formally depicts
the evolutionary response. In telomere biology, the effect of
reproduction as a component of selection has rarely been
quantified (most often focusing on survival but ignoring
reproductive output as part of the selection pressure). Thus,
research on telomere dynamics should involve selection esti-
mates taking reproduction into account, that is acting before
selection ‘goes blind’. Thus, we have little fundamental
understanding of ongoing evolutionary processes that dictate
telomere evolution in the wild. Insight into how variation in
telomere length and telomerase production in ectotherms
covary with significant drivers of life-history evolution and
lifespan would thus be of considerable interest. For example,
in many ectotherms there is no, or very little, reproductive
senescence in healthy animals and fecundity increases with
body size and age (e.g. [47,78]). However, when disease
occurs early in life, prior to or during reproduction, it affects
lifetime fitness and is a component of natural selection [79].
Thus, in some ectotherms at least, selection on disease oper-
ates over a greater proportion of an individual’s life than
occurs in many mammals and especially in humans. Links
between early- and late-life telomere length, their associa-
tion with growth and cancer risk, thus seem particularly
important in many ectotherms. Gerontological and epidemio-
logical arguments in the perspective of evolution of lifespan
merge together [80], since disease incidence increases with
age for many, but not all diseases.

One of the challenges in understanding telomere
dynamics remains assigning cause and effect, especially in
systems where an experimental approach is not possible.
In non-experimental research on telomeres, and their covaria-
tion with other genotypic and phenotypic traits, trait
categories can be assigned response or predictor variable
depending on researcher preference (or bias). For instance,
relatively longer telomeres (on the X axis) may be predicted
to causally result in relatively higher reproductive output
(e.g. clutch size). On the other hand, the argument can be
turned on its head and large clutch size (on the X axis) can
be argued to result in telomere attrition as a cost of repro-
duction. What is true is up to the interpreter and other
supporting data. Furthermore, researchers have had very
few means to manipulate telomeres per se. If telomeres were
eroded using reactive oxygen species (ROS; [81]), or rescued

from those using antioxidants [82], effects on other life- n

history parameters, or cell-cell signalling, are likely to
compromise the experimental outcomes and interpretations.
The use of telomerase knock-down mutants provides a
potentially powerful way to understand the role of telomer-
ase in telomere dynamics, ageing and disease processes in
both ectotherms and endotherms.

Here, we provide an integrative synthesis of telomere
dynamics in ectotherms. We focus on (a) life history and
telomeric covariation, (b) telomere links to personality, preda-
tion and proliferation, and (c) telomere length: selection and
heritability.

2. Life histories and telomeric covariation

Many ectotherms have served as excellent models of telomere
research, some concerning classic life-history questions, such
as ageing and the reproduction-somatic maintenance trade-
off. As individuals age and accumulate costs of living and
reproduction, telomeres are predicted to shorten concomi-
tantly. Growth in ectotherms is more plastic in response to
environmental drivers (especially temperature) than in
endotherms, providing the opportunity to tease out the
costs of growth and age effects on telomere attrition. Below
we detail the links between age, growth, reproduction and
telomere dynamics.

(a) Links to age and growth
Growth in ectotherms is the outcome of synergy between a
complex set of drivers, such as temperature and innate
capacity for growth set by acclimation processes, and the
accumulated damage from ageing ([83]; for instance,
growth may change differently with temperature due to
past selection in different thermal environments). For
example, a recent study by Simide ef al. [48] showed telomere
shortening with age in the Siberian sturgeon (Acispenser
baerii) using both longitudinal and cross-sectional sampling.
A study on garter snakes (Thamnophis elegans) verified similar
cross-sectional relationships between age and telomere length
([49]; figure 3). Other work has, however, shown no, or far
less, such age effects on telomere length ([41] for Atlantic
salmon, Salmo salar, [40] for sand lizards, Lacerta agilis).
Work on another reptile, the leatherback turtle (Dermochelys
coriacea), demonstrates that there is no difference in telomere
length between hatchling and old turtles, suggesting a high
telomerase activity early in life [42]. Hatakeyama et al. [50]
showed age-specific telomere shortening in the freshwater
teleost (Oryzias laticeps) despite both ubiquitous and lifelong
telomerase activity. In a later study on the same species,
however, the same group showed that telomerase activity
varied through life (lower activity early and late in life),
with corresponding shifts in telomere length [85].
Ectotherms also provide some of the most extreme
examples of lifespan and thus relationships with telomere
length, potentially becoming an interesting life-history com-
ponent. For example, in the longest-living non-colonial
animal in the world, the bivalve, Arctica islandica, there is
no relationship between telomere length and age (or telomer-
ase activity) despite ages in excess of 200 years [51]! In bristle
cone pines (Pinus longaeva), the longest-lived non-clonal
plants, telomere length is stable throughout its approximately
5000 year life ([65]; figure 2).
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Box 1. Telomere biology in plant ectotherms.

‘I shall publish in a month or two a book on the ‘Movement of Plants’. I will send you a copy, but I fear it is much too special
for anyone but a physiological botanist to care about. I have long thought that old men, like myself, ought to write only on
confirmed & easy subjects.’

Charles Darwin, Oct. 7, 1888

(unpublished letter to Ernst Krause)

This father and son volume by Charles and Francis Darwin [58] captures with characteristic and remarkable insight many of
the traits in plants we often see as uniquely ‘zoological’, such as ‘sleeping’, when plants get a thermoregulatory advantage
from drooping their leaves as opposed to keeping them horizontal at night. Not ‘sleeping” would expose them to the clear
night sky, Darwin speculated, and experimentally verified that ‘sleeping” resulted in a significant reduction in frost damage
(92% of sleepers survived, whereas only 37% of controls did; statistically verified difference by Huey et al. [59]).

“Ectothermic organisms’ also include plants, and it seems appropriate to first introduce them here in a separate section,
since this issue is primarily zoological. Plants have the widest range of lifespan of all eukaryotes (1 year in annuals to more
than 4000 years in single species, to more than 10000 years in some clonal species [60,61]). However, there is a dearth of
studies of the evolutionary ecology of plant telomeres. Plant longevity is principally determined by the indeterminate
growth of vegetative meristems [62]. The totipotency of meristems through the organisms’ life can, in some cases, ameliorate
the telomere shortening that is typical of cells that do not express telomerase [63]. The oldest known non-clonal organism is a
bristle cone pine (Pinus longaeva) at nearly 5000 years old (figure 2). Indeed, bristle cone pines do not exhibit declines in func-
tion that characterize analogous senescence in animals (e.g. water/nutrient transport, pollen viability, or seed germination
[64]). Bristle cone pines also do not exhibit age-related decline in telomere length in needles, and telomeres may even increase
slightly in root cells [65]. In another long-lived non-clonal tree, Gingko biloba, telomeres seem to increase early in life (10, 20, 70
through 100 years of age) and then remain stable through to 700 years of age (oldest trees in the study), maintaining some
telomerase expression over this same age range [66]. Interestingly, telomerase activity in Gingko is highest in tissue under-
going repair/regeneration (i.e. embryonal callus) and during flowering in microspores (sex cells) compared with leaf tissue.
Indeed leaf tissue showed a seasonal-expression pattern with the highest activity during leaf formation and growth and a
decline to eventual leaf-drop in the autumn [66]. Given the age ranges included in these studies, these are necessarily
cross-sectional data, which require circumspect interpretation as it is possible that selection leaves only the trees with
these properties standing. Furthermore, studies in other land plants indicate no or little telomerase activity in vegetative
tissue similar to humans but do exhibit telomerase expression during flowering, early seasonal growth and germination
[67,68].

Telomeric sequences of plants are more diverse than in metazoans. Although TTTAGGG is the most widespread telo-
meric sequence in the land plants and the green algae, there are at least four different telomere motifs in the land plants
and at least another two unique sequences in green algae [69], including the familiar TTAGGG found in vertebrates. The
mechanistic biology governing telomere dynamics (i.e. attrition and elongation) in plants and animals is very similar,
although there is divergence in protein complexes associated with telomeric sequences serving analogous functions
[62,69]. Telomere length is maintained at an ‘optimal” length by the action of telomerase and alternative lengthening and
by dissociation of telomere binding proteins, which then exposes them to endogenous nucleases that shorten them [69].

The most salient and critical function of plant telomeres and their associated proteins is to maintain genomic stability,
prevent endogenous DNA erosion at chromosome termini and aberrant chromosomal rearrangements [70,71]. Nevertheless,
plants have an amazing capacity to withstand genomic instability generated by severely shortened telomeres [68,72] evading
telomeric fusions even when telomeres shorten to less than 1% of their normal length [73]. TERT-mutant lines of Arabidopsis
that are unable to maintain telomere length via telomerase activity survive and successfully reproduce for 10 generations,
although with increasing cytogenetic impairment and eventual vegetative arrest and reproductive senescence [74]. The
role of telomeres in whole plant ageing is more controversial (see [60], and [62] for contrasting views on the subject). How-
ever, telomere and other DNA damage during seed ageing are main determinants of germination success [75]. During
imbibition, there is significant upregulation of telomerase and DNA repair genes [76].

Although, as Darwin indicated, plants are not behaviourally inert, plants are sessile and thus have fewer options to escape
the vagaries of daily and seasonal environmental conditions. Most structures and organs in plants are formed by plastic pro-
liferation of meristematic cells that continue throughout adult life, which results in indeterminate growth. This is very
different from animals, such as fish, snakes and lizards, that also exhibit indeterminate growth. The modular (i.e. root,
stems and leaves) phenotypic plasticity of plants, saddled with an evolutionary history of ‘toughing it out” exposed to the
elements, may explain the huge difference in plant age and telomere dynamics compared with animals. Plant structures
are dispensable. For example, leaves are shed and in woody plants and trees the core is made up of mostly dead cells. Per-
haps this is, in addition to having cell walls, why plants are not known to exhibit metastasized neoplasia [22]. These
transitions from live to dead cells are programmed such that resources are recycled and stored for next season’s growth
(in perennials) or packaged in resilient seeds that sprout the next generation in annuals. Plants, unlike animals, do not
have a defined germline, gametogenesis occurs late in tissue development. In theory, somatic mutations can be transmitted
to the next generation as germlines. However, in Arabidopsis, germline cell divisions are independent of both plant age and
vegetative age [63], meaning older plants do not pass along longer or shorter telomeres. Tracing telomeres through successive
generations, [63] found that the shortest telomeres were typically elongated in the subsequent generation, while the longest
telomeres were usually shortened.
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Figure 2. Pinus longaeva, Bristlecone pine, is one of the oldest pine trees, with
specimens recorded as over 5000 years of age. (Online version in colour.)

Ectotherms potentially provide a powerful way forward to
understand the dynamics between age and size, and telomere
length regulation, with experimental manipulation of growth
and a concomitant examination of changes in telomere length
or telomerase activity. In most ectotherms, growth is indeter-
minate (although it declines with age and size [78]) and
should, ideally, be manipulated while leaving other systemic
parameters, such as size and body temperature, unaffected.
Very few systems allow for such experimentation but a
clever way around these problems was an approach by
Jorgen Johnsson’s group, who manipulated growth hormone
(GH) levels in salmonids by comparing transgenic fish (with
doubled-up GH genes). Fish with extreme growth rates were
compared to wild-type fish in a split brood design, which
revealed that GH-manipulated fish suffered much higher
telomere attrition [41]. In plants, vegetative growth, size, repro-
duction and lifespan can be manipulated via modulating day
length. This technique was used to test and confirm that the
number of mutations and telomere changes that were trans-
ferred to the next generation was constant, regardless of
parental age and length [63].

Ectothermic growth is strongly dependent on the thermal
environment and this can be manipulated to alter growth
rate, and potentially telomeric length trajectories. For
example, not only do telomeres shorten with age in the Siber-
ian sturgeon (Acispenser baerii), but Simide et al. [48] also
induced a 15% telomere loss over a single month using heat
treatment (30°C). How this comes about is not straightfor-
ward. We found no published data on erythrocyte lifespan
in sturgeons but, assuming it is similar to that in carp (Caras-
sius auratus langsdorfi)—51 days on average [86]—telomere
loss should come about through double- or single strand
breaks in erythrocytes rather than proliferation of haemato-
poietic stem cells in the bone marrow (and strand break
ill-effects would be hard to differentiate from other more
genome-wide effects [81]). An alternative explanation to
changes in telomere length distribution would be biased

mortality of cells with longer telomeres (although this runs m

counter to the fact that shorter, not longer, telomeres
induce apoptosis). Similar effects could explain telomere
shortening at relatively higher temperature in wild brown
trout (Salmo trutta; [52]). In contrast, colder (harsher) environ-
ments could cause corresponding telomere shortening, as
shown in other brown trout populations; thus, telomere
length is assumed to be optimized by stabilizing selection
[36,87]. Interestingly, and contrary to expectations, part of
this stabilizing selection scenario seems to be increased survi-
val at sea by successfully migrating and returning salmon
with shorter telomeres [88]. Temperature affects growth
rate, and hence cell division and proliferation, so a straight-
forward prediction is that telomere attrition should be
higher in warmer water, and in particular in water warmer
than where selection took place. Rollings et al. [43] explored
catch-up growth effects in mosquito fish (Gambusia holbrookii)
but only found a weak difference among treatment groups,
with fish in constant 20°C having shorter telomeres than in
treatments with fish experiencing a gradual change from
30°C to 20°C. Similarly, Naslund et al. [37] assessed compen-
satory growth in brown trout and found no increase in
telomere erosion at elevated growth rate. These divergent
results are presumably explainable by differential gene
expression of telomerase production depending on tempera-
ture. In human cell culture, thermal treatment (37, 39, 42°C)
causes a shift in telomere length distribution towards
mid-length telomeres, but with no temperature effect on telo-
merase production [89]. Thus, telomere attrition (caused by
ROS production) and restoration (by telomerase upregulation)
may not be linearly dictated by temperature changes or
even work in the same direction with the same change in
temperature. Thus, temperature-dependent (nonlinear) up-
and down-regulation of telomerase expression needs to be
examined, independent of telomere elongation and attrition,
for a more complete understanding of telomere dynamics.

Promising research in which metabolic processes are exper-
imentally altered in ectotherms shows ‘dynamic dynamics” of
telomere regulation and potentially environmental depen-
dence. This agrees with recent work in endotherms that are
acting like ectotherms, that is, work exploring variation in tel-
omere length with torpor and hibernation in small rodents.
Turbill et al. [90] showed that in the edible dormouse (Glis
glis) telomere attrition was arrested during hibernation, sup-
porting the idea that torpor slows ageing and might be
responsible for relatively longer life in this and other species
that hibernate. Subsequent work on the same species by
Hoelzl et al. [91], however, showed that hibernation is not
without cost; arousal from hibernation (especially repeated
arousal) was associated with telomere shortening, potentially
through oxidative stress. Turbill et al. [92], this time working
on Djungarian hamsters (Phodopus sungorus), tested the
hypothesis that torpor slows ageing in this highly seasonal
rodent that uses daily torpor and found that relative telomere
lengths increased in individuals that undertook frequent bouts
of daily arousal. An interesting comparison would be similar
work on truly ectothermic animals, such as reptiles, that
undergo similar periods of hibernation, aestivation and
daily torpor.

Knock-down or knock-out telomerase mutants or genetic
lines within species with fast versus slow growth potentially
offer mechanisms to further understand the relationship
between telomerase activity and telomere length in ectotherms.
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Figure 3. Sex differences in age-dependent telomere length with no relation in (a) females, but a curvilinear decline of telomere length with age in (b) males in
the red-sided garter snake (Thamnophis sirtalis parietalis). Females show a much less active reproductive strategy. In picture (c), a passive female (the large, central
head) is surrounded by smaller heads of energetically courting males. (© CRF, From Rollings et al. [84]). (Online version in colour.)

Anchelin et al. [28] showed the value of zebrafish telomerase
knock-down mutants for studies of ageing, with an increase
in short telomeres leading to growth arrest and apoptosis
and other ageing symptoms such as spinal curvature, liver
and retina deterioration and infertility [28]. This agrees with
the work by Joeng et al. [34], who showed that lifespan in
nematodes (C. elegans) is strongly prolonged (10-19.3%) by
experimentally elongating telomere length, but that the effect
depends on the daf-16 gene. These effects were dismissed by
Simons [93] as causally affecting lifespan, but here we acknowl-
edge that such interaction effects are causally important even if
indirect, since epistatic and regulatory effects are also evolutio-
narily relevant. Schumpert et al. [54] took advantage of two
closely related ecotypes in Daphnia to explore the relationship
between growth, telomerase and telomere lengths. In the
short-lived ecotype (D. pulex) there was no age-dependent
decline in telomere length or telomerase activity, while in
contrast there was a significant age-dependent decline in telo-
mere length and telomerase activity in the longer-lived
Daphnia pulicera. How well these patterns hold up under
increased scrutiny of more ectothermic species remains to be
seen (see [94] for a cross-species comparison of telomere
shortening in slow-ageing versus fast-ageing species).

(b) Links to reproductive modes, sexual dimorphism
and polymorphism

Telomere regulation is predicted to vary with reproductive
mode (e.g. sexual versus asexual reproduction) and with
reproductive effort. Where energetic commitment to growth

versus reproduction differs between the sexes and this leads
to sexual size dimorphism, sexual differences in telomere
dynamics are predicted. Whereas sexual animals achieve telo-
mere elongation through sexual reproduction, asexuals
maintain telomere length by fission or when regeneration is
induced by amputation. In organisms that propagate by aga-
metic cloning, the parental body is the reproductive unit and
fitness increases with clonal size. Therefore, clonal metazoans
have been considered near ‘immortal’ [53]. Recent work on
clonal ascidians shows that the passage between sexual gener-
ations provides total rejuvenation permitting indefinite
propagation and growth and that parents have strikingly
lower levels of telomerase compared to their offspring; thus,
parents seem to ‘run out’ of telomerase as a result of reproduc-
tion compared to their offspring [53]. However, in other
species (fissiparous starfish Coscinasterias tenuispina), clonality
is associated with longer telomeres, potentially mediated by
population-specific telomerase expression [55]. Similarly, in
planarian flatworms (Schmidtea mediterranea), somatic telomere
maintenance is different in asexual and sexual animals
mediated by telomerase expression; asexual animals maintain
telomere length somatically during reproduction by fission or
when regeneration is induced by amputation, whereas sexual
animals only achieve telomere elongation through sexual
reproduction [45].

Ageing effects and costs of reproduction in more fecund
individuals would be expected to covary inversely with life-
span and are also predicted to affect telomere dynamics. This
has been shown in Atlantic silversides (Menidia menidia; [31])
where more fecund fish had shorter lifespans (as predicted by
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Figure 4. (a) The four male morphs of painted dragons (Ctenophorus pictus). (b) Mean (+s.e.) relative telomere lengths (RTL) of the four male morphs. RTL of
yellow males was significantly higher than red and blue males (from Rollings et al. [44]; see text) (© CRF). (Online version in colour.)

classical life-history theory) and also had shorter telomeres.
When such trade-offs in investment patterns between growth,
lifespan and reproduction differ between the sexes, the evol-
utionary outcome may be sexual dimorphism. As a corollary,
the sexes may also differ in telomere traits; if telomeres shorten
with cell division and one sex grows faster than the other, or
differ in some other aspect of reproductive investments,
sexual dimorphism in size may co-occur with that in telomere
length ([95] and references therein). Ongoing differential selec-
tion on body size between the sexes, and corresponding
selection in the wild on telomere length, have been demon-
strated in a (correlative) quantitative genetics field study of
sand lizards [40]. Such selection processes could lead to the
evolution of the drastically different life-history strategies in
the sexually size-dimorphic red-sided garter snake (Thamnophis
sirtalis parietalis; [44]), where females grow much larger and live
longer than males. Male and female red-sided garter snakes also
differ in their corticosterone levels (higher in males) following
hibernation, with males having costly mating behaviours
while females have a much more passive role and reproduce
biennially. Telomere erosion is predicted to be more pro-
nounced in males than females, and this indeed proved to be
the case; males had a (negative) quadratic telomere length
decline with age, whereas females maintained their telomeres
without noticeable attrition ([44]; figure 3).

Telomere length and attrition are believed to reflect
aspects of the ageing process [96], which is linked to fitness.
If so, then exterior, phenotypic traits may act like ‘health cer-
tificates” to partners and rivals, covary with telomeres and be
under sexual selection. Giraudeau et al. [32] investigated the
relationships between colour fading during the mating
season and telomere attrition in Australian painted dragon
lizard (Ctenophorus pictus). They concluded that levels of
ROS at the onset of the mating season were unrelated to
initial telomere length, but those lizards that better main-
tained their coloration also lost more telomere bases [32].
Furthermore, work on the same species used its polymorph-
ism with differences among morphs in head colour and
associated reproductive behaviours, including level of
aggression and investments into reproduction. In accordance
with predictions, morphs with high investment strategies
into reproduction also had shorter telomeres, which captures
the relatively lower levels of somatic maintenance ([84];
figure 4). In an extreme example of intraspecific life-history
polymorphism, the honeybee, Apis mellifera, Korandova &
Frydrychova [56] reported that telomerase activity and

telomere length were regulated in a development- and
caste-specific manner, and highly variable among castes,
with queens exhibiting the greatest telomere lengths and
concomitant telomerase expression.

Thus, high-level ornamentation seems to be costly and
condition-dependent. In the red-sided garter snake, telomere
length was positively correlated with body condition in both
sexes, but overall males had much lower body condition than
females and it decreased with age in males, a pattern that was
mirrored in telomere loss [44].

3. Telomere links to personality, predation and
proliferation

Other drivers of telomere dynamics appear to be individual
behaviour and ‘the pace of life’ [97-99]; this is likely to
have significant effects in a range of physiological processes,
including telomere attrition. A study of brown trout [26]
showed that bolder, more aggressive and exploratory person-
alities had shorter telomeres. Ectothermic taxa thus provide
an opportunity to explore the effect of tissue regeneration
on telomere dynamics. For example, in many lizards tail
autotomy is used to reduce predation but has energetic
costs during tail regrowth [38]. During this period, a more
cryptic lifestyle is adopted and bodily growth is stunted in
favour of tail regrowth. In sand lizards, this comes at a cost
in terms of telomere length but only in males (not in females
that are camouflaged) and more so in the less visual, smaller,
younger males [38], suggesting a further hidden context-
dependent cost to autotomy and tissue regeneration. How
are these rapidly replicating cells protected from the effects
of telomere shortening, especially considering that tail loss
can happen repeatedly during an individual’s life? Immuno-
techniques suggest that telomerase is
upregulated in the cells of lizard tails after autotomy [100].
This mechanism may be widespread in ecothermic taxa; in
a variety of plants, marine invertebrate and vertebrate
ectotherms, telomerase activity is upregulated and telomere
lengths maintained during regeneration, in some cases pre-

localization

ferentially in the
[66,101,102].

In zebra fish, telomeres shorten to critical length only in
specific tissues and independently of their proliferation rate
[30]. Short telomeres accumulate at the same rate in the
(highly proliferative) gut, and muscle (low proliferative),

shortest telomeres being elongated
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and indicate age-associated disease, including cancer, before
these become phenotypically noticeable [30]. Telomerase pro-
duction is lifelong in all zebra fish somatic tissue and
telomere length is maintained through life in all tissue, too
[35]. Amphibian telomeres seem to be the least explored of
the vertebrate groups. However, in classic model systems,
such as Xenopus (X. laevis and X. tropicalis), all tissues exam-
ined contain active telomerase, and most abundantly in the
testis, spleen, liver and in the embryos [57]. Again, however,
there are different patterns in different ectothermic taxa; in
the cockroach (Periplaneta americana) telomerase is upregu-
lated in young instars and gradually declines during
development, has differential tissue activity and is most
active in the testes and ovaries [103]. In lobsters (Homarus
americanus), which have indeterminant growth, high telomer-
ase activity was found in all major organs and was argued to
be responsible for maintaining long-term cell proliferation
and for preventing senescence [47].

4. Telomere length: selection and heritability

In analyses of evolutionary responses to selection, studies of
heritabilities are combined with the estimation of selection
coefficients [77]. The few studies of wild ectotherms, however,
show considerable differences in the relationship between tel-
omere traits and survivorship or lifespan. Ujvari & Madsen
[25] refuted telomeric effects on fitness in tropical pythons
(Liasis fuscus). In that study, telomere length increased early
in life but then asymptotically levelled out in older age [25],
and because of sex-specific growth trajectories, this resulted
in longer telomeres in females than males. No relationship
with survivorship was found [25]. A second study by Ujvari
et al. [24] on frill-neck lizards (Chlamydosaurus kingii) in tropical
Australia showed short telomeres in young lizards, then telomere
growth in midlife, followed by attrition in older lizards.
How does telomere length at the cellular level correlate with
cell viability and evolutionary fitness? These questions remain
relatively poorly understood. An example of potential threshold
effects of telomere length on cell viability are Ujvari ef al.’s [24]
studies on frill-neck lizards, in which they conclude: ‘telomere
length dynamics reflect an adaptation to maintain telomere
length above a critical minimum in order to maintain cellular
homeostasis’. Telomeres signal at a critical minimum length
and cell-suicidal apoptosis can be an outcome of this process.
However, many studies in our review confirm covariation
between telomere length and attrition, and covariation with
components of fitness. This is not predicted by a critical, minimal
telomere length effect. Thus, the idea of a “critical minimum’ tel-
omere length fails to explain broad, quantitative patterns of
covariation with components of fitness in evolutionary ecology
and genetics. One such pattern between telomere attrition and
costly maintenance of breeding colours seem to be the case of
the painted dragon lizard (Ctenophorus pictus). In this species,
maternal telomere length was a predictor of offspring telomere
length and was significantly heritable despite statistical effects
of oxidative stress on telomere length [29]. Heritability estimates
of telomere length in wild sand lizards was more than one (1.23)
for son—sire heritabilities, and 0.55 for daughter—dam estimates
in the wild [39]; heritability of telomeres, like any statistically
sampled trait, can show values larger than one [77]. Further-
more, it is important to note that for sand lizards, there was no

environmental confound of the regression effects of mean off- n

spring on parental telomere length because the offspring were
released at random at the study site for over a decade [104].
These results seem to suggest a more complex inheritance pat-
tern of telomeres than a simple Mendelian process [39]. For
example, Olsson et al. [39] showed that paternal age is negatively
correlated with offspring telomere length, suggesting an epi-
genetic, transgenerational effect through which telomere
sperm shorten through life, resulting in a negative paternal
age effect on son telomeres (unlike in some mammals [105];
see also Postma [106] for a detailed review on choice, suitability
and differences in outcome of different methods for analysing
heritability and components of additive components of variance).

An important, but often overlooked, relationship is
whether selection and epigenetic effects of telomere length in
adults can act via genetic interactions between life-history
stages [107], so that hatchling telomere traits are affected by
selection on adults via genetic correlations. Thus, selection on
adults could in this way causally impact probability of survival
and, ultimately, lifespan also at a juvenile life-history stage. The
best evidence comes from experimental work on the offspring
of transgenic nematodes (C. elegans), non-transgenic worms in
the F1 generation retained lifespan-extending effects from
elongated telomeres, but the effects were dependent on daf-16
for lifespan extension in the F1 phenotype [34].

5. Conclusion and future prospects

With the exception of phylogenetic descriptions, and molecu-
lar mechanisms of telomere dynamics in models such as
C. elegans (a nematode), Saccaromyces cerevisizge (Baker’s
yeast) and Arabidopsis, there is a real dearth of research on
the evolutionary ecology, genetics and physiology of
ectotherm telomeres. However, with the increasing number
of studies that are becoming available on non-model organ-
isms, it is also becoming increasingly clear that there is no
single, universal pattern of telomere dynamics. Telomerase,
the main driver of telomere elongation, occurs throughout
the body in, for example, many fish, and associated with
this is an approximate equal telomere length across tissue.
Future work in evolutionary ecology on telomeres needs to
embrace work on non-model taxa in natural populations,
incorporating the effects of telomere traits on reproductive
parameters. In particular, species with telomerase production
in somatic tissue may be suitable models for understanding
selection pressures from disease susceptibility (e.g. cancer)
associated with variation in telomerase production and
associated variation in cancer risk. Thus, ectotherms are
likely to be a treasure chest for studies of ongoing evolution
of telomeres and telomerase dynamics in the wild and may
hold the key to understanding ongoing selection on variabil-
ity in somatic expression and evolution of somatic telomerase
repression.
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