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Abstract Neutron monitors of standard design (IGY or NM64) are employed worldwide to study
variations in the flux of galactic cosmic rays and solar energetic particles in the GeV range. The design
minimizes detector response to neutrons below ~10 MeV produced by cosmic ray interactions in the
ambient medium. Increasingly, however, such neutrons are of interest as a means of obtaining spectral
information on cosmic rays, for studies of soil moisture, and for nuclear threat detection. Bare neutron
counters, a type of lead-free neutron monitor, can detect such neutrons, but comparatively little work has
been done to characterize the dependence of their count rate on cutoff rigidity. We analyze data from three
bare neutron counters operated on a ship together with a three-tube NM64 monitor from November 1995
to March 1996 over a wide range of magnetic latitude, that is, a latitude survey. The bare counter design
used foamed-in-place polyurethane insulation to keep the temperature uniform and to some extent
moderate high-energy neutrons. When the ship was near land, the bare/NM64 count rate ratio was
dramatically higher. Considering only data from open sea, the bare and NM64 pressure coefficients are
not significantly different. We determine the response function of these bare counters, which is weighted
to Galactic cosmic rays of lower energy than the NM64. This measurement of the response function may
improve determination of the spectral index of solar energetic particles and Galactic cosmic rays from a
comparison of bare and NM64 count rates.

1. Introduction

Neutron monitors are ground-level detectors of cosmic-ray-induced atmospheric secondary particles that
respond mostly to secondary neutrons (Simpson, 1948). Neutron monitors of the standard IGY and NM64
designs are optimized so that their count rates provide a precise and reliable measurement of the GeV-range
cosmic-ray flux (Hatton & Carmichael, 1964). In particular, a neutron monitor at a given location is most sen-
sitive to cosmic rays within a range in rigidity (momentum per charge, expressed in GV) somewhat above the
local geomagnetic cutoff, which varies from near 0 GV at Earth’s polar regions to ~17 GV at some parts of
the geomagnetic equator, and above the atmospheric cutoff of 1 GV needed to generate atmospheric sec-
ondary particles that can be recorded at ground level (see the response functions determined by Nuntiyakul
et al,, 2014). A standard neutron monitor includes a producer, typically ~5-30 tons of lead, in which atmo-
spheric secondary particles of >10 MeV have a high probability of interacting to produce multiple MeV-range
neutrons that can be detected in gas-filled proportional counters containing '°B or 3He. A standard neutron
monitor is also surrounded by a reflector comprising several centimeters of paraffin or polyethylene, which
aims to contain the neutrons produced in the lead as well as minimize the detector response to secondary neu-
trons of <10 MeV, which are mainly produced by cosmic ray interactions in surrounding materials at ground
level and thus are sensitive to changes in the local environment. Also important is the moderator, consisting
typically of a thinner layer of the same material as the reflector placed between the lead producer and each
gas-filled counter, which helps slow down the neutrons in order to be detected efficiently. Standard neutron
monitors are operated at more than 40 locations worldwide, taking advantage of the varying geomag-
netic cutoff, and are widely used to monitor Earth’s radiation environment due to relativistic solar energetic
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Figure 1. Track of the USCGC Polar Star for the 1995-1996 survey, superimposed on contours of vertical cutoff rigidity.
Numbers give vertical cutoff rigidity in GV. This survey carried a standard neutron monitor (3NM64) and three bare
neutron detectors, permitting a direct comparison of their response to primary cosmic rays.

particles and galactic cosmic rays and their variations associated with solar activity, and for applications
concerning space weather and space radiation.

Such observations can be complemented by measurements using bare neutron counters that lack the reflec-
tor and lead producer of standard neutron monitors, making them also sensitive to atmospheric neutrons
of <10 MeV. Such detectors are widely used to detect soil moisture (Zreda et al., 2008), for nuclear threat
detection (Kouzes et al., 2008), and to obtain spectral information on solar energetic particles.

From a fixed location, a standard neutron monitor (NM64) count rate alone cannot be used to measure the
energy spectrum of cosmic rays. However, since a bare counter (BC) has a different energy response from an
NM64, operating them together provides some knowledge of the spectrum (e.g., Bieber & Evenson, 1991;
Bieber et al., 2013) while avoiding the systematic errors of comparing count rates from different locations
(Figure 2 of Ruffolo et al., 2016). The accuracy of this method requires knowing how the energy responses of
the different types of detector are related.

In this work we focus on developing optimal methods for extracting the response function of three BCs that
were operated aboard the U.S. Coast Guard icebreaker Polar Star along the route illustrated in Figure 1. This
voyage was one of a series of latitude surveys in which the magnetic field of the Earth was used as a spectrom-
eter to explore the time dependence of the spectrum of cosmic rays striking the atmosphere (Nuntiyakul et al.,
2014). All of these surveys carried a NM64 neutron monitor with three counter tubes, that is, a 3NM64, and in
addition the survey from San Diego, USA, to McMurdo, Antarctica, and back during a voyage of ~4 months
from 6 November 1995 to 20 March 1996 carried three bare detectors. To our knowledge, there have been two
previously published bare surveys: the 1976 survey (Stoker et al., 1980) did not extend to polar latitudes, and
the 1996 survey (Dorman et al., 2000; Villoresi et al., 2000) was conducted with unmoderated bare detectors.
Therefore, direct comparison of results is difficult.

2. Methodology

2.1. Latitude Surveys and Response Functions

The count rate N(t) of a ground based detector resulting from the impact of cosmic rays at the top of the
atmosphere is described by

—
—

N(®, D, h, t)=/ [ZJ,(P, t) Yi(P, h)] T(P,0,d,t)dP, (
0 i

where J; is the Galactic cosmic ray spectrum for primary cosmic rays of particle type i near Earth expressed
as a function of rigidity (P) and time (t). The primary cosmic rays are approximately 90% protons (in particle
number) while 9% are alpha particles (helium nuclei) and 1% are the nuclei of heavier elements; their fluxes
near Earth include variations with the 22-year solar magnetic and 11-year solar activity cycles as the result of
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Figure 2. Rendered sketch of the “bare” neutron counter configuration used in this work. Each BP-28 neutron-sensitive
proportional counter was operated inside a 20-cm-diameter PVC pipe covered with heat tape and thermally insulated
by foamed-in-place polyurethane inside a larger, 30 cm diameter PVC pipe. Three such bare counters and a
three-counter neutron monitor were operated along the survey route shown in Figure 1.

interactions with the solar wind and magnetic fields in interplanetary space. (Here we neglect the cosmic ray
anisotropy, which is usually < 1%.) The yield function Y; for primary particles of type i, a function of rigidity (P)
and atmospheric depth (h), is the actual relationship between the cosmic ray flux at the top of atmosphere and
the observed count rate from the detectors. The transmission function T; describes the transmission through
the magnetosphere of the Earth. It is a function of particle rigidity (P), latitude (®) and longitude (®) of the
detector location, and time (t).

At a given latitude and longitude, the effective cutoff rigidity for transmission through Earth’s magnetic field
depends on the arrival direction of each primary cosmic ray described by the local zenith and azimuthal
angles. However T; can be approximated by a step function at a single cutoff rigidity P, that we call the
apparent cutoff rigidity. With the assumption that the transmission is a step function, the count rate relation
becomes

N(P_, h,t) = / Ji(P,t)Y;(P,h)dP. (2)
P i

4

The apparent cutoff used in this work considers both vertically incident particles and obliquely incident par-
ticles (Clem et al., 1997); this is calculated individually at 1-hr intervals at the actual position of the ship with a
time-dependent model of the magnetic field according to an efficient method (Bieber et al., 1997). We use a
particle propagation code from the Bartol Research Institute (Lin et al., 1995) together with an accurate model
of the terrestrial magnetic field including any field disturbance present as indicated by the K, index value at
the time. K, quantifies variations of the horizontal component of the magnetic field of the Earth as an integer
in the range 0-9, that is, a lower number indicates quiet conditions and a higher number indicates a stronger
geomagnetic storm (Thomsen, 2004).

The differential response function (DRF) is defined as the negative of the derivative of the count rate as a
function of cutoff rigidity. The most common type of analysis for measuring a response function is the Dorman
et al. (1969) analysis, in which corrections are first applied to the data points, then a parameterized function
of apparent geomagnetic cutoff rigidity, termed a Dorman function, is fitted to the data:

NP) =Ny (1 —e™ "), 3)

where N,, a, and k are unphysical parameters that provide a good representation of the integral response
function N, which can be analytically differentiated to determine the DRF:

NP = /°° DRF (P)dP, 4)
P

c

DRF (P) = NyaP ™" 'k e*™", (5)
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Figure 3. Examples of 1-s count distributions (black) and Poisson distributions based on the rates of 0—4 counts (red), each for 1 hr from one bare counter.
(a) This measured distribution closely matches a Poisson distribution. (b) Here many seconds had multiple counts, but the distribution of 0-4 counts closely
matches a Poisson distribution. (c) Ambiguous data. In all cases only the data to the left of the dashed line were used in further analysis.

From equations (2) and (4), we can express the DRF as the summed product of J,(P, t) and Y;(P, h):
DRF (P) = — [d—N] = Y J(P.OY,(P,h). ©6)
ch P i

2.2. Instrumentation

The 1995 latitude survey employed two types of neutron detectors, three bare neutron detectors and a 3NM64
neutron monitor. The three BCs were installed exposed on an upper deck of the ship, whereas the 3NM64 was
installed in an insulated shipping container (called the “TasVan”). Nuntiyakul et al. (2014) provide a detailed
description of the TasVan and the series of latitude surveys. In summary, the detectors are Chalk River BP-28
proportional counter cylinders filled with boron trifluoride gas (enriched in the isotope '°B). The boron nuclei
react with neutrons and undergo nuclear fission. The reaction products (*He and ’Li) ionize the gas and
eventually produce electrical pulses on a central anode wire maintained at ground, while a cylindrical outer
cathode is at a potential of about —2,800 V.

Unlike for an NM64, there is no standard design for a bare neutron counter. The detectors discussed in the
present work were prototypes for a system that was intended for outdoor deployment at the South Pole.
The design used 2-lb density (2 Ib/ft3 ~ 32 kg/m?3) foamed-in-place polyurethane insulation for thermal con-
trol between an inner, 8" thin-wall PVC pipe (outer diameter 219 mm, thickness 4.75 mm) and an outer, 12"
schedule-40 PVC pipe (outer diameter 324 mm, thickness 10.3 mm), which also served as a moderator for
high-energy secondary neutrons. The standard polyethylene moderator on a BP-28 was not used. A rendered
drawing of the detector is shown in Figure 2.

3. Data Reduction

3.1. Overview

Throughout this work all the dates during the survey will be referred to as “day of the year of 1995” (DOY1995).
The 12th generation International Geomagnetic Reference Field (IGRF12) and the 1989 revision of the
Tsyganenko (1987) model were used for calculating the cutoff rigidity. Numerical results for the 3NM64 in the
present work differ slightly from those presented by Nuntiyakul et al. (2014) for three main reasons: (1) data
intervals were selected such that they had good data in both the BCs and the 3NM64 whereas the earlier study
only considered the 3NM64; (2) no corrections for short term modulation based on the McMurdo count rate
were applied in this work; and (3) no normalization of the data to the McMurdo count rate was performed in
this work.

3.2. Initial Processing

The most serious problem encountered in the data was mutual interference of the instrument with commu-
nications equipment on the ship. This equipment was used only when at sea, so any attempt at debugging
the problems during port calls was not possible. However, a relatively simple realization enabled the extrac-
tion of a useful data set. Our data were recorded with one second time resolution together with clinometer
readings to allow for possible corrections due to the varying orientation of the ship in rough seas. Looking
closely at the 1-s data, we found that the noise was often quite “bursty” with seemingly unaffected seconds
interspersed with seconds recording hundreds of counts.
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Figure 4. Summary of hourly averaged data as a function of time. (a)-(c) Ratios of individual bare detector count rates
to 3NM64 count rate. Red vertical lines define 15 time periods used in the analysis. In each time period, the horizontal
blue solid line shows the reference value (B;/NM) and blue dashed lines illustrate the +3¢ interval around the reference.
(d) Apparent geomagnetic cutoff rigidity P.

We therefore made histograms of the 1-s readings for each tube for each hour of the survey, with typical
examples shown in Figure 3. The observed distribution of counts is shown in black whereas the red shows
the Poisson distribution expected based on the average rate over the first five channels. Figure 3a shows an
hour with essentially no noise—typical of all of the time spent in port when the investigators had access to
the equipment. In this case all of the individual measurements fall nicely on the distribution. Figure 3b shows
a case where there is a clean Poisson component plus a clearly separated noise component. In Figure 3c the
separation fails, for reasons that we have been unable to establish. We investigated automatically extracting
data from noisy hours based on a quantitative test for deviations from a Poisson distribution in the first five
channels but no clear method emerged. Instead, we prepared our basic data set with 1-hr resolution by taking
averages over the first five channels (those left of the dashed lines) independent of the quality of fit to a
Poisson distribution. We deferred rejecting bad hours to a later stage of analysis.

The data set thus obtained is plotted in Figure 4. In this figure we show hourly averages of BC count rates
divided by NM count rates (where NM means the summed count rate of the three counters in the 3NM64),
without any further correction. On this plotting scale the small variations in the ratios due to cutoff variation
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Table 1

Reference BC to NM Count Rate Ratios

Period Start DOY Environment (Bo/NM) + ¢ (By/NM) £ ¢ (By/NM) + &
TP1 311.000 San Diego 0.0169 + 0.0003 0.0165 + 0.0004 0.0177 + 0.0005
TP2 311.667 Naval maneuvers 0.0137 + 0.0004 0.0134 + 0.0004 0.0142 + 0.0004
TP3 314.000 San Diego 0.0159 + 0.0004 0.0159 + 0.0004 0.0171 + 0.0004
TP4 317.833 Naval maneuvers 0.0136 + 0.0004 0.0133 + 0.0004 0.0139 +0.0003
TP5 322.250 Open sea 0.0131 + 0.0005 0.0127 + 0.0006 0.0137 + 0.0005
TP6 342.875 Sydney 0.0164 + 0.0005 0.0166 + 0.0006 0.0181 + 0.0005
TP7 347.917 Open sea 0.0137 + 0.0004 0.0133 + 0.0005 0.0140 + 0.0003
TP8 350.042 Hobart 0.0174 + 0.0004 0.0176 + 0.0006 0.0190 + 0.0005
TP9 353.917 Open sea 0.0143 + 0.0003 0.0143 + 0.0004 0.0145 + 0.0004
TP10 356.375 Open sea 0.0143 + 0.0003 0.0141 + 0.0005 0.0145 + 0.0003
TP112 365.792 Mixed 0.0143 + 0.0003 0.0141 + 0.0005 0.0145 + 0.0003
TP12° 420917 Open sea 0.0143 + 0.0003 0.0141 + 0.0005 0.0145 + 0.0003
TP13 425917 Melbourne 0.0149 + 0.0004 — 0.0158 + 0.0006
TP142 431.208 Open sea 0.0143 + 0.0003 0.0141 + 0.0005 0.0145 + 0.0003
TP15 437.792 Fiji 0.0142 +0.0010 — 0.0166 + 0.0018

aUsing reference values measured for TP10.

are not readily visible. We term the count rates of the three BCs as B, for the left BC, B, for the center BC,
and B, for the right BC. The reference values are explained in the following section. The figure also shows the
calculated apparent cutoff rigidity as a function of time.

The shown data set, which includes the correction for instrumental interference explained above, still con-
tains many clear outliers with a count rate enhanced beyond 3¢ above the reference value, especially for the
center BC after DOY 370. For those outlier hours with high hourly average count rates, the counts-per-second
distributions show no recognizable noise component or signatures of double pulsing, so we conjecture that
some change in the surroundings may have caused the neutron flux to be enhanced (possibly materials stored
in the space immediately under the detectors). In any case, only data within =3¢ of the reference value are
selected for further analysis, as specified below.

Table 2

Reference BC to BC Count Rate Ratios

Period Start DOY Status (By/By) x 0 (B1/By) o (By/Bg) x 0
TP1 311.000 San Diego 1.015 +0.03 0.933 + 0.04 1.053 £ 0.04
TP2 311.667 Naval maneuvers 1.032 + 0.04 0.939 +0.03 1.033 +0.03
TP3 314.000 San Diego 1.001 +0.03 0.926 +0.03 1.075 £ 0.04
TP4 317.833 Naval maneuvers 1.028 + 0.04 0.947 +0.03 1.030 + 0.04
TP5 322.250 Open sea 1.034 + 0.06 0.927 + 0.05 1.045 + 0.05
TP6 342.875 Sydney 0.987 + 0.04 0.916 + 0.03 1.106 + 0.04
TP7 347917 Open sea 1.027 +0.05 0.957 + 0.04 1.026 + 0.04
TP8 350.042 Hobart 0.991 + 0.04 0.926 + 0.04 1.090 + 0.03
TP9 353917 Open sea 1.008 + 0.04 0.975 +0.03 1.018 +£0.03
TP10 356.375 Open sea 1.018 +0.03 0.976 + 0.04 1.013 £ 0.03
TP112 365.792 Mixed 1.018 +0.03 0.976 + 0.04 1.013 £0.03
TP122 420.917 Open sea 1.018 +0.03 0.976 + 0.04 1.013 +0.03
TP13 425917 Melbourne — — —
TP142 431.208 Open sea 1.018 +0.03 0.976 + 0.04 1.013 +0.03
TP15 437.792 Fiji — — —

aUsing reference values measured for TP10.
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Table 3
Pressure Coefficient of BC to NM Count Rate Ratios for Fixed Stations
Location Epoch Altitude (m) P, (GV) b (10~* mmHg~") BC rate?(s™") NM rate?(s~") Ratio
Doi Inthanon 2007-2013 2560 174 3.30+0.49 6.0 34.0 0.176
Newark 2015-2016 40 23 9.13 +0.06 2.7 12.0 0.225
McMurdo 2016 48 < 0.1 2.16 + 0.09 3.2 16.7 0.192
South Pole, BF5 1990-2004 2820 < 0.1 4.10+0.16 15.0 87.0 0.172
South Pole, 3He 2005-2016 2820 < 0.1 2.94+0.07 12.5 103.0 0.121

aAverage rates per tube.

3.3. Data Cleaning Based on Neutron Monitor Count Rate
The selection of usable data (data cleaning) and the adjustment of bad or missing individual counter data
(data correction) are performed based on BC-to-NM ratios (8;/NM) and BC-to-BC ratios (8;/B;).

We start by choosing appropriate time periods during the 1995 survey year for which data were taken in a
relatively stable environment. The 15 time periods used (TP1 to TP15) are indicated in Tables 1 and 2, and
shown in Figure 4. Data cleaning is then applied separately for each time period. This division into time inter-
vals is based on the locations near which the ship passed, that is, San Diego, Sydney, Hobart, McMurdo,
Melbourne, and Fiji, as well as on apparent step-like changes in the ratio values elsewhere.

For each time period we generated histograms of the hourly B; /NM values to characterize and remove outliers.
Figures 4a—4c illustrate the individual B;/NM ratios as a function of time. The red vertical lines show the divi-
sion in time periods. The blue solid horizontal lines illustrate the B;/NM reference values (B, /NM), (B, /NM),
and (B, /NM). In most cases, these were defined as the mean of a Gaussian fit to the ratio histogram for each
time period. For three time periods, namely TP11, TP12, and TP14, we used the reference calculated during
TP10 because it was noticed that the noise was too high for the center BC (B,). Using the TP10 ratio refer-
ence for those three problematic time periods, we avoided bias in the data that could induce further analysis
errors. For the (B, /NM) ratio reference, during TP13 and TP15 data were also noisy but no appropriate ref-
erence based on another time period with similar environment could be identified, so those intervals have
no reference available. The blue horizontal dashed lines illustrate plus and minus three standard deviations
from the reference for each time period, also based on the Gaussian fit. The (B;/NM) ratio reference values
and their standard deviations ¢ for the 15 time periods are also shown in Table 1. B;/NM data points lying
outside the range defined by 3 standard deviations (i.e., +36) from the reference were considered to indicate
bad data and the count rate B; was then corrected (if possible) as explained in the next section or removed
before subsequent analysis.

3.4. Data Correction Based on BC Ratios

The rough and changing conditions on board the ships caused the response of individual BCs to occasionally
change, become noisy, or even stop completely. In order to correct for these effects during the surveys, we
used the inherent redundancy of the three bare detectors.

The histograms of individual BC ratio values (B,/B;, B;/B,, and B,/B,) were plotted for each time period
(except for periods with no appropriate reference for the B;/NM ratio, as mentioned above). For TP1-TP10,
reference values were calculated for these BC ratios based on a fit to a Gaussian, but for TP11,TP12, and TP14
we used the BC ratio reference of TP10 instead. For TP13 and TP15, the BC ratios were not used because the
center tube had bad counts during the whole time period and there was no other appropriate reference.

The BCratio references (B, /B, ). (B;/B,),and (B,/B,) and their standard deviations for the 15 time periods are
shown in Table 2. We defined the range of three standard deviations (+30) from the reference values (B;/8;)
to select good data points (count rates B; and B; that needed no further correction) or identify count rates
that needed to be corrected. The reference values for the BC ratios were then used to correct those count
rates, using the same method as explained in Nuntiyakul et al. (2014). The count rates of the three bare tubes
for each hour (B, B,, and B;) were corrected if the BC ratio data were outside the 3¢ range and there was a
valid BC ratio reference for calculating the missing data. We calculated a corrected count rate from the actual
count rate of the properly operating detectors. If only one tube was ignored, we calculated the corrected
count rate based on the measurement in the other two tubes and the ratio reference values. If two tubes were
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Figure 5. Pressure coefficient b (defined in text) as a function of apparent geomagnetic cutoff rigidity P.. (a) Black
triangles and heavy line: 3NM64 from 13 years of summed data (Nuntiyakul et al., 2014). Green circles: 3NM64 from 1995
data. Blue circles: three bare counters (3BC) from 1995 data. (b) Red circles: 3BC/3NM64 ratio in 1995, open sea. Red
triangles: 3BC/3NM64 ratio in 1995, near land. Red squares: Fixed locations. Pastel shaded points are less accurate, with
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removed, we similarly used the remaining tube to determine the corrected count rates. If none of the tubes
were operating properly, that hour was considered a data gap.

3.5. Barometric Pressure Correction

Although Stoker and Raubenheimer (1985) report that there is no difference between the barometric pressure
correction coefficient for BCs and NM64, they have been measured to be different for the neutron monitor
at Doi Inthanon, Thailand (Muangha, 2013). The first entry in Table 3 gives the result of that analysis. As the
correction for variation in barometric pressure is critical to proper interpretation of the data, we carefully
investigated this with the data from the 1995 survey.

We define a pressure coefficient (b) as the slope of a linear fit to the logarithm of counting rate as a function
of barometric pressure. To control for short term variations, we extract this by calculating the deviation of the
hourly average of each quantity from the overall average for that day.

We determined b separately for the 3NM64 and the BCs, with the data divided into bins of apparent cutoff
rigidity. The width of each bin was determined by the number of data points available. Results of this analysis
are shown in Figure 5a, along with the more statistically accurate determinations based on 13 years of data in
Nuntiyakul et al. (2014). We also calculated pressure coefficients for the ratios of the summed count rate of the
three BCs (3BC) to that of the 3NM64. Since there is no evidence for a major difference in coefficients from the
survey data alone, in the present analysis we have corrected both 3BC and 3NM64 with the well-determined
coefficient from the 13-year data set for the 3NM64.
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Figure 6. BC/NM ratio in 1995 as a function of apparent geomagnetic cutoff rigidity P.. Black dots: ship in open sea.

Gray dots: port calls at Hobart (P, = 1.71 GV), Sydney (P. = 4.41 GV), and San Diego (P. = 5.45 GV). Line: ratio of

Dorman functions shown in Figures 7a and 7b. Each dot represents a 1-hr data point.

We also extracted coefficients from historical data for two different land-based BC configurations and the
3 x TNM64 neutron monitor at South Pole and for BCs and an 18NMé64 at Doi Inthanon, Thailand. In addition,
we set up BCs at Newark, Delaware (three spare BP-28 counters) and McMurdo (one BP-28 removed from
the NM64) to investigate this issue. Results are plotted in Figure 5b and given in detail in Table 3, along with
various parameters characterizing the stations. Here b refers to the pressure coefficient of the ratio of the
BC and NM64 count rates per tube, which corresponds to the difference in pressure coefficients of the two
types of neutron detectors. All of the land-based installations show small positive coefficients. The value at
Newark is significantly larger than those at South Pole, McMurdo, and Doi Inthanon. The building construction
(masonry with slate roof) at Newark is different from the light construction at the other stations. In general,
there is no specific pattern with altitude or cutoff; rather the data provide an additional caution regarding the
environmental sensitivity of bare detectors. In other words, the observed pressure coefficient of the shipborne
BC to NM64 count rate ratio is consistent with zero, given the uncertainties.

3.6. Temperature Correction

We investigated the need for a temperature correction. The BCs were in a different location from the three
neutron monitors and neither had very good temperature control. We know from Evenson et al. (2005) that
temperature correction coefficients are different for NM64s operated with '°BF; and *He detectors. Therefore
we looked for temperature effects by searching for correlations of the measured ratios with differences in the
measured tube temperatures. Within the statistical accuracy permitted by the data, we could not find any.
Therefore we did not attempt a temperature correction for the present study.

3.7. Port Effects

The extreme sensitivity of bare detectors to the environment is clearly illustrated in Figure 6, which shows the
ratio of the BC to NM count rate after all of the corrections discussed above have been applied. Substantial
increases in the ratio occur whenever the ship is in port, as was also found by Villoresi et al. (2000). This can be
explained by a higher density of albedo neutrons near solid ground compared with open water, and the fact
that neutron detectors lacking a reflector (such as the BCs) are much more sensitive to these environmental
neutrons than the standard NM64. We therefore classified the data carefully so as to be certain that the results
we report are representative of the open ocean. Times “near port” were defined to be when the ship was
close to port and “ocean” times were when the ship was away from land. This consideration was used when
establishing the 15 time periods as shown in Figure 4 divided by red vertical lines. As noted above, the BC/NM
ratio was high near ports but lower when the ship was at sea. For example, around San Diego (P, = 5.45 GV,
TP1 and TP3) the ship moved to near port twice, once at Sydney (P. = 4.41 GV, TP6), and once at Hobart
(P. = 1.71 GV, TP8). Data from port calls near McMurdo (two steps in TP11), Melbourne (TP13), and Fiji (TP15)
are not included in our analysis, according to the procedure described in section 3.4, because they had no
ratio reference to clean the data.
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Figure 7. Dorman function fits to (a) bare and (b) neutron monitor data separately; (c) and (d) show the resulting
differential response functions (DRFs).

4, Discussion

4.1. 1995 Survey

To quantify the dependence shown in Figure 6 we performed a fit to a Dorman function (Dorman et al., 1969)
to the data for 3BC and 3NM64 separately. To do the fit we minimize the least squares function using the
Levenburg-Marquardt algorithm and provide estimates for the statistical errors in the determination of the
parameters from the scatter of the data points about the resulting fit. The results of the fits are shown in
Figure 7. In this case, as in subsequent ones, we show the best fit as a solid line and the (two sigma) range of
possible fits as a shaded area. In many cases the shaded area cannot be distinguished from the solid line. The
parameters of these fits, along with other Dorman fit parameters discussed later, are summarized in Table 4.
This Table also defines the nomenclature used in further discussions of these fits. The present analysis of the
3NM64 count rate from the 1995 survey differs from that of Nuntiyakul et al. (2014) for the same survey in
that the present data are restricted to time periods with usable BC data, without correction for short-term
cosmic ray variations and without a normalization factor of 1.015 to account for the 3NM64 location on the
ship relative to other survey years.

DRFs, as well as the fit parameters, depend on the physical size of the detectors. To compare the inherent
response of the 3BC and 3NM64, some normalization is necessary. Various normalizations are proposed in
the literature, but for our purposes we adopt a rather simple one, namely, setting the parameter N, to one.
This corresponds to normalizing the counting rate of a detector to 1.0 at zero cutoff. With this normalization
we compare our DRF for the BCs to that for monitors in Figure 8. As expected, the response of the BCs is
significantly greater than that of the monitors at low rigidity.

4.2. Comparison with 1976 and 1996 Surveys
Figure 9 compares our results with various interpretations of the data from the 1976 survey (Stoker et al., 1980)
and the 1996 survey (Dorman et al., 2000). The 1995 and 1976 surveys were performed under remarkably sim-
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Table 4

Dorman Function Fit Parameters

Configuration Analysis Survey year Tag Ng (s71)2 a K
3NM64 This Work 1995 3N95 30.56(2) 9.1(1) 0.903(2)
3NM64 Nuntiyakul et al. (2014) 1995 — 30.9 9.05 0.899
3BC This Work 1995 3B95 1.300(2) 7.6(1) 0.88(1)
1BC Stoker (1985) (A) 1976 1B76A 157.68P 7.32 0.898
1BC Stoker (1985) (B) 1976 1B76B 157.68° 7.85 0.940
1BC This Work 1976 1B76C 197.9(9)P 8.7(3) 0.93(1)
TNM64-N1 This Work 1976 TN76A 189.6(5)° 9.2(2) 0.926(9)
TNM64-N2 This Work 1976 1N76B 192.0(7)P 9.4(3) 0.94(1)
TNM64-N1 Caballero-Lopez and Moraal (2012) 1976 1N76C 8.6806 8.953 0.916
TNM64-N1 Stoker (1985) 1976 1N76D 151.67° 8.41 0.894
2BC Dorman et al. (2000) 1996 2B96 — 9.694(37) 0.9954(38)
3NM64 Dorman et al. (2000) 1996 3N96 — 10.275(23) 0.9615(21)

aFigure in parenthesis is the 16 uncertainty on the last decimal. Uncertainties were not provided for the previously published values. ®Scaled units (not s=1).

0.06

0.05}

ilar solar modulation conditions. The solar modulation parameters calculated from Usoskin et al. (2017) were
~514 and ~518 MV, respectively, for the 1976 survey and 1995 survey. Averaged over the survey, the McMurdo
neutron monitor count rates were within 2% of each other, and both surveys took place in epochs of positive
solar magnetic polarity. Therefore, we compare the results directly, without any adjustment for changed mod-
ulation. Figure 9a illustrates leaded neutron monitor DRFs. (The 3NM64 DRF for 1995 from Nuntiyakul et al.
(2014) is not shown here because it is indistinguishable from the one determined in this paper.) Two different
designs of leaded monitors were used in 1976, denoted N1 and N2 in Table 4. We show four interpretations of
the 1976 data. The first two result from applying our Dorman fit procedure to the summary data for N1 and N2
in Table 4 of Potgieter et al. (1980). We also show interpretations by Caballero-Lopez and Moraal (2012) and
from the caption of Figure 1 of Stoker (1985). Because of various normalizations of the data the values of the
parameter N, cannot be compared directly. The DRF for the 1996 survey uses the preferred Dorman functions
from Dorman et al. (2000). We assume here that we can compare directly the DRF without solar modulation
correction. Indeed, the 1996 survey was realized from December 1996 to March 1997 with an average solar
modulation of 504 MV (calculated from updated parameters from Usoskin et al., 2017). This is very similar to
the above-mentioned values for the 1976 and 1995 surveys.

The different interpretations of the 1976 NM64 data are all rather con-
sistent, but all show a slightly higher response at low rigidity than the

— 3895 1995 data. There is no evidence that this difference might be due to dif-
== 3N95 | ferent primary spectra but it is possible that it represents a difference due
to the use of TNM64 detectors (of two slightly different designs) in the
1976 survey whereas the 1995 survey used a 3NM64. It is well known that
the “outer” detectors in a multi-detector NM64 show a significantly lower
count rate than the inner ones as they are, in effect, surrounded by less

= oo lead (Mangeard, Ruffolo, Saiz & Madlee et al., 2016). In our survey, the aver-
E age end-to-center ratio was 0.891. Based on a simple fit, it decreased by
g 0.03¢ 0.002 from 0 to 16 GV cutoff, a result different from zero by slightly more
that one standard deviation. We were able to reprocess simulations from

0.02} a recent paper by Mangeard, Ruffolo, Saiz and Nuntiyakul et al. (2016) to
make a specific prediction of these quantities. The end-to-center ratio is

o001l reproduced to within 1%, with a predicted decline of 0.0032. We there-
fore think it is at least plausible that the TNM64 may have slightly “softer”

response function than a 3NM64. This is of interest to us in a practical sense,

0.00 4 6 8 10 12 14 16 since the installation at South Pole is in fact three 1NM64 units, individually
P(GY) insulated and heated, but mounted on a common platform. We are cur-

Figure 8. Comparison of the normalized differential response functions rently running more detailed simulations to investigate the effect of this

(bare neutron detectors and standard 3NM64) for the 1995 latitude survey. configuration at South Pole.
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Figure 9. (a) Comparison of leaded neutron monitor response functions determined on latitude surveys. (b) Calculated response functions compared with the
1995 survey result. See text for details of this calculation. (c) Comparison of bare neutron detector response functions. Nomenclature for different surveys is

defined in Table 4.

Figure 9b compares the observed normalized DRF of the 3NM64 of 1995 latitude survey with several calcula-
tions using recent computed models of “yield functions” (count rates as a function of rigidity and type of the
primary particle at the top of the atmosphere). We used the model of Galactic cosmic ray spectra based on
the local interstellar spectra (LIS) of proton and helium as proposed by Ghelfi et al. (2016), Ghelfi and Barao
et al. (2017) and the force-field model of solar modulation from Gleeson and Axford (1968). For the period
of the survey, the modulation parameter corresponding to this LIS was determined using the method pre-
sented in Ghelfi and Maurin et al. (2017) and was about 580 MV (the value was extracted from the database
http://Ipsc.in2p3.fr/crdb). Note that this is preferred for this purpose but it is different from the Usoskin et al.
(2017) parameters used elsewhere in this paper. The nomenclature for the five simulated yield functions used
in this work is as follows: CD00 from Clem and Dorman (2000), MAT09 from Matthia et al. (2009), MI13 from
Mishev et al. (2013), MAU15 from Maurin et al. (2015), and MAN16b from Mangeard, Ruffolo, Saiz and Nun-
tiyakul et al. (2016). For MAT09 and MI13, the parametrizations of Maurin et al. (2015) were used (marked with
adaggerin the Figure’s legend). The differences between simulations are clearly visible with an overall agree-
ment within 50%. Below 10 GV, MI13 provides a better estimate of the normalized DRF than the other models.

Above 10 GV, the simulated results CD00, MAT09, and MAN16b provide a

better estimate. More details about comparison between simulated yields
can be found in Maurin et al. (2015) and Caballero-Lopez (2016).

Figure 9(c) compares determinations of the BC response. Our result for
1995 agrees reasonably well with our analysis of the raw data for 1976 tab-

0 0 ulated by Potgieter et al. (1980). What is rather surprising is the difference
g o . 0 . | from the interpretation of Stoker (1985), where the “A” and “B” analyses
G o were presented as an envelope of all possible fits to the data. At present, we
é 5 } R 8 8 } 6 have no specific comment on this apparent discrepancy. However as we
3 . + = * } have used the Stoker (1985) “B” results extensively in our previous work to
£ o 8 use the BC/NM count rate ratio at South Pole to infer the spectral index of
g af . % .\ . + N 1 relativistic solar particles (Bieber & Evenson, 1991; Bieber et al., 2002, 2013;
4 }F % % Saiz et al., 2008), we have examined the extent to which this difference
g might influence our previous conclusions. Figure 10 is based on Figure 1 of
3 . A+ IB76AUINTGD  § 3B95:3NGS Bieber and Evenson (1991), which compared spectral indices determined
A MC/NE e 1B76B:IN76D @ 3B95:1N76D from NM64s at different P. with the same events analyzed using the moni-
2 ‘ o THME ¢ 2P6EINS6 tors and bare counters at South Pole alone. In this analysis, based on ratios
% % % % E of countrate increases, the implicitassumption is that the entire DRF scales
g f § § § with altitude with the same barometer coefficient—in other words, the

— N — o~ o~

Figure 10. Comparison of estimated spectral indexes for GLEs of 1989. Black
markers are taken unchanged from Bieber and Evenson (1991). Estimated
spectral indices calculated in this article are shown in colored markers with
error bars. Nomenclature for different surveys is defined in Table 4. More

details are available in the text.

entire altitude dependence may be expressed as a variation in N,.

In Figure 10 the black symbols are taken directly from Bieber and Evenson
(1991), where the open symbols are derived from station ratios (SP: South
Pole, MC: McMurdo, TH: Thule, and NE: Newark) and the closed symbols
from BC/NM ratios. The conclusion of that paper was that the “Stoker B”
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interpretation of the BC/NM ratio at South Pole provided a better consistency with fixed station ratios, which
was supported by comparison with the results of Cramp et al. (1997) as reported by Ruffolo et al. (2006).
Applying this approach to the present work results in the red points. Here the error bars are constructed from
the extremes allowed by the one sigma errors on the Dorman parameters discussed earlier. The result is similar
to the “Stoker A" analysis, but like that analysis is not consistent with the station ratio determination. On the
other hand, keeping in mind that the South Pole installation is actually three TNM64 units we also show the
result (blue symbols) obtained with the 1995 bare survey and the 1976 TNM64 result. Here the agreement
with the station ratios is as good as that obtained with the “Stoker B” analysis.

In Figures 9 and 10 we also show the results from applying the Dorman et al. (2000) response functions, which
are significantly different, presumably because the bare detectors in that work had no moderators.

5. Conclusions

We report an analysis of data taken using three bare neutron counters with a novel design and a standard
three-counter neutron monitor (3NM64) on board the U.S. Coast Guard icebreaker Polar Star from 6 November
1995 to 20 March 1996, over a route from San Diego, USA, to McMurdo Base, Antarctica, and back to the
northern Pacific Ocean. This latitude survey sampled geomagnetic cutoffs over 0 < P, < 15 GV, allowing
a determination of the BC and 3NM64 response functions over that range. Various techniques were used to
clean and correct the data. The pressure correction coefficient as a function of P, was previously determined
for this ship-borne 3NM64 (using data from 13 latitude surveys over 1994-2007), and here we investigated
whether the BC count rate requires a different pressure coefficient. We concluded that the statistics available
for these BCs are insufficient to determine whether the pressure coefficients are different, and therefore we
used the same coefficient. The temperatures of both detector systems were controlled to some extent and
we did not find a significant temperature effect on the count rates. The BC response was strongly affected by
proximity to any port along the route, and such time periods were excluded when determining the response
functions.

The only directly comparable latitude survey with bare neutron counters (of a different design, but with mod-
erators) was performed in 1976 (Potgieter et al., 1980; Stoker et al., 1980), a time when solar modulation
conditions were very similar to those in 1995. The neutron monitor response functions were similar, with
small differences that might be attributed to the use of different pressure coefficients or the different detec-
tor design (TNM64 in 1976 versus 3NM64 in 1995). We will further investigate this effect for interpretation of
data from the South Pole NM, which actually consists of three independent TNM64 units. The BC response
function for 1995 is similar to what we derive from the raw data from 1976 using the same analysis techniques
but is substantially outside the allowed range according to Stoker (1985). One of the extremes of that range
has been successfully used to determine the spectral index of relativistic solar particles from BC and NM data
at South Pole during ground level enhancements. When applied in simplest form the results from the present
work do not directly give such good agreement.

It must however be noted that the counting rates for the typically steep solar particle spectra at the high
altitude of South Pole are determined in large part by response functions (or more properly the underlying
yield functions) in a rigidity range below the atmospheric cutoff at sea level. Thus, the use of data from sea
level surveys in this range is an extrapolation.

As the spectrum gets steeper the sensitivity to the choice of fit parameters also increases. In Figure 10 the
formal errors on the spectral index for the apparently better choice of the parameters (blue points) are much
larger than the formal errors on the less favored choice of parameters (red points) that would imply a flatter
spectrum. In fact, the interpretation of the “Stoker A” and “Stoker B” as defining the range of variation in the
spectral index allowed by uncertainties in the measured response is essentially confirmed. The BC to monitor
comparison indeed gives a rather precise measurement of the spectral index, and in particular the variation of
the spectral index within a given event (Ruffolo et al., 2006), but the actual value of the spectral index cannot
be determined from latitude survey data alone.

In work in progress, we will follow up on this issue by analyzing data from a third latitude survey with BCs (of
yet another design, but now installed at South Pole) conducted in 2009. We are investigating these various
aspects of the analysis with Monte Carlo simulations, also currently in progress.
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