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Abstract: We present a comprehensive case study to identify the best 
vessel-specific inventory family that predicts the primary emissions from an 
ocean-going vessel when at berth, while maneuvering and while cruising. The 
main purpose of the paper is to generalize the implication of the case study by 
advising a novel policy, which will allow different authorities to estimate the 
shipping emissions in a cost-effective and reliable way. The emissions rates of 
nitrogen oxides, sulphur oxides, carbon dioxide, carbon monoxide, 
hydrocarbon, and particulate matter from the main engine and from the 
auxiliary engines are measured for different modes of ship operations in an 
on-board experiment campaign. The measured total emission amounts were 
predicted with 13 families of emission inventories and prediction deviations 
have been calculated. A procedure was advised for estimating the prediction 
inventory deviations of the combined hourly emission amounts from the main 
engine plus the auxiliary engines. Each inventory family has been formalized 
as a six-dimensional vector of prediction deviations for any mode of operation. 
The best vessel-specific inventory families were identified using the minimal 
mean absolute deviation criteria. A more rational procedure to rank 
inventories is considered, which treats the missing value problem and 
constructs a six-attribute value function. The use of preferential analysis and 
value functions further clarifies the recommended choice of inventory 
method. In this case study we demonstrated that the most suitable inventory 
families will provide reliable predictions with acceptable deviations from the 
measured emissions. At berth and for maneuvering, the best inventory family 
turned out to be MOPSEA (with 32.2% and 39.6% mean absolute deviations 
respectively). For cruising, the most precise inventory family is MEET (with 
59.2% mean absolute deviation), whereas MOPSEA being the third best. 
However, some of the other inventories produce unacceptably high deviation, 
well above 100%. The practical implication is that while inventory methods 
can produce precise and cost-effective predictions, they should never be used 
without experimental verification. That is why, we provide an algorithm to use 
on-board experimental measurements to identify the best vessel-specific 
inventory family, which predicts the primary emission of a ship at a given 
mode of operation. The proposed algorithm and the implications of the case 
study are utilized to motivate a proposal for a novel future policy for a cost-
effective and reliable emission estimation from shipping. 
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1. Introduction 

1.1. Sea transport and its environmental sustainability 

Transportation of freight and unrefined oil by ships is a critical operation in the transit of petroleum from the 

Middle East to global users (Michaelowa, 2000), and sea transport is currently recognized as the best method of 

transport (Wang, Corbett, & Firestone, 2008). Marine transportation of petroleum and other goods is economical, 

and ships can transport bulky goods better than other means of transport (Deniz & Kilic, 2010). Furthermore, sea 

transport is considered secure (Martínez de Osés & La Castells, 2010) and improves environmental sustainability 

as it produces fewer pollutants than land transport (OECD, 1997). The rising popularity of shipping is also 

expected to increase the number of oceangoing vessels (UNCTAD, 2014). 

Even though sea transport is less polluting than land transport, the growing number of shipping activities 

means that pollution from ships is a significant danger to health. The growing number of shipping activities causes 

increased pollution levels both globally and in the ports because most shipping companies use low-quality fuel 

(Deniz & Kilic, 2010). Therefore, tracing all emissions and determining their possible effects on the environment 

is a growing necessity. While there is strict regulation and close monitoring of land-related emissions, the sea 

transport sector lacks adequate mechanisms to monitor and determine the rate of emissions, hindering steps to 

foster environmental protection and sustainability (Corbett & Fischbeck, 1997; Corbett et al., 2007). 

1.2. State-of-the-art in emission monitoring for maritime transport 

Shipping operations emit a significant amount of primary emissions including nitrogen oxides (NO2, NO, N2O 

denoted as a whole with NOx), sulphur oxides (SO2, SO3, SO denoted as a whole with SOx), carbon dioxide (CO2), 

carbon monoxide (CO), volatile organic compounds, in particular hydrocarbon (HC), and particulate matter (PM) 

(Eyring, Kohler, Van Aardenne, & Lauer, 2005). Studies have noted that such emissions have adverse consequences 

on human health and the environment (Corbett et al., 2007; Goldsworthy & Goldsworthy, 2015). For instance, NO2 

and CO emissions cause flu-like symptoms, while SOx-pollutants lead to breathing difficulties and PM emissions 

result in premature deaths (EPA, 2010). Various empirical studies have linked asthma and cardiovascular illnesses 

to some of those pollutants (Kim, Hwang, & Lee, 2010; Lu et al., 2006), and some researchers and scientists 

(Corbett et al., 2007) have reported lung cancer deaths and heart-related diseases connected to PM pollutants in 

ports in Europe, East Asia and South Asia. Shipping emissions pose various public health consequences for people 

living near ports, and finding solutions to the situation and taking practical steps to identify and measure emissions 

precisely require that better procedures and plans to control pollutants need to be developed. 

Several studies (Kilic & Deniz, 2010; Moreno-Gutierrez et al., 2015; Merk, 2014) have considered emissions 

caused by shipping operations and their effects on distinct scales, such as different seaports and nations. There 

are some estimates that ocean-going vessels generate 17–31% of worldwide emissions of NOx, and 4–10% of SOx 

(Eyring et al., 2005; Kilic & Deniz, 2010; Moreno-Gutierrez et al., 2015). A recent study (Merk, 2014) assessed that 

CO2 from shipping emissions as accounting for approximately 2–3% of world emissions, which is higher than the 

amount of non-greenhouse emissions. As the operations of the global fleet of ocean-going vessels increase, 

emissions are expected to also increase. It is argued in (Eyring et al., 2005) that by the year 2050 the number of 

vessels will triple, the primary emissions will quadruple, and the emission of CO2 may rise by 50% of current 

emissions (Radischat et al., 2015). Approximating and assessing potential amount of and danger caused by 

shipping emissions is an increasing concern. 

Several approaches to estimating shipping emissions have been developed. One such solution is online 

computer-based monitoring of shipping pollution, which utilizes measurement system as part of the fixed ship 

equipment. Online monitoring mechanisms provide data over an extended period, but it is very expensive to obtain 

and maintain because of the aggressive ship environment and the lack of expertise on-board. On top, the 

measurement results are with low precision and sometimes unreliable (Radischat et al., 2015). Another method is 

the ship plumes-related measurement, where the measurement equipment is portable and owned by different 

party. The on-board measurement is conducted on a specified ship whenever it is demanded by the ship owner or 

by the authorities. The mechanism provides an exact emissions information of a specific vessel. Multiple previously 

conducted studies applied on-board measurement (Cooper & Andreasson, 1999; Endresen et al., 2003; Petzold et 

al., 2006; Sinha et al., 2003). Petzold et al. (2008) focused on a 4-stroke marine engine, while in (Kasper, 
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Aufdenblatten, Forss, Mohr, & Burtscher, 2007) the PM emissions of a 2-stroke marine engine were investigated. 

Corbett & Koehler (2003) focused on various pollutants in several types of engine. Others (Cooper, 2001, 2003; 

Cooper, Peterson, & Simpson, 1996) evaluated the emissions from the main engines (ME)s and auxiliary engines 

(AE)s of ferries. Some studies (Kasper et al., 2007; Lyyranen, Jokiniemi, Kauppinen, & Joutsensaari, 1999; Petzold 

et al., 2008; Wright, 1997) considered slow speed diesel (SSD) and medium speed diesel (MSD) engines on test 

rigs. This research focuses on the measurement of emission rates related to marine diesel engines during different 

stages of operation, both at mooring and while cruising, to provide insights into the emissions produced under 

different sailing conditions. 

Because the utilization of inbuilt measurements proves to be difficult, time-consuming and resource-

demanding, it is difficult to convince ship-owners to purchase and install recommended measurement devices 

(Cappa et al., 2014; Chen et al., 2005). Therefore, emission inventories are utilized, which are mathematical models 

to estimate emissions discharged into the atmosphere (Dalsoren et al., 2009; Endresen, Sorgard, Behrens, Brett, & 

Isaksen, 2007; Skjølsvik, Andersen, Corbett, & Skjelvik, 2000). We will be analyzing such emission inventories 

made during shipping operations. Several factors are taken into account when developing emission inventories, 

such as the type of fuels, the place to conduct the study, the nature of the vessel, the engine models, etc. Most 

existing emission inventories are affected by weak quantifications and application of traditional emission elements 

to measure both regional and global air quality, such as US EPA discussed in (Browning & Bailey, 2006). 

Various methodologies exist that can utilize shipping emission inventories as a way to make accurate 

estimations of the level of emissions from shipping. The thirteen methods used in this study are: Tier I–III (Trozzi 

& De Lauretis, 2013), ENTEC (ENTEC. 2007), MEET (Hickman, Hassel, Joumard, Samaraz & Sorensen, 1999), 

STEAM (Jalkanen et al., 2009), MOPSEA (Gommers, Verbeeck, Cleemput, Schrooten & De Vlieger, 2007), IMO (IMO. 

2014), SMED (Cooper & Gustafsson, 2004), EMS (Van der Gon & Hulskotte, 2010), US EPA (Hockstad & Hanel, 

2018), NERI (Olesen, Winther, Ellermann, Christensen, & Plejdrup, 2009) and Corbett (Corbett et al., 2003). These 

approaches can be categorized into three groups: a full bottom-up approach, a comprehensive top-down approach, 

and a mixed approach, as postulated by Miola and Ciuffo (2011). The categorization is according to the emissions 

evaluation and the geographical characterization. 

A full bottom-up approach assesses the levels and types of emissions generated by a single ship, considering 

the nature of the vessel, which includes ship type, date of construction, quality of engine and the specific fuel oil 

consumption (SFOC) at a given point (Moreno-Gutierrez et al., 2015). This allows the underlying factors of the 

emissions to be identified and evaluated, leading to an explicit understanding of the consequences they may have. 

ENTEC, Corbett, STEAM, MOPSEA, NERI, EMS, US EPA, and SMED belong to this category in our study. 

An entirely top-down methodology observes emissions from a more global perspective and utilizes 

generalized factors, such as fuel consumption data for given fuel types and the types of engines used in particular 

ships as determinants of emissions (Miola & Ciuffo, 2011). 

Some of the methods discussed in this paper follow a mixed approach. Tier I–III displays some top-down 

characteristics regarding emission inventories, but tends to be bottom-up regarding geographical distribution. 

The MEET and IMO approximate a bottom-up emissions inventory and a top-down geographic distribution.  

Whichever approach is adopted, each inventory method predicts a set of emission factors (EF)s that will 

deviate from the experimental measurement values. The main reason for the observed discrepancies between the 

observed and predicted EFs is that most of the inventories are developed under specific assumptions that include 

fuel type, consumption units of fuel, ship navigation locations, types of ships, the nature of engines, type of the 

vessels, etc., which in any particular case will be different from the actual one. It is therefore important to 

determine a good-enough emission inventory mechanism that is premised on the factors and assumptions which 

are as close as possible to the actual factors and assumptions for the vessel whose EFs are to be predicted. 

1.3. Objectives of the study 

The first objective of this paper is to present a comprehensive case study to identify the best vessel-specific 

inventory family predicting the primary emissions from ocean-going vessels when at berth, while maneuvering 

and while cruising. In the case study, the primary emission rates of NOx, SOx, CO2, CO, HC, and PM were measured 

during on-board experimental measurement campaign for the three modes of the vessel’s operation. The 

emissions were predicted with 13 families of emission inventories (Tier I–III, ENTEC, MEET, STEAM, MOPSEA, 

IMO, SMED, EMS, US EPA, NERI and Corbett) and prediction deviations have been calculated.  



ISSN 2520-2979                           Journal of Sustainable Development of Transport and Logistics, 3(2), 2018 

 

‹ 9 › 

Another objective is to create generalized rational algorithm to rank inventory families based on the precision 

of their predictions for a given operational mode of a specific vessel. 

The third objective is to use the implications of the case study together with the developed algorithm to rank 

inventory families to offer a novel future policy for a cost-effective and reliable emission estimation caused by 

shipping. 

In what follows, section 2 explains the conditions and the procedures in the on-board measurement campaign. 

The results of the comparison analysis between the measured and predicted emissions are described in section 3. 

In section 4, a six-attribute value function is discussed as a rational alternative for the minimal mean absolute 

deviation criterion and general algorithm for identifying the best vessel-specific inventory families for a given 

mode of operation. Based on the case study implications, a possible future policy for ship emission evaluation is 

advised. Section 5 concludes the paper. 

2. On-board campaign measurement 

2.1. General description of on-board measurements campaign 

Measurements were taken on-board a large hauler ship as it approached Newcastle from Gladstone, Australia. 

This vessel, manufactured in 2002, is 187.5m in length, with a 27198 GRT capacity and an average steaming speed 

of 11.6 knots. The vessel has a MAN B&W 6S50MC main engine, which is 6880-kW, two-stroke, six-cylinder, slow 

speed diesel (SSD). Each of the auxiliary engines is Wartsila 20, which is 460-kW, four-stroke, four-cylinder, 

medium speed diesel (MSD). 

Measurements of emissions were taken on-board following the procedures elaborated in ISO 8178-2:2008 

(Jalkanen et al., 2012) and ISO 8178-1:2006 (MEET, 1999). The on-board emission measurement campaign was 

divided into 4 separate experiments. The first one was to measure the NOx, SOx, CO2, and CO emissions from the 

AE when the vessel was at berth. The second, third, and fourth experiment were to measure the NOx, SOx, CO2, CO, 

HC, and PM emissions from the ME when the vessel was at berth, maneuvering, and cruising respectively.  

For the main engine experiments the probes of the exhaust gas were sampled between the turbocharger and 

the economizer of the ME. The emission rates of SOx, CO2, CO, and HC were measured with main gas analyzer Testo 

350 XL. The emission rates HC were measured with Horiba MEXA 584L 5-gas analyzer. The mass concentration of 

PM was measured with Dust Trak Aerosol Monitor 8530 (TSI) separately for PM2.5-10 (with aerodynamic diameters 

between 2.5 and 10 μm), PM1.0-2.5 (with aerodynamic diameters between 1.0 and 2.5 μm), and PM1.0 (with 

aerodynamic diameters less than 1.0 μm). To cool the probe for PM measurement, the sample was diluted with air. 

The rates of the samples’ dilution were estimated by comparing the CO2 emission rate in the initial sample with, 

the CO2 emission rate of the diluted sample measured with Sable CA-10 CO2 monitor. Simultaneously the shaft 

speed (SS) and the actual engine power (Pact) were measured every 5 sec. The specific oil consumption (SOC) was 

determined as a quadratic function of the engine load factor LF (the actual engine power measured in % of the 

maximum continues rating of the engine). The average air consumption (AC) was assessed as a linear function of 

the load factor. The instantaneous exhaust mass flow rate (EMFR) was assessed as the sum of AC with the product 

of SOC and Pact. 

For the auxiliary engine experiments, the probes of the exhaust gas were sampled after the turbocharger. The 

measurement equipment was Testo 350 XL only. In this experiment, HC and PM were not measured. The SS, Pact, 

SOC, AC and EMFR were obtained as in the ME experiments. 

For each of the experiments the probes were taken at equal inter-sample interval Δt. If the duration of the 

experiment is T, then the count of the probes sampled for measurement is N=T/Δt. The time when the i-th probe 

was sampled is ti=(i-0.5)Δt for i=1,2,…,N. The parameters of the measurement process for each of the experiments 

are given in Table 1. 
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Table 1: Measurement process parameters 
Experiment 
 

Inter-sample 
Interval (h) 

Count of  
Samples 

Duration 
 (h) 

Duration 
 (h, min, s) 

ME at berth for NOx 1/3600 1569 0.4358 26 min, 9 s 

ME at berth for SOx, CO 1/3600 1577 0.4381 26 min, 17 s 

ME at berth for CO2 1/3600 1521 0.4225 25 min, 22 s 

ME at berth for HC 300/3600 4 0.3333 20 min 

ME at berth for PM 300/3600 5 0.4167 25 min 

AE at berth for NOx, SOx, CO2, CO 1/3600 9476 2.632 2 h, 37 min, 56 s 

ME maneuvering for NOx 1/3600 6553 1.820 1 h, 49 min, 13 s 

ME maneuvering for SOx 1/3600 6558 1.822 1 h, 49 min, 18 s 

ME maneuvering for CO2 1/3600 6522 1.812 1 h, 48 min, 42 s 

ME maneuvering for CO 1/3600 6542 1.817 1 h, 49 min, 2 s 

ME maneuvering for HC 300/3600 5 0.4167 25 min 

ME maneuvering for PM 300/3600 27 2.250 2 h, 15 min 

ME cruising for NOx, SOx, CO2, CO 1/3600 15305 4.251 4 h, 15 min, 5 s  

ME cruising for HC, PM 300/3600 64 5.333 5 h, 20 min 

2.2. On-board measurements 

For the five gases (NOx, SOx, CO2, CO, and HC) the measured instantaneous emission rates at time ti were 

converted into instantaneous emission factors (EFs) using the atmospheric pressure, the exhaust gas temperature, 

the exhaust flow rate (which is the total fuel and air consumption divided by the mass density of the exhaust gas), 

the molar mass of the gas, the air density, and the engine power. The later was linearly interpolated for each ti 

from the measured engine power data. For each of the three types of PM (PM2.5-10, PM1.0-2.5, and PM1.0) the mass 

concentrations were converted into instantaneous emission factors (EFs) using the exhaust flow rate, the dilution 

rate (calculated from the difference of the CO2 measured before and after the dilution of the hot probe with cold 

air), the air density, and the actual engine power (Pact). The EF of the PM is calculated as the sum of the EFs for 

PM2.5-10, PM1.0-2.5, and PM1.0. When not measured, the EF for PM2.5-10 is assessed as 20% of the EF of PM (Hockstad 

& Hanel, 2018). In the same way when not measured, the EFs for PM1.0-2.5, and PM1.0 are substituted with the mean 

of the respective measured EFs. The micro emission in the interval Δt centered around time ti was calculated as 

the instantaneous emission factor multiplied by Pact and by Δt. The total emission during any experiment was 

estimated as sum of the micro emissions measured. The measured average emission factors given in Tables 2 were 

calculated as the total emissions divided by the product of the average engine power with the experimental time 

T. The average shaft speed, the average actual power of the engine, the average load factor, the average air 

consumption, and the average exhaust mass flow rate for each of the experiments are also given in Table 2. 
 

Table 2: Experimental condition and measured EFs 
Experiment Ave. 

SS 
(rpm) 

Ave. 
Pact 

(kW) 

Ave.  
LF 

(%) 

Ave. 
AC 

(kg/h) 

Ave. 
EMFR 
(kg/h) 

Ave. SOC 
(g/kWh) 

Average Measured Emission Factors in (g/kWh) 
NOx SOx CO2 CO HC PM 

ME at berth for NOx 38.11 509.0 7.399 5860 5990 256.6 10.1      

ME at berth for SOx, CO 38.15 510.5 7.421 5877 6008 256.5  9.10  1.48   

ME at berth for CO2 38.25 507.5 7.376 5842 5972 256.6   476    

ME at berth for HC 36.62 451.5 6.563 5197 5313 257.7     0.400  

ME at berth for PM 39.8 578.2 8.404 6656 6804 255.2      2.23 

AE at berth for NOx, SOx, 
CO2, CO 

900.0 265.0 57.61 2862 2930 256.0 11.2 26.2 1140 1.74   

ME maneuvering for NOx 65.31 2444 35.53 28140 28690 226.4 11.5      

ME maneuvering for SOx 65.30 2442 35.51 28120 28670 226.4  13.8     

ME maneuvering for CO2 65.45 2453 35.65 28240 28790 226.3   687    

ME maneuvering for CO 65.29 2443 35.50 28120 28670 226.4    2.43   

ME maneuvering for HC 80.94 3785 55.01 43570 44380 214.3     0.239  

ME maneuvering for PM 67.84 2653 38.56 30540 31130 224.0      1.70 

ME cruising for NOx, SOx, 
CO2, CO 

89.50 5595 81.33 64410 65560 205.5 19.0 18.1 764 1.12   

ME cruising for HC, PM 89.26 5663 82.31 65190 66340 203.1     0.146 0.391 
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While at berth, the AEs run to generate the required auxiliary power (Hickman et al., 1999) and can be said to 

be the key emission producer (Du et al., 2011). Major activities include, but are not limited to, light supply to the 

ship, refrigeration, heating, ventilation, and electric equipment electric loads (Hickman et al., 1999). The AEs 

operate with greater load factor (LF) than ME and therefore produce higher EFs (Table 2). 

The main engine runs on heavy fuel oil (HFO) with 3.13% sulphur mass content that was adopted for the fuel 

type in this study. HFO is a fuel type preferred for most ship’s boilers and engines (Goldsworthy & Galbally, 2011), 

with a sulphur content ranging from 2% to 3.5% with a 2.6% average globally (IMO, 2010). The properties of the 

HFO used in our study are given in Table 3. For most ships sailing to Australia, the average fuel sulphur content of 

the HFO may be higher than this average (Goldsworthy & Goldsworthy, 2015). Also, HFO combustion is very 

complex and may emit primary gases (Goldsworthy & Galbally, 2011). 

 

Table 3: Properties of the heavy fuel oil used 
Density at 15o C 986 kg/m3 

Viscosity at 50o C 377 mm2/s 

Micro - carbon residue 14.6% mass 

Sulphur (S) 3.13% mass 

Ash 0.0640% mass 

Vanadium (V) 141 mg/kg 

 

Since NOx and CO emissions are combustion dependent, service history and individual maintenance are a 

concern (Cooper, 2003). Higher amounts of nitrogen in fuels can produce NOx emissions (Cooper, 2003). For this 

study, nitrogen content was 0.68% of the total mass. Thermally, greater nitrogen fixation during combustion is 

required if temperature periods are long and the engine is slow. The level of PM in marine diesel emissions may 

vary with fuel type or combustion conditions and more will be generated by higher amounts of fuel sulphur plus 

ash content. Dependency on PM fuel emissions becomes less conspicuous compared to CO2 and SO2 emissions due 

to induced PM combustion emissions (Cooper, 2003). According to Agrawal et al. (2008), the higher the quantity 

of ash content, the higher the PM EFs, although, in a general sense, there is insufficient data on the measurement 

of PM and differences in engine models, fuel used, instrumentations and working conditions (Hallquist, Fridell, 

Westerlund, & Hallquist, 2013). 

Variations in engine power and speed may result in poor combustion, which can lead to increased HC and PM 

emission rates. PM concentration is largely dependent on the conditions of engine load, which is higher at low LFs 

and vice-versa (Winnes & Fridell, 2009): if the average power is considered with LFs remaining at their lowest in 

berth, the EF results for PM produce greater amounts. However, EF averages for NOx, CO2 and SOx in cruising mode 

are higher than when maneuvering at berth. All NOx emissions are temperature dependent, increasing with a rise 

in temperature. Hence, the rate of emission of NOx is dependent on a ship’s engine power and engine LF (Sinha et 

al., 2003). If the engine is steady, with a speed higher than its power, while in operation it may run for longer and 

at higher temperatures, producing higher NOx emissions. Pollution rates, then, increase with increased engine 

power. The demand of engine power, air consumption and mass flow of exhaust emissions increase during 

cruising. Moreover, an elevated engine load increases the average engine power, which in turn additionally 

increases the influence of the fuel’s carbon and sulphur content (Table 3) on the EFs of SOx and CO2 for cruising 

modes compared with other operating modes (Table 2). Generally, the CO emissions recorded were low, a result 

of high oxygen surplus concentrations and an adequate combustion process, but if engines are poorly maintained 

at small power ranges, CO proportions may increase expectedly due to considerable relative concentration 

(Kristensen, 2010). In this study, generally the EFs for CO are low but they increase at the maneuvering phase. 

Variable engine speed and power may lead to poor combustion during the maneuvering phase leading to increased 

CO emission rates (Fu et al., 2013). 

3. Comparison analysis between measured and predicted EFs 

In this section the on-board experimental measurements are compared with the predictions of the inventory 

methods introduced in section 1.2. As described in section 2.1 the primary emission rates (or the mass 

concentration for PM) of the main engine were measured at berth, while maneuvering, and while cruising. For the 

auxiliary engines the only rates measured were NOx, SOx, CO2 and CO emissions at berth. In section 2.2, the 
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measured emission rates were converted to EFs and the results were shown in Table 2. The total emission amount 

of given type released in the atmosphere during one experiment (e.g. CO emission of the ME during the 

maneuvering experiment) can be calculated by integrating the time curve of the instantaneous emissions for the 

time span of the experiment (e.g. 1 h, 49 min, 2 sec for CO emission of the ME during the maneuvering). The 

instantaneous emission in g/h at time t is the EF at time t, multiplied by the actual engine power at time t. The total 

emission amount measured for each “pollutant” (inclusive of CO2, which technically is not a pollutant) from the 

four experiment types are given in kg on the first row of Tables 4, 5, 7, and 8. For each total emission amount 

measured, we have tried to predict the results with as many inventories as possible from the list of inventories 

given in Section 1.2. Each of the inventories is predicting the EF generally as a function of the load factor, the type 

of the fuel, the sulphur content of the fuel, the type of the engine, the operation mode, the built date of the engine, 

the shaft rotational speed, specific fuel consumption, etc. The inventory-predicted emission factor for any emission 

has been converted into inventory-predicted total emission amount by multiplying with the average engine power 

and the experiment time T. We opted to calculate the total predicted emissions in that simplified way instead of 

integrating the instantaneous emission curves in order to mimic more closely the real utilization of the inventory 

prediction. The inventory deviations of the predicted total emission amount in % from the experimentally 

measured total emission amounts can be calculated for all “pollutants” (note that CO2 is not a pollutant), and for 

any inventory method that can predict that pollutant. Those inventory deviations from the four experiment types 

are given in Tables 4, 5, 7, and 8 (from the second row onward, excluding the last columns of Tables 7 and 8). 

 

Example 1: MEET inventory prediction for CO emission of the auxiliary engine is 

   MEET
COEF 20.7  0.218 LF 0.0231P  + 0.000345P LF SOC 1000act act /      

For the auxiliary engine at berth the average load factor LF is 57.6%, the average engine power Pact is 265 kW, 

the average specific oil consumption SOC is 256 g/kWh (see Table 2). So, 

        MEET
COEF 20.7 0.218 57.6 0.0231 265  + 0.000345 265 57.6 256 0 1000 1 87 g/kWh. / .       

For CO emission from the auxiliary engine at berth the experimental time is 2.632 h (see Table 1). The MEET 

predicted total CO emission amount is 

  MEET MEET
CO actCO =EF P 1 87 265 2.632 /1000 1.304 kgT . 

 
The MEET inventory deviation in % from 1.214 kg, which is the experimentally measured total CO emission 

amount for the auxiliary engine at berth (see Table 5) is 

   MEET MEET mes mesCO 100 CO CO CO 100 1 304 1 214 1 214 7 43/ . . / . . %     
 

That result is shown in Table 5. 

 

Example 2: The ENTEC prediction for the NOx emission factor from the main engine when the vessel is 

maneuvering was 
x

ENTEC
NO

EF 12 0 g/kWh. . The latter value considers that the vessel is at maneuvering, that the 

main engine is post-2000 SSD, and that the fuel is HFO. For NOx emission from the main engine when maneuvering 

the experimental time is 1.820 h (see Table 1), and the average engine power Pact is 2444 kW (see Table 2). The 

ENTEC predicted total NOx emission amount is, 

  
x

ENTEC ENTEC
x actNO

NO =EF P 12 0 2444 1.820 /1000 53.4 kgT . 
 

The ENTEC inventory deviation in % from 51.17 kg, which is the experimentally measured total NOx emission 

amount for the main engine at maneuvering (see Table 7) is, 

   ENTEC ENTEC mes mes
x x x xΔNO =100 NO NO /NO 100 53 4 51 17 51 17 4 33. . / . . %   

 
That result is shown in Table 7. 

 

Example 3: US EPA inventory prediction for SOx emission of the main engine is 

  US EPA
SO

EF 2.3735 SOC FSF 0 4792
x

. 
 

For SOx emission of the main engine at berth the specific oil consumption SOC=256.5 g/kWh (see Table 2), and 

the fuel sulphur fraction in the HFO is FSF=0.0313 (see Table 3). So, 

  US EPA
SO

EF 2.3735 256 5 0 0313 0 4792 18 54 g/kWh
x

. . . .  
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For SOx emission of the main engine the experimental time T is 0.4381 h (see Table 1), and the average engine 

power Pact is 510.5 kW (see Table 1). The US EPA predicted total SOx emission amount is, 

  
x

US EPA US EPA
x actSO

SO =EF P 18 54 510 5 0.4381 /1000 4.147 kgT . . 
 

The US EPA inventory deviation in % from 2.035 kg, which is the experimentally measured SOx emission 

amount for the main engine at berth (see Table 4) is, 

   US EPA US EPA mes mes
x x x xΔSO =100 SO SO /SO 100 4 147 2 035 2 035 104. . / . %   

 
That result is shown in Table 4. 

3.1. Inventories Performance when the Vessel is at Berth 

The experimentally measured total emission amounts and the inventory predictions for the main engine at 

berth are shown in Figure 1. The experimentally measured total emission amounts and the inventory deviations 

in % from the experimental values for the main engine at berth are given in Table 4. 

Most methods systemically over-predict the on-board measured total emission amounts of NOx, CO2, CO, and 

HC from the main engine at berth. The SOx inventories’ predictions are well scattered around the measured total 

emission amounts. The PM inventories’ predictions are somewhat scattered around the measured total emission 

amount, although some under-prediction is obvious. The inventory predictions for NOx, CO2, and PM are somewhat 

satisfactory because the absolute deviations does not exceed 68.8%, 72.6%, and 86.3% respectively. However, the 

inventory predictions for SOx, CO, and HC are completely unreliable with maximal absolute deviations reaching 

104%, 1610%, and 1390% respectively. 

 

Table 4: Inventory deviations from the experimentally measured total emission amounts in % for the 
main engine at berth. The experimental measurements are given in the second row in kg per time equal 
to the experiment duration according to the third column of Table 1 

Inventory NOx SOx CO2 CO HC PM 
Experiment 2.248 2.035 102.0 0.3319 0.06022 0.5373 
Tier III   38.1 37.4 NaN -0.276 350 7.62 
ENTEC   18.4 27.5 43.4 NaN 350 7.62 
MEET   -11.4 76.9 72.6 1610 1390 -86.3 
STEAM   114 -34.2 31.0 NaN NaN NaN 
MOPSEA   68.8 -34.1 30.8 6.46 -41.0 -47.5 
NERI   18.4 -56.0 34.1 7.81 25.0 -83.9 
EMS   77.7 18.7 33.5 79.2 45.0 -41.7 
US EPA 64.8 104 162 668 987 -77.7 
IMO 64.8 -49.1 21.1 -65.5 42.5 -39.5 

 
The inventories, which produce least absolute deviations for the main engine at berth are MEET for NOx with 

-11.4% deviation, EMS for SOx with 18.7% deviation, IMO for CO2 with 21.1% deviation, MOPSEA for CO with 6.46% 

deviation, NERI for HC with 25.0% deviation, and jointly TIER III & ENTEC for PM with 7.62% deviation. 

The experimentally measured total emission amounts and the inventory predictions for the auxiliary engines 

at berth are shown in Figure 2. The experimentally measured total emission amounts and the inventory deviations 

in % from the experimental values for the auxiliary engines at berth are given in Table 5. 

Most methods systemically over-predict the on-board measured total emission amounts of NOx, whereas at 
the same time systemically under-predict the on-board measured total emission amounts of SOx and CO2 from the 
auxiliary engines at berth. The CO inventories’ predictions are somewhat scattered around the measured CO total 
emission amount, although some under-prediction can be detected. The CO2 is more or less well predicted by every 
inventory method, with absolute deviations less than 45.4%. The inventory predictions for NOx, SOx, and CO also 
are somewhat satisfactory because their respective absolute deviations do not exceed 81.8%, 98.5%, and 54.0%. 
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Figure 1: Total emission amounts’ measurement and inventory prediction  
at berth for the main engine 

 
 

The inventories, which produce least absolute deviations for the auxiliary engines at berth, are MEET for SOx, 

and CO2 with -38.8%, and -28.2% deviations respectively, NERI for NOx with -1.50% deviation, and MOPSEA for 

CO with -5.79% deviation. 

The experimentally measured total emission amounts for the main engine and the auxiliary engines at berth 

were converted to hourly emission amounts, by dividing the former with the respective experimental time in 

hours. The combined hourly emission amount from all engines at berth has been calculated as the sum of the 

hourly emission amounts from main engine and from auxiliary engines.  The experimentally measured combined 

hourly emission amounts are given in on the first row of Table 6, except for the HC and PM column where the 
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hourly emission amount are from the main engine, only (see section 2.1). The inventory deviation in % for any 

hourly emission amount prediction is the same as that of the total emission amount prediction. The combined 

hourly emission amount prediction can be calculated as the sum of two independent hourly amount predictions: 

one for the main engine and one for the auxiliary engines. It is trivial to prove that the inventory deviation from 

the experimentally measured combined hourly emission amount in % is a weighted average of the two inventory 

deviations from total emission amounts in % (one for the main engine and one for the auxiliary engines). The 

weight coefficients are the experimentally measured hourly emission amounts from the main engine and auxiliary 

engines respectively. 

 

Table 5: Inventory deviations from the experimentally measured total emission amounts in % for the 
auxiliary engines at berth. The experimental measurements are given in the second row in kg per time 
equal to the experiment duration according to the third column of Table 1 

Inventory NOx SOx CO2 CO 

Experiment 7.790 18.26 795.5 1.214 

Tier III 27.1 -47.3 NaN -6.36 

ENTEC 9.24 -53.0 -36.7 NaN 

MEET 94.3 -38.9 -28.2 7.43 

STEAM 2.97 -77.1 -45.4 NaN 

MOPSEA -21.2 -74.8 -40.0 -5.79 

NERI -1.50 -98.5 -38.4 -8.08 

EMS 34.3 -54.5 -38.8 54.0 

US EPA 31.6 -54.2 -36.6 -36.8 

SMED 25.4 -60.3 -36.7 -48.3 

IMO 81.8 -78.5 -38.5 -64.2 

 

Example 4: Let us concentrate on NOx emission at berth. The measured total emission amount for NOx from 

the main engine at berth is 2.248 kg for T=0.4358 h (see Table 4). It follows that the measured hourly emission 

amount for NOx from the main engine at berth is 2.248/0.4358=5.158 kg/h. The measured total emission amount 

for NOx from the auxiliary engines at berth is 7.790 kg for T=2.632 (see Table 5). It follows that the measured 

hourly emission amount for NOx from the auxiliary engines at berth is 7.790/2.632=2.960 kg/h. So, the measured 

combined hourly emission amount for NOx from all engines at berth will be 5.158+2.960=8.117 kg/h (see Table 6). 

Let us use the NERI inventory for NOx at berth. The NERI inventory deviation from the experimentally 

measured 2.248 kg total NOx emission amount from main engine at berth is 18.4% (see Table 4). It follows that 

NERI inventory deviation from the experimentally measured 5.158 kg/h hourly NOx emission amount from ME at 

berth will be also 18.4%. The NERI inventory deviation from the experimentally measured 7.790 kg total NOx 

emission amount from the auxiliary engines at berth is -1.50% (see Table 5). It follows that NERI inventory 

deviation from the experimentally measured 2.960 kg/h hourly NOx emission amount from the auxiliary engines 

at berth will be also -1.50%. So, the NERI inventories deviation from the experimentally measured 8.117 kg/h 

combined hourly NOx emission amount from all engines at berth will be, [18.4(5.158) -1.50 (2.960)]/8.117 ≈11.2% 

That result is shown in Table 6. 

The experimentally measured combined hourly emission amounts and the inventory predictions for all 

engines at berth are shown in Figure 3. The experimentally measured combined hourly emission amounts and the 

inventory deviations in % from the experimental values for all engines at berth are given in Table 6. The deviations 

in the last two columns of Table 6 are the same as the deviations in last two columns of Table 4 because there were 

no measurements of the HC and PM emissions from the auxiliary engines berth (see Table 1). 

Most methods systemically over-predict the on-board measured combined hourly emission amounts of NOx 

and HC, whereas systemically under-predict the on-board measured combined hourly emission amounts of SOx 

and CO2 when the vessel is at berth. The CO and PM inventories’ predictions are somewhat scattered around the 

measured combined hourly emission amounts, although some under-prediction is present. The inventory 

predictions for NOx, SOx, CO2 and PM are somewhat satisfactory because the absolute deviations do not exceed 

73.6%, 81.5%, 51.6%, and 86.3% respectively. However, the inventory predictions for CO, and HC are completely 

unreliable with maximal absolute deviations reaching 1000%, and 1390% respectively. 
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Figure 2: Total Emission amounts’ measurement and inventory prediction  
at berth for auxiliary engines 

 
 

Table 6: Inventory deviations from the experimentally measured combined hourly emission amounts in 
% for the main engine plus the auxiliary engines at berth. The experimentally measured combined 
hourly emission amounts are given in the first row in kg/h. The mean absolute deviations in % are 
shown in the last column 
Inventory NOx SOx CO2 CO HC PM MAD 
Experiment 8.117 11.58 543.6 1.219 0.1806 1.289 0.000 
Tier III 34.2 -13.3 NaN -2.58 350 7.62 81.5 
ENTEC 15.1 -20.7 -1.13 NaN 350 7.62 78.9 
MEET 27.2 7.56 16.6 1000 1390 -86.3 422 
STEAM 73.6 -59.9 -11.5 NaN NaN NaN 48.3 
MOPSEA 36.0 -58.5 -8.58 1.83 -41.0 -47.5 32.2 
NERI 11.2 -81.5 -6.21 1.80 25.0 -83.9 34.9 
EMS 61.9 -25.2 -6.69 69.7 45.0 -41.7 41.7 
US EPA 52.7 9.43 51.6 401 987 -77.7 263 
IMO 71.0 -66.7 -12.0 -65.0 42.5 -39.5 49.5 
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Figure 3: Combined hourly emission amounts’ measurement and inventory prediction  
at berth for the main engine plus the auxiliary engines 

 

 
The inventories, which produce least absolute deviations from the experimentally measured combined hourly 

emission amounts at berth, are NERI for NOx, CO, and HC with 11.2%, 1.80%, and 25.0% deviations respectively, 

MEET for SOx with 7.56% deviation, and ENTEC for CO2, and PM with -1.13%, and 7.62%. Tier III for PM has the 

same result as ENTEC. 

For each inventory family the mean value of its absolute deviations from the experimentally measured 

combined hourly emission amounts is shown in the last column of Table 6. With all its imperfections these values 

can serve as a “quick and dirty” marginalization of the 6-dimensional preference problem into a 1-dimensional 

ranking problem in ascending order of the Mean Absolute Deviation (MAD). All inventory families, which do not 

predict at least five of the six combined hourly emission amounts, are disqualified and their MADs are shown 

bolded in Table 6. According to the minimal MAD criterion the best inventory family at berth is MOPSEA with the 

32.2% MAD. That family predicts all six of the emissions. The other inventory families, which predict all six of the 

combined hourly emission amounts, are MEET, NERI, EMS, US EPA, and IMO. 
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3.2. Inventories Performance when the Vessel is Maneuvering  

The experimentally measured total emission amounts and the inventory predictions for the main engine when 

the vessel is maneuvering are shown in Figure 4. The experimentally measured total emission amounts and the 

inventory deviations in % from the experimental values for the main engine when maneuvering are given in 

Table 7. 

 

Table 7: Inventory deviations from the experimentally measured total emission amounts in % for the 
main engine at maneuvering. The experimental measurements are given in the second row in kg per 
time equal to the experiment duration according to the third column of Table 1. The mean absolute 
deviations in % are shown in the last column 

Inventory NOx SOx CO2 CO HC PM MAD 
Experiment 51.17 61.28 3051 10.79 0.3772 10.18 0.000 
Tier III 21.7 -9.26 NaN -39.1 653 40.8 153 
ENTEC 4.33 -15.8 -0.607 NaN 653 40.8 143 
MEET 53.9 3.09 5.45 161 222 -84.2 88.3 
STEAM 69.5 -56.5 -9.26 NaN NaN NaN 45.1 
MOPSEA 75.6 -56.4 -9.41 29.1 59.3 -7.90 39.6 

NERI 69.5 1.63 -7.08 -34.2 109 36.1 42.9 

US EPA 57.4 0.907 4.86 -42.4 151 -67.9 54.1 

SMED 18.2 -28.1 -0.670 -59.2 149 52.5 51.3 

IMO 45.2 -66.4 -16.1 -78.9 138 -20.8 61.0 

 

Most methods systemically over-predict the on-board measured total emission amounts of NOx, and HC, 

whereas under-predict the CO2 emission amounts. The SOx, CO, and PM inventories’ predictions are somewhat 

scattered around the measured total emission amounts for the main engine when the vessel is maneuvering. The 

CO2 is well predicted by every inventory method, with absolute deviations less than 16.1%. The inventory 

predictions for NOx, SOx, and PM are somewhat satisfactory because the absolute deviations do not exceed 69.55, 

66.4%, and 84.2% respectively. However, the inventory predictions for CO, and HC are very unreliable with 

maximal absolute deviations reaching 161%, and 653% respectively. 

The inventories, which produced least absolute deviations for the main engine when maneuvering, are 

MOPSEA for CO, HC, and PM with 29.1%, 59.3%, and -7.9% deviations respectively, ENTEC for NOx, and CO2 with 

4.33%, and -0.607% deviations respectively, and NERI for SOx with 1.63% deviation. 

For each inventory family the MAD criterion is shown in the last column of Table 7. All inventories, which do 

not predict at least five of the six total emission amounts, are disqualified and their mean values are shown with 

red in Table 7. 

According to the minimal MAD criterion, the best inventory family for the main engine, when the vessel is 

maneuvering, is MOPSEA with the 39.6% MAD. That family predicts all six of the emissions. The other inventory 

families which predict all six of the total emission amounts are MEET, NERI, US EPA, SMED, and IMO. 

3.3. Inventories Performance when the Vessel is Cruising 

In comparison to the other two operational modes (at berth and during maneuvering), more inventories are 

available for prediction of total emission amounts while the vessel is on cruising mode. The experimentally 

measured total emission amounts and the inventory predictions for the main engine when the vessel is cruising 

are shown in Figure 5. The experimentally measured total emission amounts and the inventory deviations in % 

from the experimental values for the main engine when cruising are given in Table 8. 
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Figure 4: Total emission amounts’ measurement and inventory prediction  
when maneuvering for the main engine 

 
 

Most methods systemically under-predict the on-board measured total emission amounts of NOx, SOx, and CO2, 

whereas at the same time systemically over-predict the on-board measured total emission amounts of CO, HC, and 

PM from the main engine when the vessel is cruising. The NOx and CO2 are well predicted by every inventory 

method, with absolute deviations less than 21.0% and 24.6% respectively. The inventory predictions for SOx and 

CO also are somewhat satisfactory because the absolute deviations do not exceed 74.4% and 55.9% respectively. 

However, the inventory predictions for HC and PM are completely unreliable with maximal absolute deviations 

reaching 312% and 335% respectively. 
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The inventories, which produce least absolute deviations for the main engine at cruising, are MEET for SOx, 

CO2, and PM with -28.7%, -13.9%, and -37.6% deviations respectively, STEAM for NOx with -3.67% deviation, 

SMED for HC with 104% deviation, and jointly NERI & US EPA for CO with 24.5% deviation. 

For each inventory family the MAD criterion is shown in the last column of Table 8. All inventories, which do 

not predict at least five of the six total emission amounts, are disqualified and their mean values are shown bolded 

in Table 8. 

According to the minimal MAD criterion the best inventory family for the main engine, when the vessel is 

cruising is MEET with the 59.2% MAD. That family predicts all six of the emissions. The other inventory families 

which predict all six of the total emission amounts, are MOPSEA, NERI, US EPA, SMED, and IMO. 

 
Table 8. Inventory deviations from the experimentally measured total emission amounts in % for the 
main engine at cruising. The experimental measurements are given in the first row in kg per time equal 
to the experiment duration according to the third column of Table 1. The mean absolute deviations in % 
are shown in the last column 

Inventory NOx SOx CO2 CO HC PM MAD 

Experiment 451.9 430.3 18180 26.76 4.401 11.80 0.000 

Tier I -16.8 -30.9 NaN 31.6 271 187 107 

Tier II -5.78 -30.9 NaN 31.6 312 299 136 

Tier III -7.89 -30.9 NaN 31.6 312 335 143 

Corbett -10.5 -44.7 -14.3 NaN 312 220 120 

ENTEC -21.0 -42.0 -18.9 NaN 312 335 146 

MEET -5.78 -28.7 -13.9 35.1 234 -37.6 59.2 

STEAM -3.67 -66.9 -18.5 NaN NaN NaN 29.7 

MOPSEA -6.31 -66.8 -18.6 36.0 79.1 276 80.5 

NERI -4.73 -30.3 -14.4 24.5 312 268 109 

US EPA -4.73 -30.3 -14.4 24.5 312 268 109 

SMED -10.5 -50.2 -18.9 -55.9 104 233 78.7 

IMO -12.1 -74.4 -24.6 -54.5 291 245 117 
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Figure 5. Total emission amounts’ measurement and inventory prediction  

when cruising for the main engine 
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4. Discussion 

4.1. Improvement of the Minimal Mean Absolute Deviation Criterion 

 

A problem related to the case study described in sections 2 and 3 is the application of the minimal mean 

absolute deviation criterion to rank the inventory families under specific operational mode of the vessel. That 

criterion is not entirely rational, as it was pointed in the text. In this section we will discuss a more elaborate and 

rational method for ranking. 

In section 3, we arranged the possible inventory methods according to preference three times (for each mode 

of operation). The preferences of any decision maker (DM) over a specific inventory family for a selected 

operational mode of a given vessel will depend only on the deviations of the inventory prediction emissions from 

the six emissions measured in the on-board experiment. Let us denote those deviations (in %) as follows: 

1 xNO  , 2 xSO  , 3 2CO  , 4 CO  , 5 HC   and 6 PM  . The six values can be organized in 

a 6-dimensional vector of deviations   as follows: 

   1 2 6 x x 2NO SO CO CO HC PM, , , , , , , ,            

The parameters 1 2 6, , ,    in the terminology of decision analysis are called attributes. Some of the vectors 

can have one attribute missing (because some inventory families do not predict all six of the emissions). We need 

to rank those vectors for each of the operational modes of a vessel. 

 

Example 5. In our case study during maneuvering, according to Table 7, we have six vectors (for MEET, 

MOPSEA, NERI, US EPA, SMED and IMO) with all 6 deviations: 
MEET
maneuvering =(53.9,3.09,5.45,161,222, -84.2) 

MOPSEA
maneuvering =(75.6,-56.4,-9.41,29.1,59.3,-7.90) 

NERI
maneuvering =(69.5,1.63,-7.08,-34.2,109,36.1) 

US EPA
maneuvering =(57.4,0.907,4.86,-42.4,151,-67.9) 

SMED
maneuvering =(18.2,-28.1,-0.670,-59.2,149,52.5) 

IMO
maneuvering =(45.1,-66.4,-16.1,-78.9,138,-20.8) 

During maneuvering we also have two other vectors with missing values, but with at least four emission 

deviations calculated (for Tier III, and ENTEC): 
Tier III
maneuvering =(21.7,-9.26,NaN,-39.1,653,40.8) 

ENTEC
maneuvering =(4.33,-15.8,-0.607,NaN,653,40.8) 

 

In Section 3, we implicitly substituted the missing values with the mean of the known absolute deviations (that 

is with MAD). There are other more elaborate methods to impute missing values (Acock, 2005; Cohen, Cohen, 

West, & Aiken, 2003), but this problem goes beyond the scope of the paper (see (Nikolova, Toneva-Zheynova, 

Naydenov, & Tenekedjiev, 2012) for further discussion).  

In section 3 we used the mean absolute deviation criterion to marginalize the stated six-dimensional 

preference problem into a one-dimensional ranking problem. However, it has been stated in this paper that the 

criterion in question is “quick and dirty”. Completely rational decisions can be obtained if a value function is built, 

which accurately reflects the preferences of the DM. The function will be additive because the DM holds the mutual 

preferential independence over the 6 attributes: from two inventories, the DM will prefer the one that has more 

favorable deviation for any attribute, if the rest of the attributes are pair-wise equal, and the decision will never 

depend on the equal deviations (French & Insua, 2010). That is why, it is possible to construct a value function 

over the vector of deviations in the form: 
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   

           

x x 2

1 1 x 2 2 x 3 3 2 4 4 5 5 6 6

NO SO CO CO HC PM

NO SO CO CO HC PM

v v , , , , ,

a v a v a v a v a v a v

      

     

 

     
  

The inventories have to be ranked in descending order of the value function. The value function is normalized 

in the closed interval [0; 1] in a sense that it should be 1 if all deviations are 0% (the best-case scenario) and it 

should be 0, if all deviations are -100% (the worst-case scenario). In the above equation, the constants ai, for i=1, 

2, …, 6 are the weight coefficients, which reflect the importance of each attribute into the overall preference of the 

DM over the six-dimensional vectors  . Each of the six constants should be non-negative and they should sum to 

one. The one-dimensional functions  iv . , for i=1, 2, …, 6 are the attribute value functions over each of the emission 

deviations (which are value-difference functions (French & Insua, 2010)). Each of  iv .  is normalized so that          

vi(-100%)=0, vi(0%)=1, and   0
i

i ilim v





 . The function should increase from -100% to 0% and decrease from 

0% to “plus infinity” %. An example of such a function is given on Figure 6.  

It is perfectly rational that the attribute value functions are different for each of the attributes and for each of 

the vessel modes of operation. Alternatively, the DM may use one and the same function over each attribute for 

each mode, since they all measure the opinion of the DM regarding the precision of predictions. The form of the 

attribute value functions depends solely on the preferences of the DM. There is not much discussion in literature 

regarding the rational construction of value functions. However, as far as value functions are a special case of utility 

functions under risk, then the techniques for construction of such functions may be adopted for the case of value 

functions. The single attribute utility function is constructed usually by eliciting several nodes of their function and 

then applying either an analytical non-linear function to approximate the utility on the elicited nodes, or linear 

function to interpolate over the elicited nodes. We will demonstrate how to elicit several nodes of the one-

dimensional function vi(.). It is already known that vi(–100%)=0, vi(0%)=1, and   0
i

i ilim v





 . The DM can select 

a set of M additional deviation values  1 2i , i , i ,M, , ,    for the ith emission. In order to find the value of the one-

dimensional function  i i , jv   at the deviation i , j the DM has to identify the probability pj where he/she is 

indifferent between: 

A) the option of getting 0i ,best %   with probability pj or getting  100i ,worst %    with probability 

(1–pj). This option is denoted as  i ,best j i ,worstp   . 

B)  the option of getting a deviation i , j  for sure.  

If pj is identified by the DM so that the latter is indifferent between the two stated options, then  i i , j jv p  . 

In fact, the DM has to solve M preferential equations of the type < ∆𝑖,𝑏𝑒𝑠𝑡(𝑝𝑗)∆𝑖,𝑤𝑜𝑟𝑠𝑡> ~∆𝑖,𝑗  where the symbol ~ 

stands for indifference. The recommended method to elicit such nodes is called probability equivalence method, 

but there are other more complicated methods (see French & Insua, 2010 as well as Nikolova, Hirota, Kobashikawa 

& Tenekedjiev, 2006) for discussion on methods to elicit nodes of one-dimensional value functions). 

The weight coefficients in the value function measure the importance of each pollutant in the overall 

assessment of preferences over emission inventories. It is only natural to expect that pollution levels have different 

significance depending on the regime – pollution close or in ports are causing more direct harm than emissions 

while at sea, while still the pollution is of global importance. There are elaborate methods to elicit the weight 

coefficients, which are nothing else but scaling constants in the utility theory. Scaling constants are elicited 

subjectively, where the DM has to identify the probability pi, which makes him/her indifferent when comparing:  

A) the option of getting  0 0 0 0 0 0best , , , , ,   with probability pi or getting 

 100 100 100 100 100 100worst , , , , ,         with probability (1–pi). This option is denoted as 

 best i worstp   . 

B) the option of getting for sure a deviation vector, where only the i-th deviation is set to its best 

level 0%, and the others are at their worst level of -100%: 
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 1 1 1100 100 0 100 100corner ,i i i i n, , , , , ,                . Such vector is a.k.a. corner 

vector. 

If pi is identified by the DM so that the latter is indifferent between the two stated options, then   ai=pi. In fact, 

the DM has to solve six preferential equations of the type  best i worst corner ,ip     (see Keeney & Raiffa, 

1993) for detailed discussion on multi-dimensional utility functions and identification of scaling constants).  

 

Figure 6: Example of the value functions  iv .  over an emission deviation (continues line). The function 

vquick(Δi) =1-|Δi|/100 is shown for reference (dashed line) 

 

 
 

4.2. Choosing the Best Inventory Family for a Given Type of Operation 

Constructing the value functions, we will be able to choose which inventory method is the best (most 

preferred) for each operational mode. The following algorithm can be utilized to select the best inventory method 

for a given type of ship operation:  

 

Algorithm to select the best inventory method for a selected type of operation:  

1. Define the vector of deviations  x x 2NO SO CO CO HC PM, , , , ,        for each inventory method 

(with at least five emission deviations calculated). 

2. Impute missing values in the vector of deviations by replacing them with the mean of the known deviations' 

absolute values. 

3. Construct the attribute value functions  iv .  for the selected type of operation. 

4. Elicit the scaling constants ai for i=1, 2, …, 6 for the selected type of operation. 

5. Construct the value function v as function of six attributes and their scaling constants. 

6. Calculate  v   for each of the deviation vectors from step 1). 

7. Choose the inventory family that has the highest value, calculated in step 6). 

 

While our algorithm assumes we need at least five calculated deviations (in step 1), this requirement may be 

modified and is prescriptive, not mandatory. If all six deviations are calculated, then step 2 of the above algorithm 

will be obsolete. We will demonstrate the application of this algorithm in an example. 
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Example 6. Let us select the best inventory method for operation during maneuvering. There are eight vectors 

that satisfy step 1 of the Algorithm (that at least five pollution deviations are calculated) and they were given in 

Example 5.  

Following step 2 of the Algorithm, we identify the following imputed values for the two vectors containing 

missing values. For the inventory Tier III, the deviation in CO2 will be: 

     
3 1 2 4 5 6 21 7 9 26 39 1 653 405 5 153 MAD8 TIER III. . . ./ /               

 

Then Tier III
maneuvering =(21.7,-9.26,153,-39.1,653,40.8). 

For the inventory family ENTEC, the deviation in CO will be: 

   4 1 2 3 5 6 4 33 15 8 0 607 65 5 1453 40 3 MA8 DENTEC. . . ./ /               
 

Then ENTEC
maneuvering =(4.33,-15.8,-0.607,143,653,40.8). 

Following step 3 of the Algorithm, let the DM believe that all attribute value functions are the same and are 

equal to  sav . : 

       1 2 6 sav . v . v . v .   
. 

The following preferential equations were solved in order to elicit additional nodes from  sav . : 

<0% (0.17) -100%> ~ –75% =>  75 0 17sav % .   

<0% (0.40) -100%> ~ –50% =>  50 0 40sav % .   

<0% (0.75) -100%> ~ –25% =>  25 0 75sav % .  , 

<0% (0.75) -100%> ~ 25% =>  25 0 75sav % .  

<0% (0.60) -100%> ~ 50% =>  50 0 60sav % .  

<0% (0.50) -100%> ~ 75% =>  75 0 50sav % .  

<0% (0.429) -100%> ~ 100% =>  100 0 429 0 43sav % . .   

<0% (0.273) -100%> ~ 200% =>  200 0 273 0 27sav % . .   

<0% (0.20) -100%> ~ 300% =>  300 0 20sav % .  

The function  sav .  is then approximated with the following analytical form: 

 
2

100
for 100 25

75

2500
for 25 25

2500

75
for 25

75

sa

x
x

x

x
v x x

x
x


    




   




  

Figure 7 presents the approximated function  sav x , for  100x ;    (we can see the similarities of this 

function to the example one presented on Figure 6). 
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Figure 7: Graphics of the single attribute function  sav x  

 
 

The DM has also elicited the following scaling constants: 

< best  (0.10) worst > ~  100 0 0 0 0 0, , , , ,    => a1=0.10 

< best  (0.25) worst > ~  0 100 0 0 0 0, , , , ,    => a2=0.25 

< best  (0.05) worst > ~  0 0 100 0 0 0, , , , ,    => a3=0.05 

< best  (0.30) worst > ~  0 0 0 100 0 0, , , , ,    => a4=0.30 

< best  (0.10) worst > ~  0 0 0 0 100 0, , , , ,    => a5=0.10 

< best  (0.20) worst > ~  0 0 0 0 0 100, , , , ,    => a6=0.20 

Following step 4 of the Algorithm, the six-attribute value function is constructed: 

   

         

x x 2

x x 2

NO SO CO CO HC PM

0 10 NO 0 25 SO 0 05 CO 0 30 CO 0 10 HC 0 20 PMsa sa sa sa sa sa

v v , , , , ,

. v . v . v . v . v . v

      

     

 

     
 

Following step 5 of the Algorithm, we can calculate the value function over each of the inventories. For 

example, for MEET we have: 

   

           0 10 53 9 0 25 0 05 0 30 161 0 10 222 0 2

53 9 3 09 5 45 161 222 84 2

3 09 5 45 0 84 2

0 10 0 5818 0 25 0 9962 0 05 0 9881 0 30 0 3178 0 10 0 2525 0 20 0 0992

0 4971

MEET
maneuvering

sa sa sa sa sa sa

v

. v . . v . v . v . v . v .

. . . . . . . . .

v . , . , . , , ,-

.

.

.

. .

.

.

 

      

           

  
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In the same way we can calculate the value function over the other seven inventory families: 

 MOPSEA
maneuveringv  =v(75.6,-56.4,-9.41,29.1,59.3,-7.90)=…=0.6480 

 NERI
maneuveringv  =v(69.5,1.63,-7.08,-34.2,109,36.1)=…=0.7072 

 US EPA
maneuveringv  =v(57.4,0.907,4.86,-42.4,151,-67.9)=…=0.5814 

 SMED
maneuveringv  =v(18.2,-28.1,-0.670,-59.2,149,52.5)=…=0.5534 

 IMO
maneuveringv  =v(45.2,-66.4,-16.1,-78.9,138,-20.8)=…=0.4083 

 Tier III
maneuveringv  =v(21.7,-9.26,153,-39.1,653,40.8)=…=0.6390 

 ENTEC
maneuveringv  = v(4.33,-15.8,-0.607,143,653,40.8)=…=0.6173 

 

Following step 6 of the Algorithm the recommended inventory family when maneuvering would be MEET, 

because it has the highest value of the value function (0.7072). The second-best inventory family would be 

MOPSEA with value function of 0.6468. The selection of the MEET inventory family is a slight improvement 

compared to the one achieved with the minimal MAD criterion in section 3.2, where the MOPSEA was selected. 

Let us assume that the DM wants to use the same attribute value function for all six attributes in the form 

vquick(Δi) =1-|Δi|/100. This function is shown with dashed line on Figure 6, where it can be seen it somehow 

resembles the “precise and rational” vi(Δi) given with solid line. Let the same DM be happy to use six equal scaling 

constants and therefore ai=1/6 for i=1,2,…,6. The main advantage of using the vquick(.) with equal weight 

coefficients is that the six attribute value function can be built quickly by skipping the elaborate procedure in 

Section 4.1 and demonstrated in Example 6. The function vquick(Δi) is not normalized because it takes negative 

values for deviations greater than 100%. However, the only place where this normalization matters is the skipped 

procedure for elicitation of the scaling constants using corner vectors. So, the six-attribute value function which 

models the preference of the discussed DM will take the form: 

   

           

x x 2

1 1 1 1 1 1
x x 26 6 6 6 6 6

x x 2

x x 21
100

1 NO 100 1 O 100 1 CO 100 1 CO 100 1 NC 100 1 PM 100

6 6 6 6 6 6

NO SO CO CO HC PM

NO SO CO CO HC PM

NO SO CO
1

quick quick quick quick quick quick

/ S / / / / /

v v , , , , ,

v v v v v v

     

      

     

  

     
     

 

      



  
   1

100

CO HC PM
1

6
w

  


 
 

 

It is obvious that under the discussed circumstances the value function v(.) is a negative affine transformation 

of the MAD criterion w(.). So according to the value function uniqueness theorem (French, 1993) the maximization 

of the six-attribute value function v(.) will produce the same result as the application of the minimal MAD criterion. 

The later happens to be a special case of the six-attribute value function v(.), where the scaling constants are equal, 

and the six attribute functions are in the form vquick(Δi) =1-|Δi|/100. That is why the ranking of inventory families 

with the minimal MAD criterion is "quick and dirty" approach, which often produce satisfactory results as in 

Example 6. However, using the more elaborate 6-atrribute value function approach will guarantee that the selected 

inventory family will fully correspond to the DM preferences as is the case presented in Example 6. 
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4.3. Policy Implications of the Case Study 

We can formulate some implications from the case study given in sections 2 and 3 and improved in Sections 

4.1 and 4.2. It is very likely that for any standard ship in a specific mode of operation there is an inventory method 

that will produce emission predictions with high precision. If on-board measurement experiments are available, 

we have a chance of identifying which is the most suitable method and from what we demonstrated in the paper, 

this is a comparatively easy task. The best inventory method will most likely give small deviations from the 

measured emissions. However, if we try to choose blindly one inventory family for some mode of operation 

(without backing this up by any real time measurements) there is a high chance that we will choose a method that 

produces unacceptably high errors. The case study demonstrated that some methods deviate substantially in their 

predictions (by well over 100%). In that sense, one of the important contributions of this paper is to demonstrate 

the importance of experimental data to identify suitable inventory family for each of vessel's modes of operation. 

This case study demonstrated an efficient way forward for emission estimation of a ship during technical 

exploitation in a quick and precise manner. It is possible that on-board measurements of the ship emission can be 

conducted at the time the ship is put in exploitation as well as at times of regular ship repairs. Using those 

measurements, the inventory method, which predicts the emissions with minimal error can be identified for each 

mode of operation of the vessel. The identified inventory methods can be used by various regulatory authorities 

during exploitation of the ship to calculate emissions during regular exploitation. The discussed inventory 

methods are beneficial first of all for the policy makers, who need to assess the pollution caused by shipping in 

order to implement reasonable boundaries to that pollution. Ship owners, on the other hand, can use the identified 

inventories to get precise prediction on the actual pollution their vessels cause to the environment during various 

modes of operation so that they can take adequate measures to minimize the penalties imposed by regulatory 

bodies.  

There are four obvious alternatives to the above-formulated policy: 

a) To use inventory methods selected by the policy makers without the benefit of verifying them 

with real measurement for each ship. As it was demonstrated by our case study, this method will almost 

surely produce shipping emission estimate with low precision. Therefore, the policy changes will most 

likely be inadequate. In fact, that is the situation now.  

b) To regulate that every vessel should acquire and maintain its own measurement devices. They 

may even design their own family of inventories and justify their applicability for the ships they operate. 

That alternative would be unreasonably expensive for the ship owners, and very impractical because of 

the many problems that may arise when the machine crew starts interacting with the emission 

measurement system. As a result, even if the latter works in a given moment of time, the measurement 

results will be highly unreliable. Furthermore, the maritime and environmental authorities will use their 

own measurement systems rather than utilizing those on the ship (due to their necessity to comply with 

strict international regulations).  

c) To require that every vessel should develop ship-specific inventories based on an on-board 

measurement campaign. This problem is almost impossible mathematically, because the data to create 

the inventory models will never be enough. On top, the policy makers would have a hard time dealing with 

so many different unknown models instead of using several known inventories. As a result, the assessed 

shipping emissions will be with even greater error than they are today. 

d) To use only empirical data from on-board measurements. The main disadvantage of that strategy 

is that the best inventories, for a specific ship and type of operation contain prior knowledge, which will 

not be utilized. Additionally, the problems with the policy makers will be the same as in the previous 

alternative.  

 

It seems that neither one of the discussed alternatives is satisfactory.  

Based on the arguments given in the current section we propose the following policy for estimating the 

shipping emissions for future implementation: 

Regulate that on-board emission measurements of nitrogen oxides, sulphur oxides, carbon dioxide, carbon 

monoxide, hydrocarbon, and particulate matter should be conducted for each vessel when put in exploitation and 

during every regular repair. For each possible inventory method, the deviations of its predicted emissions from the 
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measured emissions for the different modes of operations should be calculated. Those results should be kept within 

the official vessel’s documents and should be available to the regulating authorities.  

Using the available deviations, any authority can identify the best inventory family for each of the three modes 

of operations, depending on their preferences encoded in the six-attribute value function. Those vessel-specific 

inventory families will ensure cheap and relatively precise estimation of the primary emissions from shipping both 

locally and globally. 

5. Conclusion 

In the paper, a case study was presented about measurement and prediction of the emission from a 27000 

GRT bulk carrier, with slow speed diesel main engine and with medium speed diesel auxiliary engines.  

During an on-board experimental campaign, the following measurements were taken: 

a) NOx, SOx, CO2, CO, HC, and PM emission rates from the main engines when the vessel is at-berth, during 

maneuvering, and during cruising.  

b) NOx, SOx, CO2, and CO emission rates from the auxiliary engines when the vessel is at-berth 

c) The instantaneous engine power, the shaft speed, the specific oil consumption, the air consumption, and the 

exhaust mass flow rate for each of the four experiments described a) and b). 

 

The measured emission rates were converted to instantaneous emission factors and eventually to total 

emission amounts. The latter were predicted with 13 families of emission inventories (Tier I–III, ENTEC, MEET, 

STEAM, MOPSEA, IMO, SMED, EMS, US EPA, NERI and Corbett) and prediction deviations have been calculated. A 

procedure was advised for estimating the prediction inventory deviations of the combined hourly emission 

amounts from the main engine plus the auxiliary engines. The best inventory families were identified using the 

minimal mean absolute deviation criterion. The best inventory method at berth happened to be MOPSEA (32.2% 

mean absolute deviation), for maneuvering the best inventory family was MOPSEA (with 39.6% mean absolute 

deviation), and for cruising the best inventory family is MEET (with 59.2% mean absolute deviation). However, 

some of the other inventories produce unacceptably great deviation, well above 100%.  

A more rational procedure for inventory ranking was considered, where each inventory family has been 

formalized as a six-dimensional vector of prediction deviations for a given mode of operation, which treats the 

missing value problem and constructs a six-attribute value function. We proposed an algorithm to impute missing 

values in the vectors (in case some of the emission deviations were not calculated), and to construct a six-attribute 

value function. The calculation of the value function at the six-dimensional vectors of prediction deviations was in 

position more rationally to identify the best inventory family when the vessel is at-berth, during maneuvering, and 

during cruising. The relation between the minimal mean absolute deviation criterion ranking and the maximal 

value function criterion was investigated. It was demonstrated that the former is a “quick and dirty” special case 

of the latter. 

The implications of the case study were used to advise novel future policy for cost-effective and reliable 

emission estimation caused by the shipping. 
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