Annals of Clinical Biochemistry

Clinical utility of chromogranin A for surveillance of succinate dehydrogenase B- and D-related paraganglioma

Journal:	Annals of Clinical Biochemistry
Manuscript ID	ACB-18-158.R2
Manuscript Type:	Research Article
Date Submitted by the Author:	14-Oct-2018
Complete List of Authors:	Thompson, Michael; Royal Hobart Hospital, Endocrinology; University of Tasmania, School of Medicine Parameswaran, Venkat; Royal Hobart Hospital, Endocrinology; University of Tasmania, School of Medicine Burgess, John; University of Tasmania, School of Medicine; Royal Hobart Hospital, Endocrinology
Keywords:	Tumour markers < Analytes, Cancer < Clinical studies, Endocrinology < Clinical studies

2		
3		
4	1	Research Article
5		
0 7	2	Clinical utility of abromagrapin A for auryaillance of augeingte debydrogenese R
8	2	Clinical utility of chromogranin A for surveillance of succinate dehydrogenase B-
9		
10	2	and D related noregonalisms
11	3	and D-related paraganglionia
12		
15 14	4	
15	4	
16		
17	5	Dr Michael J.W. Thompson, Associate Professor Venkat Parameswaran
18	5	
19 20		
21	6	Professor John R. Burgess
22	0	
23		
24	7	
25 26		
27		
28	8	School of Medicine, University of Tasmania. Department of Diabetes and
29		
30		
31	9	Endocrinology, Royal Hobart Hospital.
33		
34		
35	10	
36		
37 38		
39	11	Corresponding author: Dr Michael Thompson, Department of Diabetes and
40		
41		
42	12	Endocrinology, Royal Hobart Hospital 48 Liverpool Street, Hobart, Tasmania,
43 44		
45	10	7000 Email: Michael thempson@the tes acy or Phanes 612 6166 9209
46	13	7000. Email. Michael.thompson@ths.tas.gov.au. Phone. 613 6166 6306.
47		
48 40	14	
50	14	
51		
52	15	
53	10	
54 55		
56	16	Abstract word count: 250
57	-	
58		
59 60		Annals of Clinical Biochemistry
00		

Page 2 of 41

Main text word count: 2579

3 DECLARATIONS

- 4 Conflicts of interest: none to declare.
- 5 Funding: this research did not receive any specific grant from any funding agency
- 6 in the public, commercial or not-for-profit sector.
- 7 Ethical approval: The research program was approved by the Southern Tasmanian
- 8 Health and Medical Human Research Ethics Committee (reference number H0014866).
- 9 Guarantor: MT
- 10 Contributorship:
- 11 MT: study design, data collection, analysis, manuscript drafting and revisions.
- 12 VP: data collection, manuscript drafting and, revisions.
- 13 JB: study conception and design, data collection and analysis, manuscript drafting and
- 14 revisions.
- 15 Acknowledgements: none to declare.

2 3	1	Abstract
4 5 6	1	
7 8 9	2	Background
10 11 12	3	Patients with mutations of succinate dehydrogenase B (SDHB) and D (SDHD)
13 14 15	4	are at high risk of paraganglioma (PGL) necessitating surveillance.
16 17 18 19	5	Chromogranin A (CgA) has been proposed as a biochemical marker of PGL. We
20 21 22	6	sought to determine the diagnostic utility of CgA in a population based SDHx
23 24 25 26	7	sample.
27 28 29	8	
30 31 32 33	9	Methods
34 35 36	10	Tasmania is an island state with one tertiary referral centre for endocrine
37 38 39 40	11	neoplasia. We performed cross sectional analysis of all adult SDHB (<i>n</i> =52) and
41 42 43	12	SDHD (<i>n</i> =10) patients undergoing PGL surveillance between 2011 and 2017.
44 45 46 47	13	CgA was referenced against the outcome of PGL surveillance with a minimum of
48 49 50	14	18F-fluorodeoxyglucose positron emission tomography/computed tomography
51 52 53	15	(18F-FDG PET/CT) and plasma metanephrines (metanephrine and
55 56 57	16	normetanephrine).
58 59 60		Annals of Clinical Biochemistry 3

DOI: 10.1177/0004563218811865

Page 4 of 41

2		
5 4	1	
5		
6		
7	2	Results
8		
9 10		
10	3	CgA correctly predicted the result of PGL surveillance more often in patients with
12		
13		
14	4	SDHB compared to those with SDHD (77% vs 22%, p=0.003). In the SDHB
15		
16		
17	5	group. CgA demonstrated a sensitivity of 67% and specificity of 79% compared
18	5	
19 20		
20	6	to 22% and 0% in the SDHD group. CgA identified one of three PET/CT-
22	0	to 22 % and 0 % in the ODTID group. OgA identified one of three T E 1701-
23		
24	7	visualized SDHR related PCI c with normal plasma metapophrines at the
25	/	visualised SDHD-related FGLS with normal plasma metanephinies at the
26		
2/	0	evenence of nine folce positive requite A normal CaA demonstrated a positive
20 29	8	expense of nine faise positive results. A normal CgA demonstrated a negative
30		
31	2	and distinguishes of 000% for ODUD values of DOU to notice to with ODUD, also are
32	9	predictive value of 92% for SDHB-related PGL. In patients with SDHB, plasma
33		
34		
35	10	normetanephrine and metanephrine offered superior specificity (100%, p =0.01
30 37		
38		
39	11	and 100%, p <0.01, respectively) with comparable sensitivity (67%, p =1.0 and
40		
41		
42	12	11%, <i>p</i> =0.06, respectively) to CgA.
43		
44 45		
45 46	13	
47		
48		
49	14	Conclusion
50		
51		
52		
53 51		
55		
56		
57		
58		
59		

1

1		
2 3		CrA does not provide additive bonefit to standard our cillance for predicting the
4 5	I	CgA does not provide additive benefit to standard surveillance for predicting the
6		
7 8	2	presence of SDHB- or SDHD-related PGL, but has a useful negative predictive
9		
10 11	3	value when normal in patients with SDHB mutation.
12		
13 14	4	
15	т	
16 17		
18	5	Key words: Chromogranin A; succinate dehydrogenase; SDHD; SDHB;
19 20		
21	6	paraganglioma; surveillance
22 23		
24	-	
25	7	
26		
27 28	8	
29	0	
30		
31		
32		
33 34		
35		
36		
37		
38		
39		
41		
42		
43		
44		
45 46		
47		
48		
49		
50 51		
52		
53		
54		
55		
57		
58		
59		5
60		Annals of Clinical Biochemistry

Page 6 of 41

2	Paraganglioma (PGL) are rare neuroendocrine tumours that arise from
3	autonomic ganglia and may either be functional, producing catecholamines, or
4	non functional. Hereditary conditions predisposing to PGL are increasingly
5	recognised and currently represent 25-30% of all PGL diagnoses. ¹ While
6	sporadic PGL are rare, patients affected by hereditary PGL syndromes are at
7	increased risk and may experience synchronous, metasynchronous or metastatic
8	disease. ^{1, 2} Loss of function mutations involving succinate dehydrogenase B
9	(SDHB) and D (SDHD) result in an autosomal dominant increased risk of
10	paraganglioma. ¹⁻³
11	
12	SDHB and SDHD have a highly penetrant phenotype, up to 50% and 80%
13	lifetime risk, respectively.4-8 SDHB-related PGL are predominately derived from
14	sympathetic ganglia of the thoracoabdominal region and are characterised by an
15	aggressive disease course with malignant PGL over-represented.9-11 Due to
16	maternal imprinting, SDHD-related disease only manifests when the mutation is
	Appals of Clinical Rinchamistry

DOI: 10.1177/0004563218811865

3 4 5	1	inherited paternally, and is characterised by non-malignant multifocal disease	
6 7 8 9	2	predominately involving parasympathetic ganglia of the head and neck. ^{3, 4, 8}	
10 11 12	3	Diagnosis of SDHx-related PGL can be delayed due to an increased frequency of	of
13 14 15 16	4	biochemically silent and clinically asymptomatic phenotypes, potentially	
17 18 19	5	increasing the risk of malignant transformation. ¹²	
20 21 22 23	6		
23 24 25 26	7	The potential for early onset, aggressive and highly penetrant phenotypes	
27 28 29	8	necessitate lifelong surveillance as the standard of care for patients with SDHx	
30 31 32 33	9	mutation. ^{13, 14} Surveillance protocols for SDHx-related disease continue to be	
34 35 36	10	refined. ¹⁵ Current surveillance algorithms emphasise specialised imaging, such	
37 38 39 40	11	as magnetic resonance imaging/computed tomography, fluorodeoxyglucose	
41 42 43	12	(18F) positron emission tomography/computed tomography (18F-FDG PET/CT)	
44 45 46 47	13	or 68 Ga DOTATATE PET/computed tomography, and biochemistry, including	
48 49 50	14	plasma metanephrines. ¹⁵⁻²¹ Challenges to this approach include the need for	
51 52 53 54	15	specialised testing and technical expertise, sometimes mandating significant	
55 56 57 58			
59 60		Annals of Clinical Biochemistry	7

Page 8 of 41

1 travel time for patients, cost and radiation exposure across the lifespan. The

2 relevance of interval biochemistry is uncertain.

4	Chromogranin A (CgA) is a major soluble protein in secretory dense core
5	granules of neuroendocrine cells and cosecreted into serum with other stored
6	peptides. ²² Consequently, CgA is a widely available diagnostic biomarker for
7	neuroendocrine tumours and is commonly used for surveillance of patients with
8	SDHx mutations. ^{23, 24} Recently CgA was demonstrated to have comparable and
9	complementary diagnostic performance to plasma metanephrines, with a sensitivity of
10	73.2% and specificity of 95.9%, in a SDHB and SDHD referral population with high
11	prevalence of metastatic and multifocal disease under ideal diagnostic conditions. ²²
12	However, the utility of CgA for PGL surveillance in unselected SDHx populations
13	is controversial with false positive results a particular challenge. ^{23, 25} False
14	positive CgA results may occur due to proton pump inhibitor use (PPI), chronic
15	kidney disease, heart failure or atrophic gastritis. ²³ We examined the diagnostic

1		
2		
4	1	value of CgA results in a population based sample of adults with SDHB and
5		
6		
7 8	2	SDHD.
9		
10		
11		
12		
14		
15		
16		
17		
19		
20		
21		
22 23		
24		
25		
26		
27		
20		
30		
31		
32 33		
34		
35		
36		
3/		
39		
40		
41		
42 43		
44		
45		
46		
4/ 48		
40 49		
50		
51		
52 53		
55		
55		
56		
57 58		
50 59		0
60		Annals of Clinical Biochemistry 9

Materials and methods

2	Tasmania is an island state in Australia with a single referral centre (the Royal
3	Hobart Hospital) for patients with or at risk of endocrine neoplasia, including
4	those with SDHB and SDHD mutations. As previously described, ¹⁶ all adult
5	patients with SDHB and SDHD mutations undergoing PGL surveillance with 18F-
6	FDG PET/CT and plasma metanephrines at the Royal Hobart Hospital between
7	1 July 2011 and 30 September PGL 2017 who had contemporary (within six
8	months) assessment of CgA concentration were considered eligible for inclusion.
9	Surveillance for PGL in asymptomatic adult SDHB and SDHD carriers at the
10	Royal Hobart Hospital consists of annual biochemistry (plasma metanephrines
11	and CgA) and second yearly imaging (four yearly neck and renal ultrasounds
12	alternating with four yearly 18F-FDG PET/CT). The research program was
13	approved by the Southern Tasmanian Health and Medical Human Research
14	Ethics Committee (reference number H0014866).
15	
	Appals of Clinical Biochemistry

2		
3	1	Patients were considered positive for a PGL-related appormality if either 18F-
4	1	
5		
7	2	EDG PET/CT or plasma metanenhrines were positive. PGL were considered
8	2	T De l'Ellor of plasma metanoprimies were positive. L'el were considered
9		
10	2	functional when plasma metapenhrines (metapenhrines or pormetapenhrine)
11	5	
12 13		
13	4	were elevated. CaA concentration was referenced against the result of PCI
15	4	were elevated. CyA concentration was relevenced against the result of t GE
16		
17	5	$\alpha_{\rm rescale}$
18	2	surveillance to determine the diagnostic value of CgA. CgA concentration was
19		
20		considered observed if it was greater than the upper limit of normal. Detions date
21	6	considered abnormal if it was greater than the upper limit of normal. Patient data
22		
24	_	
25	7	was assessed in a cross-sectional manner to determine the ability of CgA
26		
27		
28	8	concentration to predict the result of PGL surveillance.
29		
30		
32	9	
33		
34		
35	10	Plasma metanephrine measurement
36		
3/		
30	11	Plasma metanephrines considered in this study included metanephrine and
40		
41		
42	12	normetanephrine, but not 3-methoxytyramine. Plasma metanephrines were
43		
44		
45 46	13	analysed using liquid chromatography-tandem mass spectrometry at the Clinical
40 47		
48		
49	14	Pharmacology and Therapeutics laboratory, Austin Health. Briefly, following the
50		
51		
52	15	addition of deuterated internal standard, solid phase extraction, dry down and
53		
54 55		
55	16	reconstitution, samples were derivatised using cyanoborohydride and
57	10	
58		
59		11
60		Annals of Clinical Biochemistry

Page 12 of 41

1	
2	
3	
4	
5	
6	
7	
, 8	
g	
10	
11	
10	
12	
13	
14	
12	
10	
17	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
30	
30	
3/	
38	
39	
40 41	
41	
42 42	
45 11	
44	
45	
40	
4/	
48	
49	
50	
51 E2	
52 52	
55 ⊑4	
54 57	
55	
56	
5/	
58	
59	
60	

1	acetaldehyde. Chromatography was performed using Agilent 1200 Infinity high
2	performance liquid chromatography (Agilent Technologies, Mulgrave, Australia)
3	and a reversed phase column (Atlantis T3 150 mm× 2.1 mm; 3 μ m packing,
4	Waters Australia) using a 0.2 mL/min flow of mobile phase delivering a linear
5	acetonitrile gradient (4-24% over 5 min with 3 min re-equilibration) in 0.2% formic
6	acid. Tandem mass spectrometric detection was performed using an Agilent
7	6460 series instrument (Agilent Technologies, Australia). Electrospray ionization
8	was used in positive ion mode at unit mass resolution and optimized detector
9	settings for voltages, gas temperatures and flows.
9 10	settings for voltages, gas temperatures and flows.
9 10 11	settings for voltages, gas temperatures and flows.
9 10 11 12	settings for voltages, gas temperatures and flows. <u>Chromogranin A measurement</u> Patients were requested to fast prior to CgA assessment. All samples for CgA
 9 10 11 12 13 	settings for voltages, gas temperatures and flows. <u>Chromogranin A measurement</u> Patients were requested to fast prior to CgA assessment. All samples for CgA measurement were collected in a serum tube and placed in ice-water mixture to
 9 10 11 12 13 14 	settings for voltages, gas temperatures and flows. <u>Chromogranin A measurement</u> Patients were requested to fast prior to CgA assessment. All samples for CgA measurement were collected in a serum tube and placed in ice-water mixture to prevent breakdown of endogenous CgA. CgA was quantified using the DAKO
 9 10 11 12 13 14 15 	settings for voltages, gas temperatures and flows. Chromogranin A measurement Patients were requested to fast prior to CgA assessment. All samples for CgA measurement were collected in a serum tube and placed in ice-water mixture to prevent breakdown of endogenous CgA. CgA was quantified using the DAKO (DAKO, Glostrup, Denmark) assay until 2014 (inter-assay coefficients of variation
 9 10 11 12 13 14 15 16 	settings for voltages, gas temperatures and flows. <u>Chromogranin A measurement</u> Patients were requested to fast prior to CgA assessment. All samples for CgA measurement were collected in a serum tube and placed in ice-water mixture to prevent breakdown of endogenous CgA. CgA was quantified using the DAKO (DAKO, Glostrup, Denmark) assay until 2014 (inter-assay coefficients of variation 7% at a CgA concentration of 53 U/L, derived from 40 estimations). Subsequent

DOI: 10.1177/0004563218811865

2	
3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
∠ । วา	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
31	
25	
22	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
18	
40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	testing was done using the Cisbio (Cisbio Assay, Codolet, France) assay (inter-
2	assay coefficients of variation were 5.8% and 6.7% at a CgA concentration of
3	20ug/L and 200ug/L, respectively, both derived from 30 estimations). Both assays
4	used an ELISA format but different antibody specificity. The DAKO assay used
5	two polyclonal antibodies with epitope specificity towards a 23 kD 'C' terminal
6	fragment of CgA. The Cisbio assay used two monoclonal antibodies that had
7	specificity directed to amino acid sequence 145 – 197 and 198 – 245. The
8	reference range (<21.8 U/L) for the DAKO assay was derived from analysis of
9	samples from 40 healthy volunteers. The reference range (27-94 μ g/L) for the Cisbio
10	assay was derived from analysis of samples from 60 healthy volunteers. Statistical
11	correlation between assays was high (R ² =0.99). Consistency of clinical interpretation of
12	results between the two methods was also high (94%) with only two samples, both close
13	to the assay cut offs, yielding different results between assays. As the reference range
14	for these assays differed, CgA concentration was expressed as multiples of the
15	upper limit of normal (xULN, 21.8 U/L for the DAKO assay and 94 μ g/L for the
16	Cisbio assay).
17	

Page 14 of 41

2	
2	
3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
١ö	
19	
20	
21	
22	
22	
23 24	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
<u>7</u>	
Cד م م	
44	
45	
46	
47	
18	
40	
49	
50	
51	
52	
53	
55 E A	
54	
55	
56	
57	
58	
50	
59	
60	

1

1	Medical records and biochemistry were reviewed to determine PPI use, and the
2	presence of chronic kidney disease (CKD, defined as an estimated glomerular
3	filtration rate \leq 60 mL/min/1.73m ²), ²⁶ atrophic gastritis or heart failure. Patients
4	were not excluded from analysis if these conditions were present, but their
5	presence noted and impact assessed.
6	
7	Data were collated and statistical analysis performed using GRAPHPAD PRISM
8	Version 7.03 (GRAPHPAD Software Inc. La Jolla, CA, USA) and SigmaPlot
9	Version 13 (Systat Software, San Jose, CA, USA). CgA was analysed as
10	multiples of the upper limited of normal (xULN). Students' t-tests and Fisher
11	exact tests were used to compare differences in means and proportions,
12	respectively. Where data were not normally distributed, log transformations were
13	performed. Where data failed to meet the equal variance test or Shapiro-Wilk
14	normality test post log transformation, Mann-Whitney Rank Sum t-tests where
15	used. McNemar's t-test was used to compare the diagnostic performance of CgA

1		
2		
3 4	1	and plasma metanephrines. Statistical significance was defined as a two tailed p
5		
6		
7	2	value ≤0.05.
8		
9		
10		
12		
13		
14		
15		
16		
17		
19		
20		
21		
22		
23		
24 25		
25		
27		
28		
29		
30		
3 I 3 7		
33		
34		
35		
36		
37		
38 30		
40		
41		
42		
43		
44 45		
45 46		
47		
48		
49		
50		
51 52		
52 53		
55		
55		
56		
57		
58 50		
59 60		Annals of Clinical Biochemistry 15
~~		

DOI: 10.1177/0004563218811865

Page 16 of 41

2	There was no significant difference between patients with SDHB and those with
3	SDHD with regard to age, sex or mean CgA concentration (Table 1). Patients
4	with SDHB were significantly ($p\!\!<\!\!0.001$) less likely to have a PGL manifest at
5	baseline compared to those with SDHD (17% <i>vs</i> 90%). When PGL was present,
6	CgA was significantly higher ($p=0.02$) in patients with SDHB compared to those
7	with SDHD (3.00±3.81 <i>vs</i> 0.80±0.55). Patients with SDHB were more likely to
8	have functional PGLs ($p=0.03$) and for these PGLs to affect the
9	thoracoabdominal region (p =0.002). There was no significant difference between
10	SDHB and SDHD patients with regard to the prevalence of malignant PGLs (33%
11	<i>vs</i> 22%). Three patients with SDHB and two patients with SDHD had malignant
12	PGLs with metastatic disease above and below the diaphragm in all cases.
13	
14	Table 2 summarises the diagnostic performance of CgA concentration referenced
15	against the outcome of PGL surveillance. CgA was significantly more likely to
16	yield a concordant result for patients with SDHB compared to those with SDHD
	Annals of Clinical Biochemistry 16

DOI: 10.1177/0004563218811865

2 3 4	1	(77% <i>vs</i> 22%, <i>p</i> =0.003). This was primarily due to normal CgA better predicting
5 6		
/ 8 0	2	the absence of PGL in patients with SDHB versus SDHD (92% vs 0%, p <0.001),
9 10 11 12	3	rather than a positive result predicting the presence of a PGL (40% vs 67%,
13 14 15	4	p=0.56). In patients with SDHB, the sensitivity and specificity of CgA for
17 18 19	5	abnormal surveillance results were 67% and 79%, respectively, compared to
20 21 22	6	22% and 0% in patients with SDHD. The negative predictive value of a normal
23 24 25 26	7	CgA concentration was 92% in patients with SDHB. Excluding all SDHB patients
27 28 29	8	on proton pump inhibitors ($n=6$), with significant CKD ($n=1$), heart failure ($n=0$) or
30 31 32 33	9	atrophic gastritis (<i>n</i> =0) from analysis regardless of the outcome of PGL
34 35 36	10	surveillance yielded a sensitivity of 75% (35-97%) and specificity of 84% (69-
37 38 39 40	11	94%) in patients with SDHB. If plasma metanephrines were included in analysis
41 42 43	12	and biochemistry defined as positive if either CgA or plasma metanephrines were
44 45 46 47	13	elevated, then sensitivity increased to 78% (40-97%) and specificity to 80% (65-
48 49 50	14	91%). In the SDHB cohort, plasma normetanephrine had similar sensitivity 67%
51 52 53	15	(30%-93%, <i>p</i> =1.0) but superior specificity 100% (91%-100%, <i>p</i> =0.01) compared
55 56 57	16	to CgA for SDHB-related PGL (Figure 1B). Plasma metanephrine also had
58 59 60		Annals of Clinical Biochemistry 17

Page 18 of 41

superior specificity 100% (92-100%, p<0.01) with comparable sensitivity 11% (0-
48%, p=0.06) to CgA for SDHB-related PGL (Figure 1C).
Patients with SDHB and a PGL were more likely to have an elevated CgA than

5 SDHB patients without PGL (p=0.01, Figure 1A). CgA was also significantly

6 higher (3.00±3.81xULN vs 0.89±1.17xULN, p=0.001) in patients with SDHB and

7 PGL compared to SDHB patients without PGL. In patients with SDHD, CgA was

8 not significantly different (p=0.33) between patients with and without PGL. CgA

9 was more likely to be elevated in patients with a functional PGL compared to

10 those with a non functional PGL (86% vs 18%, p=0.045). One patient with SDHB-

related PGL had elevated CgA without concurrent elevation of plasma

12 metanephrines, however this PGL was also confirmed on concurrent 18F-FDG

13 PET/CT imaging. One patient had elevated plasma metanephrines without

elevation of CgA and two patients with normal CgA and plasma metanephrines

15 had imaging-detected PGLs.

Annals of Clinical Biochemistry

DOI: 10.1177/0004563218811865

Discussion

2	In this population-based study, CgA had limited additive diagnostic value for
3	predicting the presence of SDHx-related PGL, but offered potentially useful
4	negative predictive value for patients with SDHB mutation. CgA demonstrated
5	better diagnostic performance in SDHB-related compared to SDHD-related PGL
6	surveillance. Corroborating existing literature, ²² we found that CgA was (1) better
7	able to predict the outcome of PGL surveillance in patients with SDHB compared
8	to those with SDHD and (2) more likely to be elevated and significantly higher
9	when PGL was present in patients with SDHB, but not in patients with SDHD. A
10	normal CgA better predicted the absence of SDHB-related PGL with infrequent
11	false negative results and a potentially useful negative predictive value. However,
12	in our population-based SDHB cohort, CgA did not identify any PGLs that would
13	not have been detected by routine surveillance, limiting its positive predictive
14	utility in both SDHB- and SDHD-related PGL surveillance.
15	
	20

DOI: 10.1177/0004563218811865

2 3 4 5	1	PGL related to SDHB and SDHD differ phenotypically. SDHD-related PGL
6 7 8	2	preferentially arise from parasympathetic ganglia in the head and neck region
9 10 11 12	3	whereas SDHB-related PGL more frequently arise from sympathetic ganglia and
13 14 15	4	involve the thoracoabdominal region with a higher incidence of malignant
16 17 18 19	5	disease.4, 7, 8 Our data reflect this anatomical divergence and support the growing
20 21 22	6	body of literature suggesting that SDHB- and SDHD-related PGLs are
23 24 25 26	7	biochemically divergent with CgA lacking diagnostic efficacy in patients with head
27 28 29	8	and neck PGLs (exclusively SDHD patients in our cohort).24,27 CgA was higher in
30 31 32 33	9	patients with SDHB-related PGL compared to those with SDHD-related PGL.
34 35 36	10	CgA was higher in patients with functional PGLs, possibly reflecting the
37 38 39 40	11	necessary role of CgA in dense-core secretory granule biogenesis ²⁸ or
41 42 43	12	cosecretion with catecholamines. ²⁹ The biochemical divergence between SDHB-
44 45 46 47	13	and SDHD-related PGL potentially reflects the parasympathetic origin of head
48 49 50	14	and neck predominant SDHD-related PGLs or may be attributable to other
51 52 53 54	15	genotype-specific differences. ^{27, 30} We were unable to differentiate these
55 56 57		
58 59 60		Annals of Clinical Biochemistry 21

- possibilities due to the pronounced anatomical segregation by genotype in our
- 2 cohort.

4	Compared to a recent, highly controlled study in a SDHB referral population, ²⁷
5	the sensitivity, specificity and ability of CgA to complement plasma metanephrine
6	testing in our SDHB cohort was lower. This partially reflects the impact of PPI use
7	and CKD in our cohort as exclusion of these participants increased sensitivity
8	and specificity to the extent that the sensitivity of CgA was comparable, though
9	specificity remained less than previously observed. ²⁷ The residual difference in
10	specificity may be due to the lower prevalence of metastatic disease in our
11	cohort. The complementary nature of CgA and plasma metanephrines for PGL
12	diagnosis was also less apparent in our cohort. CgA was elevated in only one of
13	three (33%) SDHB-related PGLs with normal plasma metanephrines, was less
14	specific than plasma metanephrines alone and the sensitivity of CgA and plasma
15	metanephrines together was only slightly higher than CgA alone. Thus in our

DOI: 10.1177/0004563218811865

1	cohort, CgA was able to detect one additional PGL, which was concurrently
2	visualised on 18F-FDG PET/CT, at the expense of nine false positive results.
3	
4	False positive results are a major limitation of CgA testing, ²³ but do not detract
5	from the negative predictive value of a normal CgA result. In our SDHB cohort
6	the negative predictive value of a normal CgA was 92%. Therefore, while a
7	raised CgA is unlikely to meaningfully add to routine PGL surveillance, a normal
8	CgA in a patient with SDHB mutation offers potentially informative negative
9	predictive value as an ancillary test. These data should aid decision making in
10	daily clinical practice, but are not sufficient to recommend CgA displace existing
11	biochemical or imaging approaches to PGL surveillance.
12	
13	3-methoxytyramine is the O-methylated metabolite of dopamine and has emerged as a
14	valuable biomarker of prevalent and metastatic SDHx-related PGL. ³¹⁻³³ Assessment of 3-
15	methoxytyramine is particular useful in head and neck PGL, ³⁴ which are less likely than
16	abdominothoracic PGLs to be detected using metanephrine or normetanephrine. ³⁵ Given
17	our data suggest that CgA offers limited positive predictive value to diagnostic
	Annals of Clinical Biochemistry 23

DOI: 10.1177/0004563218811865

Page 24 of 41

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
10
20
21
22
22 23
23
24
25
20
27
20
29
30 21
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 2

1	algorithms including 18F-FDG PET/CT and plasma metanephrines, it is
2	conceivable that inclusion of 3-methoxytyramine in these algorithms will further
3	supplant the role of CgA as a second line test. ²¹
4	
5	This study has potential limitations. Patients on PPIs and with mild renal
6	dysfunction were included. This potentially underestimated the diagnostic
7	performance of CgA due to false positive results, which we accounted by further
8	analysis excluding relevant participants. The major benefit of this inclusive study
9	design, combined with a population based sample from the only referral centre in
10	an island state, is strong external validity and relevance to clinical practice. Our
11	sample size was moderate, potentially limiting statistical analysis. However, in
12	the context of an exceedingly rare disease, our sample size compares favourably
13	and allowed comparisons between patients with SDHB and SDHD. Finally, two
14	different assays were used to quantify CgA during the study period, potentially
15	introducing additional variability. However, both the statistical correlation and

1	alinical consistency of access recults was high suggesting that the overall impact	
1	clinical consistency of assay results was high, suggesting that the overall impact	-
2	of this change was limited.	
3		
5		
4	In conclusion, UgA does not meaningfully add to standard surveillance for	
5	predicting the presence of SDHB- or SDHD-related PGL, however it provides a	
6	potentially informative negative predictive value in patients with SDHB mutation	
0	potentially informative negative predictive value in patients with ODTID Indiation.	
7		
8		
	Appale of Clinical Biochemistry	25
	Annais of Clinical Biochemistry	
	1 2 3 4 5 6 7 8	 clinical consistency of assay results was high, suggesting that the overall impact of this change was limited. In conclusion, CgA does not meaningfully add to standard surveillance for predicting the presence of SDHB- or SDHD-related PGL, however it provides a potentially informative negative predictive value in patients with SDHB mutation.

References

2	1.	Gimenez-Roqueplo AP, Dahia PL, Robledo M. An update on the genetics
3		of paraganglioma, pheochromocytoma, and associated hereditary
4		syndromes. Horm Metab Res. 2012; 44:328-33.
5	2.	Fishbein L, Nathanson KL. Pheochromocytoma and paraganglioma:
6		understanding the complexities of the genetic background. Cancer Genet.
7		2012; 205:1-11.
8	3.	Taschner PE, Jansen JC, Baysal BE, Bosch A, Rosenberg EH, Brocker-
9		Vriends AH, et al. Nearly all hereditary paragangliomas in the Netherlands
10		are caused by two founder mutations in the SDHD gene. Genes
11		Chromosomes Cancer. 2001; 31:274-81.
12	4.	Ricketts CJ, Forman JR, Rattenberry E, Bradshaw N, Lalloo F, Izatt L, et
13		al. Tumor risks and genotype-phenotype-proteotype analysis in 358
14		patients with germline mutations in SDHB and SDHD. Hum Mutat. 2010;
15		31:41-51.
		Annals of Clinical Biochemistry 26
	2 3 4 5 6 7 8 9 10 11 12 13 14 15	2 1. 3 4 5 2. 6 7 8 3. 9 10 11 12 4. 13 14 15

2				
4	1	5.	Schiavi F, Milne RL, Anda E, Blay P, Castellano M, Opocher G, et al. Are	
5				
6				
/ Q	2		we overestimating the penetrance of mutations in SDHB? Hum Mutat.	
9				
10				
11	3		2010;31:761-2.	
12				
13				
14 15	4	6.	Andrews KA, Ascher DB, Pires DEV, Barnes DR, Vialard L, Casey RT, et	
16				
17				
18	5		al. Tumour risks and genotype-phenotype correlations associated with	
19				
20				
21	6		germline variants in succinate dehydrogenase subunit genes SDHB,	
22				
24				
25	7		SDHC and SDHD. J Med Genet. 2018. Epub ahead of print.	
26				
27		_		
28	8	1.	Benn DE, Gimenez-Roqueplo AP, Reilly JR, Bertherat J, Burgess J, Byth	
29 30				
31				
32	9		K, et al. Clinical presentation and penetrance of	
33				
34				
35	10		pheochromocytoma/paraganglioma syndromes. J Clin Endocrinol Metab.	
30 37				
38				
39	11		2006; 91:827-36.	
40				
41		•		
42	12	8.	Neumann HP, Pawlu C, Peczkowska M, Bausch B, McWhinney SR,	
45 44				
45			Manager Martiel, Distinct all signal factories of a supervision of a super	
46	13		Muresan M, et al. Distinct clinical features of paraganglioma syndromes	
47				
48			and state with ODUD and ODUD many mutations. JAMA, 0004, 000,040	
49 50	14		associated with SDHB and SDHD gene mutations. JAMA. 2004; 292:943-	
50 51				
52	1.5		F4	
53	15		16	
54				
55				
50 57				
58				
59			2	7
60			Annals of Clinical Biochemistry	'

Page 28 of 41

3 4 5	1	9. Gimenez-Roqueplo AP, Favier J, Rustin P, Rieubland C, Crespin M, Nau
6 7 8 9	2	V, et al. Mutations in the SDHB gene are associated with extra-adrenal
10 11 12	3	and/or malignant phaeochromocytomas. Cancer Res. 2003; 63:5615-21.
13 14 15	4	10.Brouwers FM, Eisenhofer G, Tao JJ, Kant JA, Adams KT, Linehan WM, et
17 18 19	5	al. High frequency of SDHB germline mutations in patients with malignant
20 21 22	6	catecholamine-producing paragangliomas: implications for genetic testing.
23 24 25 26	7	J Clin Endocrinol Metab. 2006; 91:4505-9.
27 28 29	8	11. Timmers HJ, Kozupa A, Eisenhofer G, Raygada M, Adams KT, Solis D, et
30 31 32 33	9	al. Clinical presentations, biochemical phenotypes, and genotype-
34 35 36	10	phenotype correlations in patients with succinate dehydrogenase subunit
37 38 39 40	11	B-associated pheochromocytomas and paragangliomas. J Clin Endocrinol
41 42 43	12	Metab. 2007; 92:779-86.
44 45 46 47	13	12. Timmers HJ, Pacak K, Huynh TT, Abu-Asab M, Tsokos M, Merino MJ, et
48 49 50	14	al. Biochemically silent abdominal paragangliomas in patients with
51 52 53	15	mutations in the succinate dehydrogenase subunit B gene. J Clin
54 55 56 57	16	Endocrinol Metab. 2008; 93:4826-32.
58 59 60		Annals of Clinical Biochemistry 28

1			
2 3 4 5	1	13. Neumann HP, Eng C. The approach to the patient with paraganglioma. J	
6 7 8	2	Clin Endocrinol Metab. 2009; 94:2677-83.	
9 10 11 12	3	14. Timmers HJ, Taieb D, Pacak K. Current and future anatomical and	
13 14 15	4	functional imaging approaches to pheochromocytoma and paraganglioma.	
16 17 18 19	5	Horm Metab Res. 2012; 44:367-72.	
20 21 22	6	15.Eijkelenkamp K, Osinga TE, de Jong MM, Sluiter WJ, Dullaart RP, Links	
23 24 25 26	7	TP, et al. Calculating the optimal surveillance for head and neck	
27 28 29	8	paraganglioma in SDHB-mutation carriers. Fam Cancer. 2017; 16:123-30.	
30 31 32	9	16.Kornaczewski ER, Pointon OP, Burgess JR. Utility of FDG-PET imaging in	
34 35 36	10	screening for succinate dehydrogenase B and D mutation-related lesions.	
37 38 39	11	Clin Endocrinol. 2016; 85:172-9.	
40 41 42 43	12	17.Taieb D, Kaliski A, Boedeker CC, Martucci V, Fojo T, Adler JR Jr., et al.	
44 45 46	13	Current approaches and recent developments in the management of head	
47 48 49 50	14	and neck paragangliomas. Endocr Rev. 2014; 35:795-819.	
51 52 53	15	18. Gimenez-Roqueplo AP, Caumont-Prim A, Houzard C, Hignette C,	
54 55 56 57	16	Hernigou A, Halimi P, et al. Imaging work-up for screening of	
58 59 60		Annals of Clinical Biochemistry 29	

2 3 4	1	paraganglioma and pheochromocytoma in SDHx mutation carriers: a
5		
6 7 8	2	multicenter prospective study from the PGL.EVA Investigators. J Clin
9 10 11 12	3	Endocrinol Metab. 2013;98:162-73.
13 14 15	4	19. Castinetti F, Kroiss A, Kumar R, Pacak K, Taieb D. 15 years of
16 17 18 19	5	paraganglioma: Imaging and imaging-based treatment of
20 21 22	6	pheochromocytoma and paraganglioma. Endocr Relat Cancer.
23 24 25 26	7	2015;22:135-45.
27 28 29	8	20. Lenders JW, Duh QY, Eisenhofer G, Gimenez-Roqueplo AP, Grebe SK,
30 31 32 33	9	Murad MH, et al. Pheochromocytoma and paraganglioma: an endocrine
34 35 36	10	society clinical practice guideline. J Clin Endocrinol Metab. 2014;99:1915-
37 38 39	11	42.
40 41 42 43	12	21. Plouin PF, Amar L, Dekkers OM, Fassnacht M, Gimenez-Roqueplo AP,
44 45 46	13	Lenders JW, et al. European Society of Endocrinology Clinical Practice
47 48 49 50	14	Guideline for long-term follow-up of patients operated on for a
51 52 53	15	phaeochromocytoma or a paraganglioma. Eur J Endocrinol. 2016;174:G1-
54 55 56 57	16	G10.
58 59 60		Annals of Clinical Biochemistry 30

DOI: 10.1177/0004563218811865

1		
2 3 4 5	1	22. Deftos LJ. Chromogranin A: its role in endocrine function and as an
6 7 8	2	endocrine and neuroendocrine tumor marker. Endocr Rev. 1991;12:181-7.
9 10 11 12	3	23. Gut P, Czarnywojtek A, Fischbach J, Baczyk M, Ziemnicka K, Wrotkowska
13 14 15	4	E, et al. Chromogranin A - unspecific neuroendocrine marker. Clinical
16 17 18 19	5	utility and potential diagnostic pitfalls. Arch Med Sci. 2016; 12:1-9.
20 21 22	6	24. Yang X, Yang Y, Li Z, Cheng C, Yang T, Wang C, et al. Diagnostic Value
23 24 25 26	7	of Circulating Chromogranin A for Neuroendocrine Tumors: A Systematic
27 28 29	8	Review and Meta-Analysis. PLoS ONE. 2015;10.
30 31 32 33	9	25. Corssmit EP, Romijn JA. Clinical management of paragangliomas. Eur J
34 35 36	10	Endocrinol. 2014;171:R231-43.
37 38 39	11	26. Tramonti G, Ferdeghini M, Annichiarico C, Norpoth M, Donadio C, Bianchi
40 41 42 43	12	R, et al. Relationship between renal function and blood level of
44 45 46	13	chromogranin A. Ren Fail. 2001;23:449-57.
47 48 49 50	14	27.Zuber S, Wesley R, Prodanov T, Eisenhofer G, Pacak K, Kantorovich V.
51 52 53	15	Clinical utility of chromogranin A in SDHx-related paragangliomas. Eur J
54 55 56 57	16	Clin Invest. 2014; 44:365-71.
58 59 60		Annals of Clinical Biochemistry 31

2 3 4	1	28.Kim T, Tao-Cheng JH, Eiden LE, Loh YP. Chromogranin A, an "on/off"	
5 6 7	2	switch controlling dense-core secretory granule biogenesis. Cell.	
8 9 10			
11 12 13	3	2001;10:499-509.	
14 15 16	4	29. Parmer RJ, Xi XP, Wu HJ, Helman LJ, Petz LN. Secretory protein traffic.	
17 18 19	5	Chromogranin A contains a dominant targeting signal for the regulated	
20 21 22	6	pathway. J Clin Invest. 1993;92:1042-54.	
23 24 25 26	7	30. van Duinen N, Kema IP, Romijn JA, Corssmit EP. Plasma chromogranin A	١
27 28 29 30	8	levels are increased in a small portion of patients with hereditary head and	ł
31 32 33	9	neck paragangliomas. Clin Endocrinol. 2011;74:160-5.	
34 35 36 37	10	31. Eisenhofer G, Lenders JW, Siegert G, Bornstein SR, Friberg P, Milosevic	
38 39 40	11	D, et al. Plasma methoxytyramine: a novel biomarker of metastatic	
41 42 43	12	pheochromocytoma and paraganglioma in relation to established risk	
44 45 46 47	13	factors of tumour size, location and SDHB mutation status. Eur J Cancer.	
48 49 50	14	2012;48:1739-49.	
51 52 53 54	15	32. Eisenhofer G, Goldstein DS, Sullivan P, Csako G, Brouwers FM, Lai EW,	
55 56 57	16	et al. Biochemical and clinical manifestations of dopamine-producing	
58 59 60		Annals of Clinical Biochemistry 3	2

1		
2 3		
4	1	paragangliomas: utility of plasma methoxytyramine. J Clin Endocrinol
5		
6 7	2	Matab 2005:00:2068 75
8	2	Metab. 2003,90.2000-73.
9		
10 11	3	33. Favier J, Amar L, Gimenez-Roqueplo AP. Paraganglioma and
12		
13		
14	4	phaeochromocytoma: from genetics to personalized medicine. Nat Rev
15 16		
17		
18	5	Endocrinol. 2015;11:101-11.
19		
20 21	6	34 Rao D. Poitzech M. Preihisz A. Hanus K. Fassnacht M. Beuschlein F. et
22	0	
23		
24	7	al. Plasma methoxytyramine: clinical utility with metanephrines for
25 26		
27		
28	8	diagnosis of pheochromocytoma and paraganglioma. Eur J Endocrinol.
29		
30 31		
32	9	2017;177:103-13.
33		
34 25	10	25 Fiscarbatar O. Landara IV/ Timmera II. Mannalli M. Oraba SK. Hathawar
35 36	10	35. Elsenholer G, Lenders JW, Timmers H, Mannelli M, Grebe SK, Holbauer
37		
38	11	LC et al Measurements of plasma methoxytyramine normetanephrine
39 40	11	
40		
42	12	and metanephrine as discriminators of different hereditary forms of
43		
44 45		
46	13	pheochromocytoma. Clin Chem. 2011;57:411-20.
47		
48	1.4	
49 50	14	
51		
52	15	
53	15	
54 55		
56	16	
57		
58 50		
60		Annals of Clinical Biochemistry 33

DOI: 10.1177/0004563218811865

1				
2				
3				
4	1			
5				
6				
7	2			
8				
9				
10	3			
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
24				
25				
26				
27				
28				
29				
30 21				
37				
33				
34				
35				
36				
37				
38				
39				
40 41				
42				
43				
44				
45				
46				
47				
48				
49 50				
50 51				
52				
53				
54				
55				
56				
57				

Table 1. Characteristics of patients		
-	SDHB	SDHD
	(<i>n</i> =52)	(<i>n</i> =10)
Age in years, mean ± SD	45.2 ± 15.7	48.3 ± 15.4
Female, n(%)	27 (52)	4 (40)
CgA, mean ± SD	1.35 ± 2.02	1.53 ± 2.35
PGL present, <i>n</i> (%)	9 (17)	9 (90)
CgA, mean ± SD	3.00 ± 3.81	0.80 ± 0.55
Component of testing positive, n(%)		
18F-FDG PET/CT	9 (100)	9 (100)
Functional paraganglioma, <i>n</i> (%)	5 (55)	0 (00)
Malignant paraganglioma, <i>n</i> (%)	3 (33)	2 (22)
Metastatic, n(%)	3 (100)	2 (100)
Capsular invasion, <i>n</i> (%)	0 (0)	0 (0)

2 3 4		Location of paraganglioma, <i>n</i> (%)	<0.01
5 6 7		Head and neck	0 (0)	6 (67)
8 9 10		Thorax and abdomen	6 (67)	0 (0)
11 12 13 14		Both or metastatic	3 (33)	3 (33)
15 16 17	1	Standard deviation (SD). Boldfa	ace denotes statistically s	significant result.
19 20	2	CgA is expressed as the multip	le of upper limit of norma	al (xULN)
21 22 23	3	PGL present refers to the resul	t of paraganglioma surve	illance with 18F-
24 25 26	4	FDG PET/CT and plasma meta	anephrines (including me	tanephrine and
27 28 29 30	5	normetanephrine) assessment		
31 32 33				
34 35				
36 37				
38 39				
40 41				
42 43				
44				
45 46				
47				
48 49				
50				
51				
52 53				
54				
55				
50 57				
58				
59 60		Annal	s of Clinical Biochemistry	36
00				

Table 2. Diagnostic performance	of CgA for predicting ou	tcome of PGL
surveillance		
	SDHB	SDHD
Diagnostic utility, result (95% CI)		
Sensitivity	0.67	0.22
	(0.30-0.93)	(0.03-0.60
Specificity	0.79	0
	(0.64-0.90)	(0.0-0.98
Positive predictive value	0.40	0.67
	(0.24-0.58)	(0.38-0.87
Negative predictive value	0.92	0
	(0.82-0.97)	
Positive likelihood ratio	3.2	0.20
	(1.52-6.69)	(0.02-0.56
Negative likelihood ratio	0.42	-
	(0.17-1.08)	

- ¹ Data expressed as result (95% confidence interval).
- 2 CI, confidence interval.

8 Figure 1A.

1		
2		
3 4	1	
5		
6		
7	2	Patients with SDHB and a PGL were more likely to have an elevated CaA. CaA
8	2	Talients with ODTID and a TOE were more likely to have an elevated OgA. OgA
9		
10	2	was more likely to be elevated in patients with a functional PCL compared to
11	3	was more likely to be elevated in patients with a functional r OE compared to
13		
14	4	these with a neg functional PCL (Figure 1A). Plasma permetanophrips and
15	4	those with a norr functional FGL (Figure TA). Flashia normetaneprinne and
16		
17	~	motopophring had similar consitivity but superior operificity compared to CaA for
18	5	metanephrine had similar sensitivity but superior specificity compared to CgA for
19 20		
20		CDUD related DOL (Figures 1D and 1C)
22	6	SDHB-related PGL (Figures 18 and 10).
23		
24		
25		
26 27		
27		
29		
30		
31		
32		
33		
34 35		
36		
37		
38		
39		
40		
41		
43		
44		
45		
46		
47		
48 70		
51		
52		
53		
54		
55 56		
50 57		
58		
59		Δ1
60		Annals of Clinical Biochemistry